## P-06-201

## Oskarshamn site investigation

# Hydraulic injection tests in borehole KLX11A

**Subarea Laxemar** 

Cristian Enachescu, Stephan Rohs, Philipp Wolf Golder Associates GmbH

September 2006

### Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864

SE-102 40 Stockholm Sweden Tel 08-459 84 00

+46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19



## Oskarshamn site investigation

# Hydraulic injection tests in borehole KLX11A

### **Subarea Laxemar**

Cristian Enachescu, Stephan Rohs, Philipp Wolf Golder Associates GmbH

September 2006

Keywords: Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

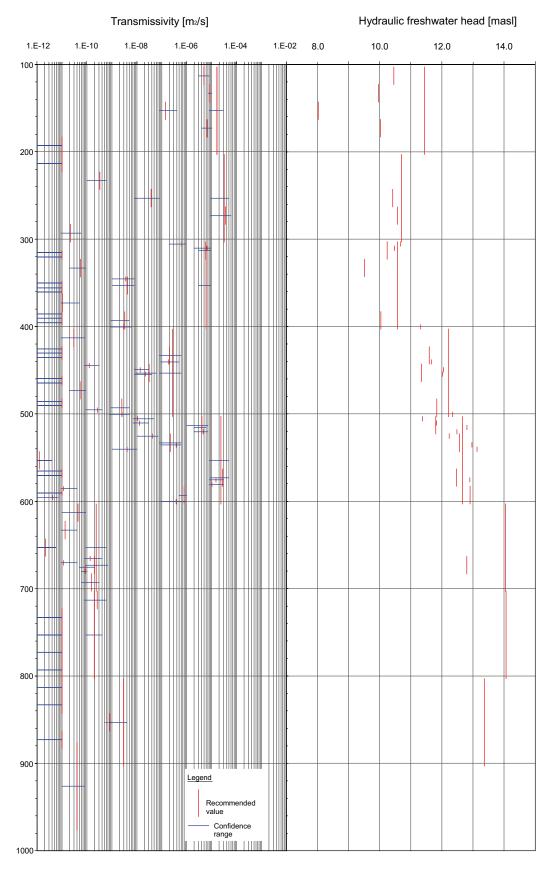
This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

### **Abstract**

Hydraulic injection tests have been performed in Borehole KLX11A at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar sub-area. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX11A performed between 29th of June and 11th of August 2006.


The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m, 20 m and 5 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 103.00–976.00 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

## Sammanfattning

Injektionstester har utförts i borrhål KLX11A i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata de hydrauliska injektionstesterna i borrhål KLX11A. Testerna utfördes mellan den 29 juni till den 11 augusti 2006.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissvitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m, 20 m och 5 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 103,00–976,00 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (fresh-water head).



Borehole KLX11A – summary of results.

## Contents

| 1                      | Introduction                                                                                              | 11                   |
|------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|
| 2                      | Objective                                                                                                 | 13                   |
| 3.1<br>3.2<br>3.3      | Scope of work Borehole Injection tests Control of equipment                                               | 15<br>15<br>17<br>20 |
| 4                      | Equipment                                                                                                 | 21                   |
| 4.1                    | Description of equipment                                                                                  | 21                   |
| 4.2                    | Sensors                                                                                                   | 25                   |
| 4.3                    | Data acquisition system                                                                                   | 26                   |
| 5                      | Execution                                                                                                 | 27                   |
| 5.1                    | Preparations                                                                                              | 27                   |
| 5.2                    | Length correction                                                                                         | 27                   |
| 5.3                    | Execution of tests/measurements                                                                           | 27<br>27             |
|                        | <ul><li>5.3.1 Test principle</li><li>5.3.2 Test procedure</li></ul>                                       | 28                   |
| 5.4                    | Data handling                                                                                             | 29                   |
| 5. <del>4</del><br>5.5 | Analyses and interpretation                                                                               | 29                   |
| 5.5                    | 5.5.1 Analysis software                                                                                   | 29                   |
|                        | 5.5.2 Analysis approach                                                                                   | 30                   |
|                        | 5.5.3 Analysis methodology                                                                                | 30                   |
|                        | 5.5.4 Flow models used for analysis                                                                       | 31                   |
|                        | 5.5.5 Steady state analysis                                                                               | 33                   |
|                        | 5.5.6 Calculation of the static formation pressure and equivalent freshwater head                         | 33                   |
|                        | 5.5.7 Derivation of the recommended transmissivity and the                                                |                      |
|                        | confidence range                                                                                          | 33                   |
| 5.6                    | Nonconformities                                                                                           | 34                   |
| 6                      | Results                                                                                                   | 35                   |
| 6.1                    | 100 m hydraulic injection tests                                                                           | 35                   |
|                        | 6.1.1 Section 103.00–203.00 m, test no. 1, injection                                                      | 35                   |
|                        | 6.1.2 Section 203.00–303.00 m, test no. 1, injection                                                      | 36                   |
|                        | 6.1.3 Section 303.00–403.00 m, test no. 1, injection                                                      | 37                   |
|                        | 6.1.4 Section 403.00–503.00 m, test no. 1, injection                                                      | 37                   |
|                        | 6.1.5 Section 503.00–603.00 m, test no. 1, injection                                                      | 38                   |
|                        | 6.1.6 Section 603.00–703.00 m, test no. 1, injection                                                      | 39<br>40             |
|                        | 6.1.7 Section 703.00–803.00 m, test no. 1, injection 6.1.8 Section 803.00–903.00 m, test no. 1, injection | 40                   |
|                        | 6.1.9 Section 876.00–976.00 m, test no. 1, nijection                                                      | 42                   |
| 6.2                    | 20 m hydraulic injection tests                                                                            | 42                   |
| 0.2                    | 6.2.1 Section 103.00–123.00 m, test no. 1, injection                                                      | 43                   |
|                        | 6.2.2 Section 123.00–143.00 m, test no. 1, injection                                                      | 43                   |
|                        | 6.2.3 Section 143.00–163.00 m, test no. 1, injection                                                      | 44                   |
|                        | 6.2.4 Section 163.00–183.00 m, test no. 1, injection                                                      | 45                   |
|                        | 6.2.5 Section 183.00–203.00 m, test no. 1, injection                                                      | 46                   |
|                        | 6.2.6 Section 203.00–223.00 m, test no. 1, injection                                                      | 46                   |
|                        | 6.2.7 Section 223.00–243.00 m, test no. 1, pulse injection                                                | 46                   |
|                        | 6.2.8 Section 243.00–263.00 m. test no. 1. injection                                                      | 47                   |

```
6.2.9
              Section 263.00–283.00 m, test no. 1, injection
                                                                                 48
      6.2.10 Section 283.00–303.00 m, test no. 1, pulse injection
                                                                                 49
                                                                                 50
      6.2.11 Section 303.00–323.00 m, test no. 1, injection
      6.2.12 Section 323.00–343.00 m, test no. 1, injection
                                                                                 50
      6.2.13 Section 343.00–363.00 m, test no. 1, injection
                                                                                 51
      6.2.14 Section 363.00–383.00 m, test no. 1, pulse injection
                                                                                 52
      6.2.15 Section 383.00–403.00 m, test no. 1, injection
                                                                                 53
      6.2.16 Section 403.00–423.00 m, test no. 1, pulse injection
                                                                                 54
      6.2.17 Section 423.00–443.00 m, test no. 1, injection
                                                                                 54
                                                                                 55
      6.2.18 Section 443.00–463.00 m, test no. 1, injection
      6.2.19 Section 463.00–483.00 m, test no. 1, pulse injection
                                                                                 56
      6.2.20 Section 483.00–503.00 m, test no. 1, injection
                                                                                 57
      6.2.21 Section 503.00–523.00 m, test no. 1, injection
                                                                                 58
      6.2.22 Section 523.00-543.00 m, test no. 1, injection
                                                                                 58
      6.2.23 Section 543.00–563.00 m, test no. 1, pulse injection
                                                                                 59
      6.2.24 Section 563.00–583.00 m, test no. 1, injection
                                                                                 60
      6.2.25 Section 583.00–603.00 m, test no. 1, injection
                                                                                 61
      6.2.26 Section 603.00–623.00 m, test no. 1, pulse injection
                                                                                 62
      6.2.27 Section 623.00–643.00 m, test no. 1, pulse injection
                                                                                 62
      6.2.28 Section 643.00–663.00 m, test no. 1, pulse injection
                                                                                 63
      6.2.29 Section 663.00–683.00 m, test no. 1, injection
                                                                                 64
      6.2.30 Section 683.00–703.00 m, test no. 1, pulse injection
                                                                                 65
      6.2.31 Section 703.00–723.00 m, test no. 1, injection
                                                                                 65
      6.2.32 Section 723.00–743.00 m, test no. 1, pulse injection
                                                                                 66
      6.2.33 Section 743.00–763.00 m, test no. 1, pulse injection
                                                                                 67
      6.2.34 Section 763.00–783.00 m, test no. 1, pulse injection
                                                                                 67
      6.2.35 Section 783.00–803.00 m, test no. 1, pulse injection
                                                                                 67
      6.2.36 Section 803.00–823.00 m, test no. 1, injection
                                                                                 68
      6.2.37 Section 823.00-843.00 m, test no. 1, injection
                                                                                 68
      6.2.38 Section 843.00–863.00 m, test no. 1, injection
                                                                                 68
      6.2.39 Section 863.00–883.00 m, test no. 1, injection
                                                                                 69
6.3
      5 m hydraulic injection tests
                                                                                 69
      6.3.1
              Section 303.00-308.00 m, test no. 1, injection
                                                                                 69
      6.3.2
              Section 308.00–313.00 m, test no. 1, injection
                                                                                 70
      6.3.3
                                                                                 71
              Section 313.00–318.00 m, test no. 1, injection
                                                                                 71
      6.3.4
              Section 318.00–323.00 m, test no. 1, injection
      6.3.5
              Section 343.00–348.00 m, test no. 1, injection
                                                                                 72
                                                                                 73
      6.3.6
              Section 348.00–353.00 m, test no. 1, injection
                                                                                 73
      6.3.7
              Section 353.00–358.00 m, test no. 1, injection
      6.3.8
              Section 358.00-363.00 m, test no. 1, injection
                                                                                 73
      6.3.9
                                                                                 74
              Section 383.00–388.00 m, test no. 1, injection
      6.3.10 Section 388.00–393.00 m, test no. 1, injection
                                                                                 74
      6.3.11 Section 393.00–398.00 m, test no. 1, injection
                                                                                 74
                                                                                 75
      6.3.12 Section 398.00–403.00 m, test no. 1, injection
      6.3.13 Section 423.00–428.00 m, test no. 1, injection
                                                                                 76
      6.3.14 Section 428.00-433.00 m, test no. 1, injection
                                                                                 76
      6.3.15 Section 433.00-438.00 m, test no. 1, injection
                                                                                 76
      6.3.16 Section 438.00–443.00 m, test no. 1, injection
                                                                                 77
      6.3.17 Section 442.00–447.00 m, test no. 1, pulse injection
                                                                                 77
      6.3.18 Section 447.00–452.00 m, test no. 1, injection
                                                                                 78
      6.3.19 Section 452.00–457.00 m, test no. 1, injection
                                                                                 79
      6.3.20 Section 457.00–462.00 m, test no. 1, injection
                                                                                 80
      6.3.21 Section 462.00–467.00 m, test no. 1, injection
                                                                                 80
      6.3.22 Section 483.00–488.00 m, test no. 1, injection
                                                                                 81
      6.3.23 Section 488.00–493.00 m, test no. 1, injection
                                                                                 81
      6.3.24 Section 493.00–498.00 m, test no. 1, pulse injection
                                                                                 81
```

|                                                                          | 6.3.25 Section 498.00–503.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 82                                                          |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                          | 6.3.26 Section 503.00–508.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 83                                                          |
|                                                                          | 6.3.27 Section 508.00–513.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 84                                                          |
|                                                                          | 6.3.28 Section 513.00–518.00 m, test no. 1–3, injection                                                                                                                                                                                                                                                                                                                                                                              | 85                                                          |
|                                                                          | 6.3.29 Section 518.00–523.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 85                                                          |
|                                                                          | 6.3.30 Section 523.00–528.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 86                                                          |
|                                                                          | 6.3.31 Section 528.00–533.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 87                                                          |
|                                                                          | 6.3.32 Section 533.00–538.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 88                                                          |
|                                                                          | 6.3.33 Section 538.00–543.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 88                                                          |
|                                                                          | 6.3.34 Section 563.00–568.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 89                                                          |
|                                                                          | 6.3.35 Section 568.00–573.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 89                                                          |
|                                                                          | 6.3.36 Section 573.00–578.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 90                                                          |
|                                                                          | 6.3.37 Section 578.00–583.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 91                                                          |
|                                                                          | 6.3.38 Section 583.00–588.00 m, test no. 1, pulse injection                                                                                                                                                                                                                                                                                                                                                                          | 91                                                          |
|                                                                          | 6.3.39 Section 588.00–593.00 m, test no. 1, pulse injection                                                                                                                                                                                                                                                                                                                                                                          | 92                                                          |
|                                                                          | 6.3.40 Section 593.00–598.00 m, test no. 1, pulse injection                                                                                                                                                                                                                                                                                                                                                                          | 92                                                          |
|                                                                          | 6.3.41 Section 598.00–603.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 93                                                          |
|                                                                          | 6.3.42 Section 663.00–668.00 m, test no. 1, injection                                                                                                                                                                                                                                                                                                                                                                                | 94                                                          |
|                                                                          | 6.3.43 Section 668.00–673.00 m, test no. 1, pulse injection                                                                                                                                                                                                                                                                                                                                                                          | 95                                                          |
|                                                                          | 6.3.44 Section 673.00–678.00 m, test no. 1, pulse injection                                                                                                                                                                                                                                                                                                                                                                          | 95                                                          |
|                                                                          | 6.3.45 Section 678.00–683.00 m, test no. 1, pulse injection                                                                                                                                                                                                                                                                                                                                                                          | 96                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
| 7                                                                        | Synthesis                                                                                                                                                                                                                                                                                                                                                                                                                            | 99                                                          |
| 7<br>7.1                                                                 | Synthesis Summary of results                                                                                                                                                                                                                                                                                                                                                                                                         | 99<br>100                                                   |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
| 7.1                                                                      | Summary of results                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                         |
| 7.1                                                                      | Summary of results<br>Correlation analysis                                                                                                                                                                                                                                                                                                                                                                                           | 100<br>116                                                  |
| 7.1                                                                      | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results                                                                                                                                                                                                                                                                                                                              | 100<br>116                                                  |
| 7.1<br>7.2                                                               | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient                                                                                                                                                                                                                                            | 100<br>116<br>116<br>116                                    |
| 7.1                                                                      | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions                                                                                                                                                                                                                               | 100<br>116<br>116                                           |
| 7.1<br>7.2<br><b>8</b>                                                   | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity                                                                                                                                                                                                                | 100<br>116<br>116<br>116<br>119                             |
| 7.1<br>7.2<br><b>8</b><br>8.1                                            | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity Equivalent freshwater head                                                                                                                                                                                     | 100<br>116<br>116<br>116<br>119<br>119                      |
| 7.1<br>7.2<br><b>8</b><br>8.1<br>8.2                                     | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity                                                                                                                                                                                                                | 100<br>116<br>116<br>116<br>119<br>119<br>119               |
| 7.1<br>7.2<br><b>8</b><br>8.1<br>8.2<br>8.3                              | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity Equivalent freshwater head Generalized radial flow analysis                                                                                                                                                    | 100<br>116<br>116<br>116<br>119<br>119<br>119<br>120        |
| 7.1<br>7.2<br>8<br>8.1<br>8.2<br>8.3<br>8.4<br>9                         | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity Equivalent freshwater head Generalized radial flow analysis Flow regimes encountered  References                                                                                                               | 100<br>116<br>116<br>116<br>119<br>119<br>119<br>120<br>121 |
| 7.1<br>7.2<br>8<br>8.1<br>8.2<br>8.3<br>8.4<br>9                         | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity Equivalent freshwater head Generalized radial flow analysis Flow regimes encountered  References  endices attached on CD                                                                                       | 100<br>116<br>116<br>116<br>119<br>119<br>119<br>120<br>121 |
| 7.1<br>7.2<br>8<br>8.1<br>8.2<br>8.3<br>8.4<br>9<br>Appe                 | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity Equivalent freshwater head Generalized radial flow analysis Flow regimes encountered  References  endices attached on CD  endix 1 File description table                                                       | 100<br>116<br>116<br>116<br>119<br>119<br>119<br>120<br>121 |
| 7.1<br>7.2<br>8<br>8.1<br>8.2<br>8.3<br>8.4<br>9<br>Appe<br>Appe         | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity Equivalent freshwater head Generalized radial flow analysis Flow regimes encountered  References Endices attached on CD Endix 1 File description table Endix 2 Analysis diagrams                               | 100<br>116<br>116<br>116<br>119<br>119<br>119<br>120<br>121 |
| 7.1<br>7.2<br>8<br>8.1<br>8.2<br>8.3<br>8.4<br>9<br>Appe<br>Appe<br>Appe | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity Equivalent freshwater head Generalized radial flow analysis Flow regimes encountered  References  endices attached on CD  endix 1 File description table endix 2 Analysis diagrams endix 3 Test summary sheets | 100<br>116<br>116<br>116<br>119<br>119<br>119<br>120<br>121 |
| 7.1<br>7.2<br>8<br>8.1<br>8.2<br>8.3<br>8.4<br>9<br>Appe<br>Appe<br>Appe | Summary of results Correlation analysis 7.2.1 Comparison of steady state and transient analysis results 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient  Conclusions Transmissivity Equivalent freshwater head Generalized radial flow analysis Flow regimes encountered  References Endices attached on CD Endix 1 File description table Endix 2 Analysis diagrams                               | 100<br>116<br>116<br>116<br>119<br>119<br>119<br>120<br>121 |

### 1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001/, as well as a site-specific program for the investigations in the Simpevarp area /SKB 2005/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB 2002/.

Measurements were carried out according in borehole KLX11A during 29<sup>th</sup> of June and 11<sup>th</sup> of August 2006 following the methodology described in SKB MD 323.001 and in the activity plan AP PS 400-06-072 (SKB controlling documents). Data and results were delivered to the SKB site characterisation database SICADA and are traceable by the activity plan number.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX11A. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX11A is situated in the Laxemar area approximately 2.5 km west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from November 2005 to March 2006 at 992.29 m length with an inner diameter of 76 mm and an inclination of –76.43°. The upper 12.05 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 208 mm–323 mm.

The work was carried out in accordance with activity plan AP PS 400-06-072. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents. Measurements were conducted utilising SKB's custom made testing equipment PSS2.

Table 1-1. SKB internal controlling documents for the performance of the activity.

| Activity plan                                                                   | Number           | Version |
|---------------------------------------------------------------------------------|------------------|---------|
| Hydraulic injection tests in borehole KLX11A                                    | AP PS 400-06-072 | 1.0     |
| Method descriptions                                                             | Number           | Version |
| Hydraulic injection tests                                                       | SKB MD 323.001   | 1.0     |
| Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning | SKB MD 600.004   | 1.0     |
| Instruktion för längdkalibrering vid undersökningar I kärnborrhål               | SKB MD 620.010   | 1.0     |
| Allmäna ordning-, skydds- och miljöregler för platsundersökningar Oskarshamn    | SKB SDPO-003     | 1.0     |
| Miljökontrollprogram Platsundersökningar                                        | SKB SDP-301      | 1.0     |
| Hantering av primärdata vid platsundersökningar                                 | SKB SDP-508      | 1.0     |

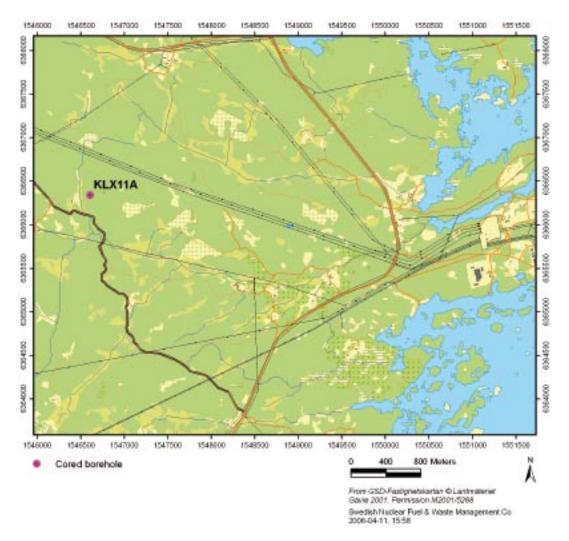



Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX11A.

## 2 Objective

The objective of the hydrotests in borehole KLX11A is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m, 20 m and 5 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

## 3 Scope of work

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m, 20 m and 5 m test sections, analyses and reporting.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following hydraulic injection tests were performed between 29th June and 11th August 2006 (Table 3-1).

### 3.1 Borehole

The borehole is telescope drilled with specifications on its construction according to Table 3-2. The reference point of the borehole is the centre of top of casing (ToC), given as elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 3-2 refers to the final diameter of the drill bit after drilling to full depth.

Table 3-1. Performed injection tests at borehole KLX11A.

| No. of injection tests* | Interval | Positions       | Time/test | Total test time |
|-------------------------|----------|-----------------|-----------|-----------------|
| 9                       | 100 m    | 103.00–976.00 m | 125 min   | 18.75 hrs       |
| 39                      | 20 m     | 103.00-883.00 m | 90 min    | 58.50 hrs       |
| 45                      | 5 m      | 303.00-683.00 m | 90 min    | 67.50 hrs       |
|                         |          |                 | Total:    | 144.75 hrs      |

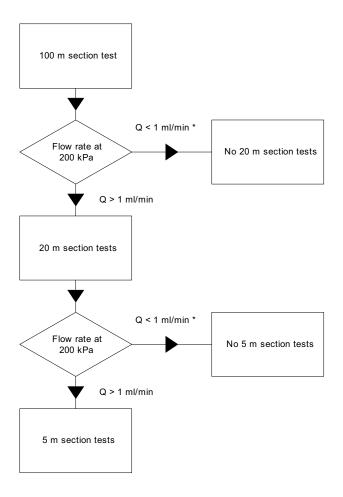

<sup>\*</sup> excluding repeated tests and additional over night pulse injections.

Table 3-2. Information about KLX11A (from SICADA 2006-06-07).

| Title                      | Value      |                  |                           |                        |                        |
|----------------------------|------------|------------------|---------------------------|------------------------|------------------------|
| Borehole length (m):       | 992.290    |                  |                           |                        |                        |
| Reference level:           | TOC        |                  |                           |                        |                        |
| Drilling Period (s):       | From Date  | To Date          | Secup (m)                 | Seclow (m)             | Drilling Type          |
|                            | 2005-11-01 | 2005-11-08       | 0.430                     | 100.060                | Percussion drilling    |
|                            | 2005-11-24 | 2006-03-02       | 100.060                   | 992.290                | Core drilling          |
| Starting point coordinate: | Length (m) | Northing (m)     | Easting (m)               | Elevation (m.a.s.l.)   | Coord System           |
| (centerpoint of TOC)       | 0.000      | 6366339.716      | 1546608.490               | 27.143                 | RT90-RHB70<br>Measured |
| Angles:                    | Length (m) | Bearing          | Inclination<br>(– = down) |                        |                        |
|                            | 0.000      | 89.840           | -76.434                   | RT90-RHB70<br>Measured |                        |
| Borehole diameter:         | Secup (m)  | Seclow (m)       | Hole Diam (m)             |                        |                        |
|                            | 0.430      | 9.600            | 0.343                     |                        |                        |
|                            | 9.600      | 12.050           | 0.248                     |                        |                        |
|                            | 12.050     | 99.960           | 0.195                     |                        |                        |
|                            | 99.960     | 100.060          | 0.160                     |                        |                        |
|                            | 100.060    | 101.530          | 0.086                     |                        |                        |
|                            | 101.530    | 992.290          | 0.076                     |                        |                        |
| Core diameter:             | Secup (m)  | Seclow (m)       | Core Diam (m)             |                        |                        |
|                            | 100.060    | 100.530          | 0.072                     |                        |                        |
|                            | 100.530    | 992.290          | 0.050                     |                        |                        |
| Casing diameter:           | Secup (m)  | Seclow (m)       | Case In (m)               | Case Out (m)           |                        |
|                            | 0.000      | 12.050           | 0.200                     | 0.208                  |                        |
|                            | 0.430      | 9.600            | 0.310                     | 0.323                  |                        |
| Grove milling:             | Length (m) | Trace detectable | 9                         |                        |                        |
|                            | 110.000    | YES              |                           |                        |                        |
|                            | 150.000    | YES              |                           |                        |                        |
|                            | 200.000    | YES              |                           |                        |                        |
|                            | 250.000    | YES              |                           |                        |                        |
|                            | 300.000    | YES              |                           |                        |                        |
|                            | 350.000    | YES              |                           |                        |                        |
|                            | 400.000    | YES              |                           |                        |                        |
|                            | 450.000    | YES              |                           |                        |                        |
|                            | 500.000    | YES              |                           |                        |                        |
|                            | 550.000    | YES              |                           |                        |                        |
|                            | 600.000    | YES              |                           |                        |                        |
|                            | 650.000    | YES              |                           |                        |                        |
|                            | 700.000    | YES              |                           |                        |                        |
|                            | 750.000    | YES              |                           |                        |                        |
|                            | 800.000    | YES              |                           |                        |                        |
|                            | 850.000    | YES              |                           |                        |                        |
|                            | 900.000    | YES              |                           |                        |                        |
|                            | 944.000    | YES              |                           |                        |                        |
|                            | 974.000    | YES              |                           |                        |                        |

### 3.2 Injection tests

Injection tests were conducted according to the Activity Plan AP PS 400-06-072 and the method description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m test sections between 103.00-976.00 m below ToC, in 20 m test sections between 103.00-883.00 m below ToC and in 5 m test sections between 303.00-683.00 m (see Table 3-3). The initial criteria for performing injection tests in 20 m and 5 m test sections was a measurable flow of Q > 0.001 L/min in the previous measured 100 m tests covering the smaller test sections (see Figure 3-1). The measurements were performed with SKBs custom made equipment for hydraulic testing called PSS2.



<sup>\*</sup> eventually tests performed after specific discussion with SKB

Figure 3-1. Flow chart for test sections.

Table 3-3. Tests performed.

| Bh ID  | Test section<br>(m bToC) | Test type <sup>1</sup> | Test no | Test start<br>Date, Time | Test stop<br>Date, Time |
|--------|--------------------------|------------------------|---------|--------------------------|-------------------------|
| KLX11A | 103.00–203.00            | 3                      | 1       | 060629 14:32:00          | 060629 16:40:00         |
| KLX11A | 203.00-303.00            | 3                      | 1       | 060629 18:03:00          | 060629 20:21:00         |
| KLX11A | 303.00-403.00            | 3                      | 1       | 060630 09:15:00          | 060630 11:12:00         |
| KLX11A | 403.00-503.00            | 3                      | 1       | 060630 13:11:00          | 060630 15:20:00         |
| KLX11A | 503.00-603.00            | 3                      | 1       | 060701 08:47:00          | 060701 10:50:00         |
| KLX11A | 603.00-703.00            | 3                      | 1       | 060701 12:14:00          | 060701 15:43:00         |
| KLX11A | 703.00-803.00            | 3                      | 1       | 060701 17:09:00          | 060702 01:32:00         |
| KLX11A | 803.00-903.00            | 3                      | 1       | 060702 09:11:00          | 060702 13:33:00         |
| KLX11A | 876.00-976.00            | 4B                     | 1       | 060702 14:45:00          | 060702 16:49:00         |
| KLX11A | 103.00-123.00            | 3                      | 1       | 060704 08:19:00          | 060704 09:46:00         |
| KLX11A | 123.00-143.00            | 3                      | 1       | 060704 10:31:00          | 060704 11:54:00         |
| KLX11A | 143.00-163.00            | 3                      | 1       | 060704 12:49:00          | 060704 14:32:00         |
| KLX11A | 163.00-183.00            | 3                      | 1       | 060704 15:05:00          | 060704 16:33:00         |
| KLX11A | 183.00-203.00            | 3                      | 1       | 060704 17:12:00          | 060704 18:14:00         |
| KLX11A | 203.00-223.00            | 3                      | 1       | 060704 18:50:00          | 060704 19:46:00         |
| KLX11A | 223.00-243.00            | 4B                     | 1       | 060705 08:38:00          | 060705 10:07:00         |
| KLX11A | 243.00-263.00            | 3                      | 1       | 060705 10:48:00          | 060705 12:22:00         |
| KLX11A | 263.00-283.00            | 3                      | 1       | 060705 13:18:00          | 060705 14:44:00         |
| KLX11A | 283.00-303.00            | 4B                     | 1       | 060705 15:25:00          | 060705 16:51:00         |
| KLX11A | 303.00-323.00            | 3                      | 1       | 060705 17:25:00          | 060705 18:49:00         |
| KLX11A | 323.00-343.00            | 3                      | 1       | 060705 19:21:00          | 060706 00:42:00         |
| KLX11A | 343.00-363.00            | 3                      | 1       | 060706 08:48:00          | 060706 10:30:00         |
| KLX11A | 363.00-383.00            | 4B                     | 1       | 060706 11:03:00          | 060706 12:55:00         |
| KLX11A | 383.00-403.00            | 3                      | 1       | 060706 13:34:00          | 060706 15:02:00         |
| KLX11A | 403.00-423.00            | 4B                     | 1       | 060706 15:54:00          | 060706 17:22:00         |
| KLX11A | 423.00-443.00            | 3                      | 1       | 060706 17:56:00          | 060706 19:21:00         |
| KLX11A | 443.00-463.00            | 3                      | 1       | 060707 08:32:00          | 060707 10:01:00         |
| KLX11A | 463.00-483.00            | 4B                     | 1       | 060707 10:33:00          | 060707 12:34:00         |
| KLX11A | 483.00-503.00            | 3                      | 1       | 060707 13:12:00          | 060707 14:44:00         |
| KLX11A | 503.00-523.00            | 3                      | 1       | 060707 15:12:00          | 060707 16:39:00         |
| KLX11A | 523.00-543.00            | 3                      | 1       | 060707 17:07:00          | 060707 18:30:00         |
| KLX11A | 543.00-563.00            | 4B                     | 1       | 060707 19:07:00          | 060708 08:26:00         |
| KLX11A | 563.00-583.00            | 3                      | 1       | 060708 08:58:00          | 060708 10:21:00         |
| KLX11A | 583.00-603.00            | 3                      | 1       | 060708 10:53:00          | 060708 12:23:00         |
| KLX11A | 603.00-623.00            | 4B                     | 1       | 060708 13:17:00          | 060708 14:41:00         |
| KLX11A | 623.00-643.00            | 4B                     | 1       | 060708 15:12:00          | 060708 16:39:00         |
| KLX11A | 643.00-663.00            | 4B                     | 1       | 060708 17:11:00          | 060708 18:34:00         |
| KLX11A | 663.00-683.00            | 3                      | 1       | 060708 19:06:00          | 060709 08:39:00         |
| KLX11A | 683.00-703.00            | 4B                     | 1       | 060709 09:11:00          | 060709 10:40:00         |
| KLX11A | 703.00-723.00            | 3                      | 1       | 060709 11:08:00          | 060709 13:27:00         |
| KLX11A | 723.00-743.00            | 4B                     | 1       | 060709 13:58:00          | 060709 15:13:00         |
| KLX11A | 743.00-763.00            | 4B                     | 1       | 060709 15:45:00          | 060709 16:56:00         |
| KLX11A | 763.00–783.00            | 4B                     | 1       | 060709 17:25:00          | 060709 18:10:00         |
| KLX11A | 783.00-803.00            | 4B                     | 1       | 060709 18:43:00          | 060709 20:01:00         |
| KLX11A | 803.00-823.00            | 3                      | 1       | 060710 08:19:00          | 060710 09:15:00         |
| KLX11A | 823.00-843.00            | 3                      | 1       | 060710 09:45:00          | 060710 10:37:00         |
| KLX11A | 843.00-863.00            | 3                      | 1       | 060710 11:10:00          | 060710 13:24:00         |
| KLX11A | 863.00-883.00            | 3                      | 1       | 060710 14:04:00          | 060710 14:56:00         |
| KLX11A | 303.00-308.00            | 3                      | 1       | 060712 07:38:00          | 060712 09:06:00         |
| KLX11A | 308.00-313.00            | 3                      | 1       | 060712 09:30:00          | 060712 10:51:00         |

| Bh ID            | Test section (m bToC) | Test type <sup>1</sup> | Test no | Test start<br>Date, Time | Test stop<br>Date, Time |
|------------------|-----------------------|------------------------|---------|--------------------------|-------------------------|
| KLX11A           | 313.00–318.00         | 3                      | 1       | 060712 11:13:00          | 060712 12:03:00         |
| KLX11A           | 318.00-323.00         | 3                      | 1       | 060712 13:09:00          | 060712 13:57:00         |
| KLX11A           | 343.00-348.00         | 3                      | 1       | 060712 14:31:00          | 060712 16:11:00         |
| KLX11A           | 348.00-353.00         | 3                      | 1       | 060712 16:38:00          | 060712 17:38:00         |
| KLX11A           | 353.00-358.00         | 3                      | 1       | 060712 17:56:00          | 060712 18:45:00         |
| KLX11A           | 358.00-363.00         | 3                      | 1       | 060713 07:52:00          | 060713 08:41:00         |
| KLX11A           | 383.00-388.00         | 3                      | 1       | 060713 09:14:00          | 060713 10:05:00         |
| KLX11A           | 388.00-393.00         | 3                      | 1       | 060713 10:28:00          | 060713 11:17:00         |
| KLX11A           | 393.00-398.00         | 3                      | 1       | 060713 12:29:00          | 060713 13:20:00         |
| KLX11A           | 398.00-403.00         | 3                      | 1       | 060713 13:44:00          | 060713 15:16:00         |
| KLX11A           | 423.00-428.00         | 3                      | 1       | 060713 15:46:00          | 060713 16:55:00         |
| KLX11A           | 428.00-433.00         | 3                      | 1       | 060713 16:59:00          | 060713 17:47:00         |
| KLX11A           | 433.00-438.00         | 3                      | 1       | 060714 07:59:00          | 060714 08:46:00         |
| KLX11A           | 438.00-443.00         | 3                      | 1       | 060714 09:17:00          | 060714 10:39:00         |
| KLX11A           | 442.00-447.00         | 4B                     | 1       | 060714 11:06:00          | 060714 12:51:00         |
| KLX11A           | 447.00-452.00         | 3                      | 1       | 060714 13:16:00          | 060714 14:37:00         |
| KLX11A           | 452.00-457.00         | 3                      | 1       | 060714 15:01:00          | 060714 16:22:00         |
| KLX11A           | 457.00-462.00         | 3                      | 1       | 060714 16:45:00          | 060714 17:35:00         |
| KLX11A           | 462.00-467.00         | 3                      | 1       | 060714 18:01:00          | 060714 18:50:00         |
| KLX11A           | 483.00-488.00         | 3                      | 1       | 060715 08:16:00          | 060715 09:05:00         |
| KLX11A           | 488.00-493.00         | 3                      | 1       | 060715 09:29:00          | 060715 10:19:00         |
| KLX11A           | 493.00-498.00         | 4B                     | 1       | 060715 10:47:00          | 060715 13:39:00         |
| KLX11A           | 498.00-503.00         | 3                      | 1       | 060715 14:04:00          | 060715 15:29:00         |
| KLX11A           | 503.00-508.00         | 3                      | 1       | 060715 15:53:00          | 060715 17:47:00         |
| KLX11A           | 508.00-513.00         | 3                      | 1       | 060715 18:09:00          | 060715 21:14:00         |
| KLX11A           | 513.00–518.00         | 3                      | 1       | 060716 08:05:00          | 060716 10:33:00         |
| KLX11A           | 513.00–518.00         | 3                      | 2       | 060807 09:04:00          | 060807 11:01:00         |
| KLX11A           | 513.00–518.00         | 3                      | 3       | 060808 15:30:00          | 060808 17:15:00         |
| KLX11A           | 518.00–523.00         | 3                      | 1       | 060808 17:47:00          | 060808 19:37:00         |
| KLX11A           | 523.00-528.00         | 3                      | 1       | 060809 08:08:00          | 060809 09:41:00         |
| KLX11A           | 528.00-533.00         | 3                      | 1       | 060809 10:08:00          | 060809 11:34:00         |
| KLX11A           | 533.00-538.00         | 3                      | 1       | 060809 12:48:00          | 060809 14:16:00         |
| KLX11A           | 538.00-543.00         | 3                      | 1       | 060809 14:40:00          | 060809 16:19:00         |
| KLX11A           | 563.00–568.00         | 3                      | 1       | 060809 16:59:00          | 060809 17:53:00         |
| KLX11A           | 568.00-573.00         | 3                      | 1       | 060809 18:17:00          | 060809 19:11:00         |
| KLX11A           | 573.00–578.00         | 3                      | 1       | 060810 08:06:00          | 060810 09:34:00         |
| KLX11A           | 578.00–583.00         | 3                      | 1       | 060810 10:02:00          | 060810 11:28:00         |
| KLX11A           | 583.00-588.00         | 4B                     | 1       | 060810 12:20:00          | 060810 14:15:00         |
| KLX11A<br>KLX11A | 588.00-593.00         | 4B                     | 1       | 060810 14:41:00          | 060810 16:05:00         |
| KLX11A<br>KLX11A | 593.00–598.00         | 4B                     | 1       | 060810 16:33:00          | 060810 18:19:00         |
| KLX11A<br>KLX11A | 598.00–603.00         | 3                      | 1       | 060811 08:01:00          | 060811 09:26:00         |
| KLX11A<br>KLX11A | 663.00–668.00         | 3                      | 1       | 060811 10:29:00          | 060811 09.26.00         |
| KLX11A<br>KLX11A | 668.00–673.00         | 3<br>4B                | 1       | 060811 10:29:00          | 060811 15:14:00         |
| KLX11A<br>KLX11A | 673.00–678.00         | 4B<br>4B               | 1       | 060811 15:38:00          | 060811 17:22:00         |
| ハレハ・ハハ           | 010.00-010.00         | עד                     |         | 000011 10.00.00          | 00001111.22.00          |

<sup>&</sup>lt;sup>1)</sup> 3: Injection test; 4B: Pulse injection test.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX11A were conducted.

### 3.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101–123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

## 4 Equipment

## 4.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next Figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc. shelfs and drawers for tools and spare parts.

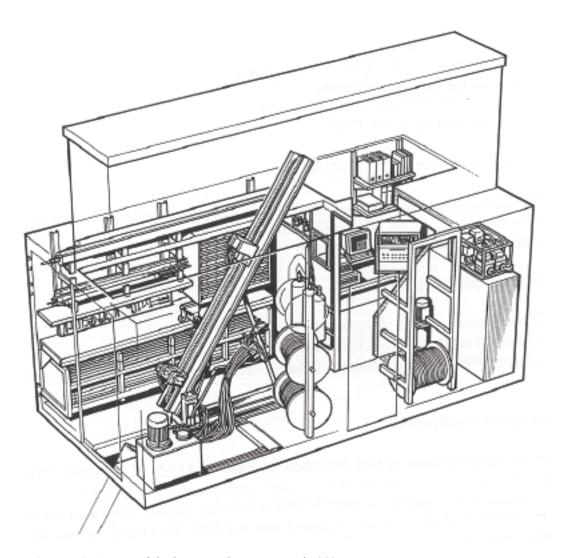



Figure 4-1. A view of the layout and equipment of PSS2.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

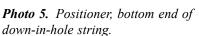
PSS2 is documented in photographs 1–6.



Photo 1. Hydraulic rig.



**Photo 3.** Computer room, displays and gas regulators.




**Photo 2.** Rack for pump, down-hole equipment, workbench and drawers for tools.



**Photo 4.** Pressure vessels for test valve, packers and injection.





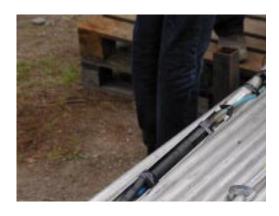



Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Contact carrier SS 1.0 m carrying connections for sensors below and
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 ( $\pm$  1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50 L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (± 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The tool scheme is presented in Figure 4-2.

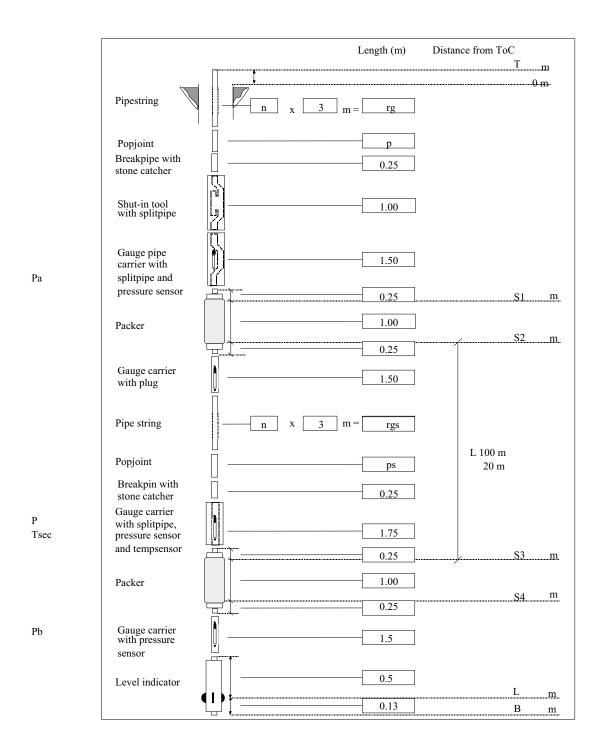



Figure 4-2. Schematic drawing of the down-hole equipment in the PSS2 system.

## 4.2 Sensors

Table 4-1. Technical specifications of sensors.

| Keyword                   | Sensor          | Name                         | Value/Range                    | Unit                        | Comments          |
|---------------------------|-----------------|------------------------------|--------------------------------|-----------------------------|-------------------|
| P <sub>sec,a,b</sub>      | Pressure        | Druck PTX<br>162–1464abs     | 9–30<br>4–20<br>0–13.5<br>+0.1 | VDC<br>mA<br>MPa<br>% of FS |                   |
| $T_{\text{sec,surf,air}}$ | Temperature     | BGI                          | 18–24<br>4–20<br>0–32<br>+0.1  | VDC<br>mA<br>°C<br>°C       |                   |
| $Q_{\text{big}}$          | Flow            | Micro motion<br>Elite sensor | 0–100<br>+0.1                  | kg/min<br>%                 | Massflow          |
| $Q_{\text{small}} \\$     | Flow            | Micro motion<br>Elite sensor | 0–1.8<br>+0.1                  | kg/min<br>%                 | Massflow          |
| p <sub>air</sub>          | Pressure        | Druck PTX 630                | 9–30<br>4–20<br>0–120<br>+0.1  | VDC<br>mA<br>KPa<br>% of FS |                   |
| $p_{pack}$                | Pressure        | Druck PTX 630                | 9–30<br>4–20<br>0–4<br>+0.1    | VDC<br>mA<br>MPa<br>% of FS |                   |
| $p_{\text{in,out}}$       | Pressure        | Druck PTX 1400               | 9–28<br>4–20<br>0–2.5<br>+0.15 | VDC<br>mA<br>MPa<br>% of FS |                   |
| L                         | Level indicator |                              |                                |                             | Length correction |

Table 4-2. Sensor positions and wellbore storage (WBS) controlling factors.

| Borehole information |                  |         | Senso                   | Sensors Equipment affecting                    |              | fecting WBS coe                            | ting WBS coefficient      |  |
|----------------------|------------------|---------|-------------------------|------------------------------------------------|--------------|--------------------------------------------|---------------------------|--|
| ID                   | Test section (m) | Test no | Type                    | Position<br>(m fr ToC)                         | Position     | Function                                   | Outer<br>diameter<br>(mm) |  |
| KLX11A               | 103.00–203.00    | 1       | pa<br>p<br>T<br>pb<br>L | 101.11<br>202.37<br>202.20<br>205.01<br>206.25 | Test section | Signal cable<br>Pump string<br>Packer line | 9.1<br>33<br>6            |  |
| KLX11A               | 103.00–123.00    | 1       | pa<br>p<br>T<br>pb<br>L | 101.11<br>122.37<br>122.20<br>125.01<br>126.25 | Test section | Signal cable<br>Pump string<br>Packer line | 9.1<br>33<br>6            |  |
| KLX11A               | 303.00–308.00    | 1       | pa<br>p<br>T<br>pb<br>L | 301.11<br>307.37<br>307.20<br>310.01<br>311.25 | Test section | Signal cable<br>Pump string<br>Packer line | 9.1<br>33<br>6            |  |

### 4.3 Data acquisition system

The data acquisition system in the PSS container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 4-3.

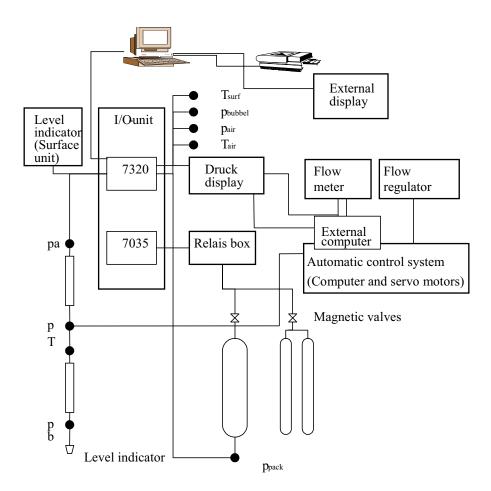



Figure 4-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS.

### 5 Execution

### 5.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and desinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Filling tank with water and tracer it with Uranin; take water sample from non tracered and tracered water.
- · Filling vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- · Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- · Measure and assemble test tool.

### 5.2 Length correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of this groves are given by SKB in the activity plan (see Table 3-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the testsections to avoid wrong placements and minimize elongation effects of the test string.

### 5.3 Execution of tests/measurements

### 5.3.1 Test principle

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

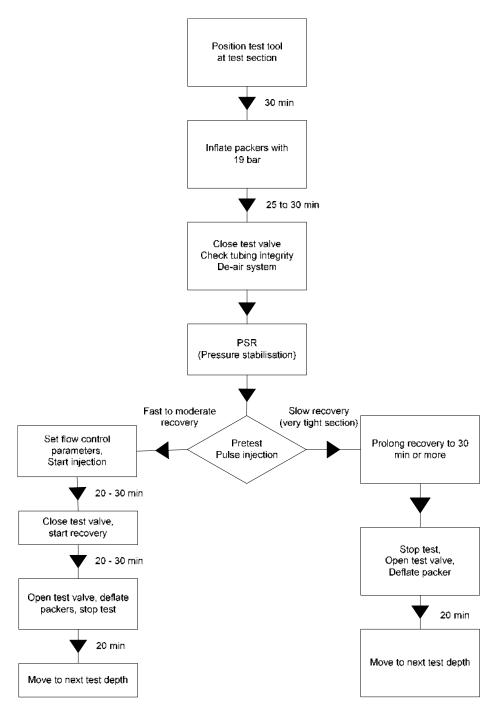



Figure 5-1. Flow chart for test performance.

### 5.3.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation. The injection tests in KLX11A has been carried out by applying a constant injection pressure of appr. 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section was measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually. In those cases, the constant difference pressure was usually unequal to 200 kPa. In other cases, where the pressure recovery of the pulse injection test took very long, the recovery

was extended and the pulse test was taken for the analysis. No injection test was performed in those sections.

The duration for each phase is presented in Table 5-1.

### 5.4 Data handling

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (\*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The \*.ht2 files were processed to \*.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The \*.dat files were synthesised in Excel to a \*.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in \*.csv format. These files were also used for the subsequent analysis (field and final) of the injection phase (CHi). The synthesised data of the recovery phase (CHir) was used for the field analysis and to receive preliminary results for concistency reviews.

### 5.5 Analyses and interpretation

The analyses of the tests is divided in two parts. The first part of the analysis consists of a radial flow analysis. For this analysis a flow dimension of 2 (radial flow) was assumed. The second part is a generalized radial flow analysis (GRF) and the flow dimension was evaluated using the slope of the derivative on the log-log plot of the CHi and CHir test phases.

### 5.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

Table 5-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation in KLX11A.

| Position test tool to new test section (correct position using the borehole markers) | Approx. 30 min |
|--------------------------------------------------------------------------------------|----------------|
| Inflate packers with appr. 1,900 kPa                                                 | 25 min         |
| Close test valve                                                                     | 10 min         |
| Check tubing integrity with appr. 800 kPa                                            | 5 min          |
| De-air system                                                                        | 2 min          |
| Pretest, pulse injection                                                             | 2–30 min       |
| Set automatic flow control parameters or setting for manual test                     | 5 min          |
| Start injection                                                                      | 20 to 45 min   |
| Close test valve, start recovery                                                     | 20 min or more |
| Open test valve                                                                      | 10 min         |
| Deflate packers                                                                      | 25 min         |
| Move to next test depth                                                              | _              |

### 5.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob and Lohman 1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

The generalized radial flow analysis is based on the flow model developed by /Barker 1988/. This flow model allows the modelling of flow dimensions between 1 (linear flow) and 3 (spherical flow).

### 5.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

### **Injection Tests**

- Assumption of a flow dimension 2 (radial flow) for the radial flow analysis. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
- Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
- Non-linear regression in semi-log coordinates (superposition HORNER plot; /Horner 1951/). In this stage of the analysis, the static formation pressure is selected for regression.
- Identification of the flow model by evaluation of the derivative on the log-log diagnostic
  plot for the generalized radial flow analysis and superposition type curve matching in
  log-log coordinates.

The test analysis methodology is best explained in /Horne 1990/.

### **Pulse Injection Tests**

A test cycle always started with a pulse injection test whose goal it was to derive a first estimation of the formation transmissivity. If the pressure recovery of this brief injection was very slow, it indicated a very tight section. It is then decided to extend the recovery time and measure the pressure recovery (PI).

During the brief injection phase a small volume is injected (derived from the flowmeter measurements and/or replacement in injection vessel). This injected volume produces the pressure increase of dp. Using a dV/dp approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 5-2 below show an example of a typical pressure versus time evolution for such a tight section.

- Calculation of initial estimates of the model parameters by using the Ramey Plot /Ramey et al. 1975/. This plot is typically not presented in the appendix.
- Assumption of radial flow and type curve analysis in the deconvolution Peres Plot /Peres
  et al. 1989, Chakrabarty and Enachescu 1997/. A non-linear regression algorithm is used to
  provide optimized model parameters in the later stages.
- Identification of the flow dimension based on the slope of the derivative and type curve analysis for the generalized radial flow analysis. An Example of the type curves is presented in Figure 5-3



Figure 5-2. Typical pressure versus time plot of a Pulse injection test.

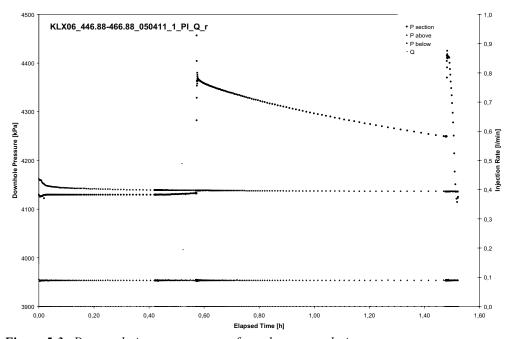



Figure 5-3. Deconvolution type curve set for pulse test analysis.

### 5.5.4 Flow models used for analysis

### Radial flow analysis

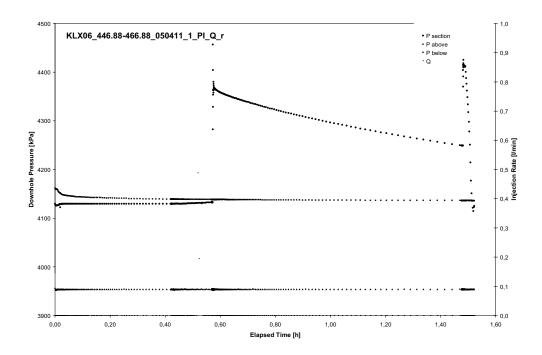
Analyses were performed with the assumption of radial flow. Changes of the slope in the pressure derivative were interpreted as a change of transmissivity at some distance from the borehole. In such cases a composite radial flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred. The chosen flow model (homogeneous or composite) were commented for each tests.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

### Generalized radial flow analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.


The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. In several cases the pressure derivative suggests a change of flow dimension at some distance from the test interval. In such cases a composite flow model was used in the analysis. The flow dimension diagnosis was commented for each of the tests.

In following cases no generalized radial flow analysis was performed:

- data quality (no clear flow model identification was possible due to noise in the recorded data),
- no formation flow stabilization was reached (due to low transmissivity and/or short test time),
- flow dimension calculated by the slope of derivative indicates radial flow (no generalized radial flow analysis was needed).

In such cases it was commented for the relevant tests as well.

The analysis with respect to the flow dimension is limited in some cases. Figure 5-4 shows the analysis of a pulse using a flow dimension of 1 (linear flow).



**Figure 5-4.** Analysis of a pulse injection test with flow dimension 1. (The arrows indicate the change in parameter when moving the data).

The log-log coordinates plotted type curve show a continues upward trend with no change in distance between data and derivative type curve. Vertical movement of the data changes the transmissivity and horizontal movement changes the storativity. It is possible to move the plotted data to nearly every position on the type curve and moving the data transposes transmissivity with storativity and vice versa. This shows that under such circumstances the transmissivity and storativity values are strongly correlated.

### 5.5.5 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye 1967/.

## 5.5.6 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p\*) measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using:

- (1) straight line extrapolation in cases infinite acting radial flow (IARF) occurred,
- (2) type curve extrapolation in cases infinite acting radial flow (IARF) is unclear or was not reached.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the extrapolated static formation pressure (p\*), corrected for athmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drillhole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 5-5 shows the methodology schematically.

The freshwater head in meters above sea level is calculated as following:

$$head = \frac{(p * - p_{atm})}{\rho \cdot g}$$

which is the p\* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head  $h_{\rm iwf}$  is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p * - p_{atm})}{\rho \cdot g}$$

## 5.5.7 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

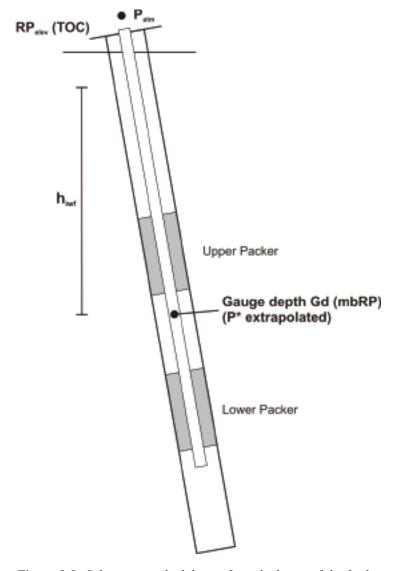



Figure 5-5. Schematic methodologies for calculation of the freshwater head.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmissivity with distance from the borehole (composite model) was diagnosted, the transmissivity of the zone, which was showing the better derivative quality was recommended.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

### 5.6 Nonconformities

On 16<sup>th</sup> of July the automate regulation system stopped to work. This caused a delay and the testing program was continued on the 8<sup>th</sup> of August.

### 6 Results

In the following, results of all tests are presented and analysed. Section 6.1 presents the 100 m tests, 6.2 the 20 m tests and 6.3 the 5 m tests. The results are given as general comments to test pereformance, the identified flow regimes (generalized radial flow analysis) and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. The results of the radial flow analysis are summarised in Table 7-1 and Table 7-2 of the Synthesis chapter. Table 7-3 presents the results of the generalized radial flow analysis.

### 6.1 100 m hydraulic injection tests

In the following, the 100 m section tests conducted in borehole KLX11A are presented and analysed.

### 6.1.1 Section 103.00-203.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 13.3 L/min at start of the CHi phase to 7.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase shows a relatively flat derivative with a slight downward trend. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a slight downward trend at late times. In case of this analysis it was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-1.

### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phase show a slight downward trend indicating a slope below 0 and a flow dimension above 2. For the analysis of both phases a homogeneous flow model with a flow dimension of n = 2.1 was chosen. The analysis is presented in Appendix 2-1.

### Selected representative parameters

The recommended transmissivity of  $1.6 \cdot 10^{-5}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-6}$  to  $3.0 \cdot 10^{-5}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,838.6 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

### 6.1.2 Section 203.00-303.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 9.4 L/min at start of the CHi phase to 9.1 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The data of CHi phase is a little bit noisy, but amenable for a quantitative analysis. The CHir phase recovered relatively fast, but shows no problems and is adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase is a little bit noisy but shows a relatively flat derivative with a slight downward trend. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a steep downward trend at middle times consistent with a large positive skin and a slight downward trend at late times. In case of this analysis the late time derivative was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-2.

### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phase show a slight downward trend indicating a slope below 0 and a flow dimension above 2. For the analysis of both phases a homogeneous flow model with a flow dimension of n = 2.1 was chosen. The analysis is presented in Appendix 2-2.

### Selected representative parameters

The recommended transmissivity of  $3.2 \cdot 10^{-5}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-6}$  to  $6.0 \cdot 10^{-5}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,776.6 kPa.

The radial flow analyses of the CHi and CHir phases show relatively good consistency. No further analysis is recommended.

### 6.1.3 Section 303.00–403.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 195 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5.4 L/min at start of the CHi phase to 3.4 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase was matched using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows an upward trend at middle times followed by a kind of horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir Phase. The analysis is presented in Appendix 2-3.

### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi show a slight downward trend. The flow dimension calculated by the slope of the derivative is n = 2.2. For the analysis of the CHi phase a homogeneous flow model was chosen. The flow dimension displayed during the CHir phase is n = 2 and no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-3.

### Selected representative parameters

The recommended transmissivity of  $6.0 \cdot 10^{-6}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $3.0 \cdot 10^{-6}$  to  $9.0 \cdot 10^{-6}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3.705.2 kPa.

The radial flow analyses of the CHi and CHir phases show some inconsistency regarding the chosen flow models. However, regarding the derived transmissivities both phases show consistency. No further analysis is recommended.

### 6.1.4 Section 403.00-503.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 204 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system was not able to maintain stable pressure conditions in the interval during the injection and the pressure oscillates by approximately 10 kPa. However, the CHi phase is still amenable for qualitative analysis. The injection rate decreased from 0.15 L/min at start of the CHi phase to 0.07 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir shows a fast recovery but is adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test no trend could be observed for the derivative of the CHi phase. This is attributed to the poor data quality. However, the CHi phase was analysed using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows a steep downward trend at middle times, which is consistent with a large positive skin, and a kind of horizontal stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-4.

### Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

### Selected representative parameters

The recommended transmissivity of  $2.7\cdot10^{-7}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-8}$  to  $6.0\cdot10^{-7}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,705.2 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

### 6.1.5 Section 503.00-603.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 215 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 18.0 L/min at start of the CHi phase to 11.5 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase shows a relatively flat derivative with a slight downward trend. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a slight downward trend at middle and late times. In case

of this analysis it was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-5.

### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phase show a slight downward trend indicating a slope below 0 and a flow dimension above 2. For the analysis of the both phases a homogeneous flow model with a flow dimension of n = 2.1 was chosen. The analysis is presented in Appendix 2-5.

### Selected representative parameters

The recommended transmissivity of  $2.4 \cdot 10^{-5}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-6}$  to  $5.0 \cdot 10^{-5}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.579.0 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

### 6.1.6 Section 603.00-703.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 205 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. Because of this, the pressure decreased during the injection by 6 kPa. The injection rate decreased from 9 mL/min at start of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recovery phase was measured for 1 h. Both phases show no problems and are adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. No flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-6.

### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi show an upward trend indicating a slope above 0 and a flow dimension below 2. For the analysis of the CHi phases

a homogeneous flow model with a flow dimension of n = 1.58 was chosen. Due to the fact that no flow stabilization was reached the CHir phase does not allow a specific determination of the flow dimension. The analysis is presented in Appendix 2-6.

## Selected representative parameters

The recommended transmissivity of  $2.3 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-11}$  to  $6.0 \cdot 10^{-10}$  m<sup>2</sup>/s (this range includes the transmissivity from the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6.513.4 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.1.7 Section 703.00-803.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 203 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. Because of this, the pressure decreased during the injection by 6 kPa. The injection rate decreased from 10 mL/min at start of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recovery phase was measured for 6 h over night. Both phases show no problems and are adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-7.

### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi show an upward trend. The flow dimension calculated by the slope of the derivative is n = 1.5. For the analysis of the CHi phases a homogeneous flow model was chosen. Due to the fact that no clear flow stabilization was reached the CHir phase does not allow a specific determination of the flow dimension. The analysis is presented in Appendix 2-7.

# Selected representative parameters

The recommended transmissivity of  $2.0 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-11}$  to  $4.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,429.3 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 6.1.8 Section 803.00-903.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 235 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. Because of this, the pressure decreased during the injection by 10 kPa. The injection rate decreased from 19 mL/min at start of the CHi phase to 4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recovery phase was measured for 2 h. Both phases show no problems and are adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-8.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi show an upward trend. The flow dimension calculated by the slope of the derivative is n = 1.7. For the analysis of the CHi phases a homogeneous flow model was chosen. Due to the fact that no clear flow stabilization was reached the CHir phase does not allow a specific determination of the flow dimension. The analysis is presented in Appendix 2-8.

## Selected representative parameters

The recommended transmissivity of  $2.9 \cdot 10^{-9}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-10}$  to  $4.0 \cdot 10^{-9}$  m<sup>2</sup>/s (this range includes the derived transmissivity of the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,333.1 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.1.9 Section 876.00-976.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 12 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 54 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 211 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $2.6 \cdot 10^{-10}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend at early and middle times followed by a downward trend at late times. This downward trend at late times can be attributed to the uncertainty of the initial formation pressure. Due to this uncertainty only the early and middle time data was matched using an infinite acting radial flow model. The analysis is presented in Appendix 2-9.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the pressure derivative at early and middle times is n = 1.33. The PI phase was analysed using a homogeneous flow model. The analysis is presented in Appendix 2-9.

# Selected representative parameters

The recommended transmissivity of  $4.0 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-11}$  to  $8.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2 20 m hydraulic injection tests

In the following, the 20 m section tests conducted in borehole KLX11A are presented and analysed.

# 6.2.1 Section 103.00-123.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.5 L/min at start of the CHi phase to 1.4 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The recorded data of the CHi phase is a little bit noisy, but still amenable for qualitative analyses. The CHir phase shows a relatively fast recovery, but shows no further problems and is adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present the CHi phase (although noisy) shows a flat derivative. The relatively fast recovery of the CHir phase adds a little bit uncertainty to the late time derivative of this phase. However, an indication of horizontal stabilization can be observed at late times. Both phases were analysed using a radial infinite acting homogenous flow model. The analysis is presented in Appendix 2-10.

## Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because no clear flow stabilization could be observed. No generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $4.9 \cdot 10^{-6}$  m²/s was derived from the radial flow analysis of the CHir phase, which was considered to be more reliable. The confidence range for the interval transmissivity is estimated to be  $3.0 \cdot 10^{-6}$  to  $8.0 \cdot 10^{-6}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,092.9 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.2.2 Section 123.00-143.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 4.3 L/min at start of the CHi phase to 3.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The both phases show no problems and are adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivatives of both phases show a downward trend at late times, which was interpreted as an increase of transmissivity at some distance from the borehole. Both phases were analysed using a two shell composite radial flow model. The analysis is presented in Appendix 2-11.

## Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The changes of slope in the derivatives of both phases are interpreted as a change in flow dimension away from the borehole. The CHi phase was analysed using a two shell composite flow model with n1 = 2.3 and n2 = 2.38 and the CHir phase with a two shell composite flow model with n1 = 2.3 and n2 = 2.40. The analysis is presented in Appendix 2-11.

# Selected representative parameters

The recommended transmissivity of  $8.1 \cdot 10^{-6}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $7.0 \cdot 10^{-6}$  to  $1.0 \cdot 10^{-5}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,275.5 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 6.2.3 Section 143.00–163.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 207 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.1 L/min at start of the CHi phase to 0.4 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHi phase shows some problems at the beginning of the injection caused by the automatic regulation unit, but the middle and late time data is still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the middle time data of the CHi phase, which shows a kind of horizontal stabilization of the derivative, was matched using a homogeneous radial flow model. The derivative of the CHir phase shows an upward trend at middle times followed by a stabilization at late times, indicating a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-12.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the CHi derivative at middle and late times is n = 2.3. A homogeneous flow model was used to match the CHi phase. No generalized radial flow analysis was performed for the CHir phase. The analysis is presented in Appendix 2-12.

## Selected representative parameters

The recommended transmissivity of  $1.4\cdot10^{-7}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-8}$  to  $4.0\cdot10^{-7}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,443.8 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow models, but a comparison of the derived transmissivities (CHi and outer zone CHir) in combination with the negative skin of the CHi phase show consistency between both phases. No further analysis is recommended.

# 6.2.4 Section 163.00-183.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 3.0 L/min at start of the CHi phase to 2.5 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a fast recovery, which adds uncertainty to the derivative analysis. Both phases show no problems and are adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivatives of both phases show a clear horizontal stabilization at middle and late times. The fast recovery of the CHir phase adds ambiguity to the middle and late time derivative of this phase. A homogeneous radial flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-13.

### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a clear horizontal stabilization which is indicative for a flow dimension of 2 (radial flow). For this reason no generalized radial flow analysis was necessary.

### Selected representative parameters

The recommended transmissivity of  $6.5 \cdot 10^{-6}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, because it shows the most clear derivative stabilization. The confidence range for the interval transmissivity is estimated to be  $4.0 \cdot 10^{-6}$  to  $1.0 \cdot 10^{-5}$  m<sup>2</sup>/s. The static pressure

measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,650.5 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

# 6.2.5 Section 183.00-203.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 60 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-14.

### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 6.2.6 Section 203.00-223.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 106 kPa in 25 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-15.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.2.7 Section 223.00-243.00 m, test no. 1, pulse injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 14 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 225 kPa. Using a dV/dP

approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 5.8·10<sup>-11</sup> m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows a downward trend at late times. This downward trend at late times can be attributed to the uncertainty of the initial formation pressure. Due to this uncertainty only the early and middle time data was matched using an infinite acting radial flow model. The analysis is presented in Appendix 2-16.

## Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the pressure derivative at early and middle times is n = 1.79. The PI phase was analysed using a homogeneous flow model. The analysis is presented in Appendix 2-16.

## Selected representative parameters

The recommended transmissivity of  $3.3 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-10}$  to  $6.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2.8 Section 243.00-263.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 213 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.5 L/min at start of the CHi phase to 0.04 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The recorded data of the injection phase is noisy, but amenable for quantitative analysis. The CHir phase shows a fast recovery, which adds uncertainty to the derivative analysis. The phase shows no further problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase is noisy but it shows a relatively flat derivative at middle times. The Chi phase was matched using a homogeneous radial flow model. The derivative of the CHir phase shows a downward trend at late times followed by a kind of flow stabilization at late times. A composite radial flow model with wellbore storage and skin was used to analyse the CHir phase. The analysis is presented in Appendix 2-17.

# Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and no clear flow stabilisation (CHir phase). No generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $3.7\cdot10^{-8}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-9}$  to  $8.0\cdot10^{-8}$  m²/s (this range encompasses the transmissivity of the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,401.2 kPa.

The radial flow analyses of the CHi and CHir phases little inconsistency in the derived transmissivities, which is attributed to the noise in the CHi phase and the fast recovery of the CHir phase. No further analysis is recommended.

# 6.2.9 Section 263.00-283.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 10.8 L/min at start of the CHi phase to 9.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The data of CHi phase is a little bit noisy, but amenable for a quantitative analysis. The CHir phase recovered relatively fast, but shows no problems and is adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase is a little bit noisy but shows a relatively flat derivative at late times. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a steep downward trend at middle times consistent with a large positive skin and a kind of horizontal stabilization at late times. In case of this analysis the late time derivative was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-18.

## Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and no clear flow stabilisation (CHir phase). No generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $3.6\cdot10^{-5}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0\cdot10^{-6}$  to  $6.0\cdot10^{-5}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,589.2 kPa.

The radial flow analyses of the CHi and CHir phases show relatively good consistency. No further analysis is recommended.

# 6.2.10 Section 283.00-303.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 15 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 237 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $5.6 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend at early and middle times followed by a kind of downward trend at late times, which can be attributed to the uncertainty of the initial formation pressure. In case of the present analysis the continuing upward trend at the beginning of the derivative can be interpreted to the fact that the dimensionless test time is to small and semi-logarithmic asymptotic solution was not achieved (due to the very small transmissivity). The PI phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-19.

## Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend at early and middle times of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1.49 was used. The analysis is presented in Appendix 2-19.

# Selected representative parameters

The recommended transmissivity of  $2.2 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-12}$  to  $6.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

## 6.2.11 Section 303.00-323.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 224 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 4.5 L/min at start of the CHi phase to 3.9 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The injection phase is a little bit noisy but still amenable for qualitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase was matched using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows an upward trend at middle times followed by a horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir Phase. The analysis is presented in Appendix 2-20.

## Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi show a slight downward trend. The flow dimension calculated by the slope of the derivative is n = 2.2. For the analysis of the CHi phases a homogeneous flow model was chosen. The flow dimension displayed during the CHir phase is n = 2 and no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-20.

### Selected representative parameters

The recommended transmissivity of  $5.8 \cdot 10^{-6}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $3.0 \cdot 10^{-6}$  to  $9.0 \cdot 10^{-6}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,958.2 kPa.

The radial flow analyses of the CHi and CHir phases show some inconsistency regarding the chosen flow models. However, regarding the derived transmissivities both phases show consistency. No further analysis is recommended.

## 6.2.12 Section 323.00-343.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 218 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. However, no pressure loss occurred during the injection phase. The injection rate was with 4 mL/min at start of the CHi phase and dropped below measurement limit (1 mL/min) after 11 min, indicating a very low interval transmissivity (consistent with the pulse recovery). Due to the very low flow rate the recorded data of the flow rate is very noisy and the results of the CHi phase should be regarded carefully. The CHir phase was measured for 4 h and shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-21.

# Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the very poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

# Selected representative parameters

The recommended transmissivity of  $5.5 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $2.0 \cdot 10^{-11}$  to  $9.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,137.1 kPa.

No further analysis is recommended.

# 6.2.13 Section 343.00-363.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 195 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. Because of this, the pressure decreased during the injection by 7 kPa. The injection rate decreased from 87 mL/min at start of the CHi phase to 9 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The injection phase is a little bit noisy but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase shows an upward trend at middle times followed by a kind of horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. The derivative of the CHir phase shows an upward trend at middle times as well but no stabilization at late time, indicating no formation flow stabilization was reached. Both phases are matched using a two shell composite radial flow model. The analysis is presented in Appendix 2-22.

## Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present analysis the upward trend at middle times is interpreted as a change of flow dimension. The calculation based on the slope of the derivatives indicates a flow dimension of n2 = 1.6 for the CHi phase as well as for the CHir phase. A two shell composite flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-22.

## Selected representative parameters

The recommended transmissivity of  $4.3 \cdot 10^{-9}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  to  $8.0 \cdot 10^{-9}$  m<sup>2</sup>/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

# 6.2.14 Section 363.00-383.00 m, test no. 1, pulse injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 4 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 8 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 217 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $3.6 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. The deconvolved PI pressure derivative shows a slight upward trend at middle and late. However, in case of the present analysis the PI phase was matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-23.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the slight upward trend at middle and late times of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1.75 was used. The analysis is presented in Appendix 2-23.

## Selected representative parameters

The recommended transmissivity of  $1.1 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-12}$  to  $5.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2.15 Section 383.00-403.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 244 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. However, no pressure loss occurred during the injection phase. The injection rate decreased from 12 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the very low flow rate the recorded data of the flow rate is very noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-24.

### Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the very poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

# Selected representative parameters

The recommended transmissivity of  $3.3 \cdot 10^{-09}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-10}$  to  $5.0 \cdot 10^{-09}$  m<sup>2</sup>/s. The static pressure measured

at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,699.9 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.2.16 Section 403.00-423.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 16 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 233 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $6.8 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative is noisy at early and middle times, which adds uncertainty to the derivative analysis. However, the PI phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-52.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the flow dimension calculated by the slope of the derivative at early and middle times is n = 1.45. A homogeneous flow model was chosen for the analysis of the PI phase. The analysis is presented in Appendix 2-52.

## Selected representative parameters

The recommended transmissivity of  $2.9 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-12}$  to  $8.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2.17 Section 423.00-443.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 202 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system was not able to maintain stable pressure conditions in the interval during the injection and the pressure oscillates by approximately 5 kPa. However, the CHi phase is still analysable, but the results should be regarded carefully. The injection rate decreased from 80 mL/min at start of the CHi phase to 60 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir shows a fast recovery but is adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test no trend could be observed for the derivative of the CHi phase. This is attributed to the poor data quality. However, the CHi phase was analysed using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows a steep downward trend at middle times, which is consistent with a large positive skin, and a kind of horizontal stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-26.

## Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $2.0\cdot10^{-7}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-8}$  to  $6.0\cdot10^{-7}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,086.5 kPa.

The radial flow analyses of the CHi and CHir phases show little inconsistency in the derived transmissivity, which can be attributed to the poor data quality of the CHi phase. No further analysis is recommended.

# 6.2.18 Section 443.00-463.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 244 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. Because of this, the pressure decreased during the injection by 9 kPa. The injection rate decreased from 36 mL/min at start of the CHi phase to 30 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relatively fast recovery, which adds uncertainty to the derivative analyses. However, both phases are adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase shows a flat derivative which can be interpreted as radial flow. A radial homogeneous flow model was used to analyse the CHi phase. The derivative of the CHir phase shows a unit slope downward trend at middle times, indicating a large positive skin. There is an indication of stabilization in the late time derivative. The CHir phase is matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-27.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal stabilization with a slope of 0, indicating a flow dimension n = 2. For this reason no generalized radial flow analysis was performed. Due to the fast recovery and no clear flow stabilization of the CHir phase, no generalized radial flow analysis was performed, either. The analysis is presented in Appendix 2-27.

## Selected representative parameters

The recommended transmissivity of  $3.1 \cdot 10^{-8}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHi phase, which shows a better derivative stabilization. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-9}$  to  $6.0 \cdot 10^{-8}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,269.7 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency in the derived transmissivities, which is attributed to the fast recovery of the CHir phase. The fast recovery may be caused by non-Darcy flow effects in the formation. No further analysis is recommended.

## 6.2.19 Section 463.00-483.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 20 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 213 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $6.3 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend at early and middle times followed by a downward trend at late times, which can be attributed to the uncertainty of the initial formation pressure. However, in case of the present analysis the early and middle time derivative of the PI phase was matched using a homogeneous radial flow model. The analysis is presented in Appendix 2-28.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend at early and middle times of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1.7 was used. The analysis is presented in Appendix 2-28.

## Selected representative parameters

The recommended transmissivity of  $5.7 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $2.0 \cdot 10^{-11}$  to  $9.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2.20 Section 483.00-503.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 250 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. However, no pressure loss occurred during the injection phase. The injection rate decreased from 20 mL/min at start of the CHi phase to 7 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-29.

## Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

# Selected representative parameters

The recommended transmissivity of  $2.5 \cdot 10^{-9}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-10}$  to  $5.0 \cdot 10^{-09}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,645.5 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency can be attributed to the poor data quality of the CHi phase. However, regarding the derived transmissivities, both phases show consistency. No further analysis is recommended.

# 6.2.21 Section 503.00-523.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 4.2 L/min at start of the CHi phase to 3.5 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi and CHir phases show a flat derivative at middle and late times, indicating formation flow stabilization and radial flow. Both phases are analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-30.

## Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of both phases show a horizontal stabilization with a slope of 0, indicating a flow dimension n = 2. Therefore no generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $4.1\cdot10^{-6}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0\cdot10^{-6}$  to  $7.0\cdot10^{-6}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4.830.4 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

# 6.2.22 Section 523.00-543.00 m, test no. 1, injection

# Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 204 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from approx. 110 mL/min at start of the CHi phase to 80 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The start of the CHi phase is noisy and the automatic regulation system needs a while to reach stable pressure conditions. However, the CHi phase is still amenable for qualitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase was matched using a homogeneous radial flow model. The derivative of the CHir phase shows a deep downward trend at middle times, which is consistent with a large positive skin. There is an indication of formation flow stabilization at the end. The CHir phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-31.

# Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $2.2 \cdot 10^{-7}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-8}$  to  $6.0 \cdot 10^{-7}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,023.2 kPa.

Apart from the high skin derived from the CHir phase, the radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 6.2.23 Section 543.00-563.00 m, test no. 1, pulse injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 7 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 2 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 220 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $1.1 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. The deconvolved PI pressure derivative shows an upward trend at middle times followed by a kind of horizontal stabilization at late times. In this analysis this behaviour is interpreted as decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was used for the analysis of the PI phase. The analysis is presented in Appendix 2-32.

## Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend at middle times of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1 (linear flow) was used. The analysis is presented in Appendix 2-32.

# Selected representative parameters

The recommended transmissivity of  $1.2 \cdot 10^{-12}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $7.0 \cdot 10^{-13}$  to  $4.0 \cdot 10^{-12}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2.24 Section 563.00-583.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. The pressure in the bottom zone rose by approx. 10 kPa indicating a connection to the test interval. The injection rate decreased from 13.8 L/min at start of the CHi phase to 8.8 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase shows a relatively flat derivative with a slight downward trend. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a slight downward trend at late times. In case of this analysis it was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-33.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phase show a slight downward trend indicating a slope below 0 and a flow dimension above 2. For the analysis of the both phases a homogeneous flow model with a flow dimension of n = 2.1 was chosen. The analysis is presented in Appendix 2-33.

## Selected representative parameters

The recommended transmissivity of  $2.7 \cdot 10^{-5}$  m²/s was derived from the radial flow analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-6}$  to  $5.0 \cdot 10^{-5}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,392.3 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 6.2.25 Section 583.00-603.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.5 L/min at start of the CHi phase to 0.3 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase shows a horizontal stabilization at middle times followed by an upward trend at late times. The CHir response is consistent with the CHi phase. Both phases are matched using a two shell composite radial flow model with decreasing transmissivity at some distance from the borehole. The analysis is presented in Appendix 2-34.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a horizontal stabilization at middle times which is typical for radial flow (n = 2). The following upward trend was interpreted as a change of flow dimension away from the borehole. The calculation of the outer zone flow dimension based on the slope of the derivative is n2 = 1.9 (CHi) and 1.95 (CHir), respectively. Both phases are matched using a two shell composite flow model with a change of flow dimension at some distance from the borehole. The analysis is presented in Appendix 2-34.

### Selected representative parameters

The recommended transmissivity of  $7.9 \cdot 10^{-7}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-7}$  to  $1 \cdot 10^{-6}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.581.5 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 6.2.26 Section 603.00-623.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 243 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $5.5 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the derivative of the PI phase was matched using a homogeneous radial flow model. The analysis is presented in Appendix 2-35.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1.5 was used. The analysis is presented in Appendix 2-35.

# Selected representative parameters

The recommended transmissivity of  $4.4 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-11}$  to  $9.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2.27 Section 623.00-643.00 m, test no. 1, pulse injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 220 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $6.0 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the PI phase shows an upward trend at middle and late times, interpreted as a decrease of transmissivity at some distance from the borehole. Because the outer zone stabilization was not observed, the derived outer zone transmissivity should be regarded as an upper limit only. The PI phase was matched using a radial composite flow model. The analysis is presented in Appendix 2-36.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test no reliable flow dimension can be calculated by the slope of derivative. No generalized radial flow analysis was performed.

# Selected representative parameters

The recommended transmissivity of  $1.3 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the PI phase (inner zone). The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-12}$  to  $4.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2.28 Section 643.00-663.00 m, test no. 1, pulse injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 6 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 7 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 218 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $3.1 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows a continuing upward trend, which can be attributed to fact that the dimensionless test time is to small and the semi-logarithmic asymptotic solution was not achieved (due to the small transmissivity). The PI phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-37.

### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the continuing upward trend indicates a flow dimension of n = 1.6 (interpreted form the slope of derivative). For the generalized radial flow analysis a homogeneous flow model was used. The analysis is presented in Appendix 2-37.

# Selected representative parameters

The recommended transmissivity of  $2.1 \cdot 10^{-12}$  m<sup>2</sup>/s was derived from the radial flow analysis of the PI phase. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-13}$  to  $6.0 \cdot 10^{-12}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.2.29 Section 663.00-683.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a low formation transmissivity. The pulse recovery was measured over night. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. All phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 256 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. However, no large pressure loss occurred during the injection phase. The injection rate decreased from 5 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy but is still amenable for qualitative analysis. The CHir shows no problems and is adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase (although noisy) shows a upward trend at middle times and a kind of stabilization at late times, indicating a transition to a zone of lower transmissivity. A radial flow composite model was used for the analysis of the CHi phase. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-38.

# Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the no clear flow stabilization. No generalized radial flow analysis was performed.

### Selected representative parameters

The recommended transmissivity of  $2.0 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHi phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-11}$  to  $7.0 \cdot 10^{-10}$  m<sup>2</sup>/s (this range includes the transmissivity derived from the inner zone transmissivity the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6.317.5 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency can be attributed to the fact that no flow stabilization was reached during the CHir phase caused by the low transmissivity. No further analysis is recommended.

The conducted over night pulse was analysed using a radial composite flow model with decreasing transmissivity away from the borehole. Due to the uncertainty of the initial formation pressure the results should be regarded carefully. The derived inner zone transmissivity is  $1.3 \cdot 10^{-10}$  m<sup>2</sup>/s. The analysis is presented in Appendix 2-38.

# 6.2.30 Section 683.00-703.00 m, test no. 1, pulse injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 12 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 224 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 5.3·10<sup>-11</sup> m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the PI shows an upward trend at middle and late times. This behaviour is interpreted as an decrease of transmissivity at some distance form the borehole. A two shell composite radial flow model was chosen for the analysis of the PI phase. The analysis is presented in Appendix 2-39.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend of the derivative at middle and late times is interpreted as a change of flow dimension. The flow dimension displayed at the middle and late time is n = 1.87. A composite flow model with a decrease in flow dimension at some distance from the borehole was chosen for the analysis. The analysis is presented in Appendix 2-39.

# Selected representative parameters

The recommended transmissivity of  $1.5 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase (outer zone). The confidence range for the interval transmissivity is estimated to be  $6.0 \cdot 10^{-11}$  to  $3.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

## 6.2.31 Section 703.00-723.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. However, no large pressure loss occurred during the injection phase. The injection rate decreased from 30 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy but is still amenable for qualitative analysis. The CHir shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is noisy. However, the CHi phase was matched using a radial flow composite model. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-40.

## Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $2.6 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-11}$  to  $6.0 \cdot 10^{-10}$  m<sup>2</sup>/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.2.32 Section 723.00-743.00 m, test no. 1, pulse injection

### Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for approx. 40 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-41.

### Selected representative parameters

Based on the test response the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 6.2.33 Section 743.00-763.00 m, test no. 1, pulse injection

#### Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-42.

## Selected representative parameters

Based on the test response the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.2.34 Section 763.00-783.00 m, test no. 1, pulse injection

#### Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for approx. 10 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-43.

## Selected representative parameters

Based on the test response the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.2.35 Section 783.00-803.00 m, test no. 1, pulse injection

#### Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure increases. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-44.

### Selected representative parameters

Based on the test response the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 6.2.36 Section 803.00-823.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 36 kPa in 25 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-45.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.2.37 Section 823.00-843.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 47 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-46.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.2.38 Section 843.00-863.00 m, test no. 1, injection

# Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 240 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. Because of this, the pressure decreased during the injection by 4 kPa. The injection rate decreased from 14 mL/min at start of the CHi phase to 4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy but is still amenable for qualitative analysis. The CHir shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is noisy. However, the CHi phase was matched using a radial flow composite model. The late time derivative of the CHir phase shows an indication of horizontal stabilization, which can be attributed to radial flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-46.

# Generalized Radial Flow Analysis

In case of the present test CHi phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and the insufficient flow stabilization (CHir phase). No generalized radial flow analysis was performed.

# Selected representative parameters

The recommended transmissivity of  $8.2 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-10}$  to  $1.0 \cdot 10^{-09}$  m<sup>2</sup>/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.2.39 Section 863.00-883.00 m, test no. 1, injection

## Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for approx. 15 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-48.

# Selected representative parameters

Based on the test response the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3 5 m hydraulic injection tests

In the following, the 5 m section tests conducted in borehole KLX11A are presented and analysed.

# 6.3.1 Section 303.00-308.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a

constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.2 L/min at start of the CHi phase to 0.6 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The CHi phase shows no problems and is adequate for quantitative analysis. The CHir phase shows a fast recovery, which adds uncertainty to the derivative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present the derivative of the CHi phase shows a slight upward trend. The CHir derivative is very poor due to the very fast recovery. However, a radial homogeneous flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-49.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase indicates a flow dimension of 1.9. For the analysis of the CHi phases a homogeneous flow model was chosen. Due to the poor data quality of the CHir phase no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-49.

## Selected representative parameters

The recommended transmissivity of  $6.0 \cdot 10^{-7}$  m²/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be  $2.0 \cdot 10^{-7}$  to  $9.0 \cdot 10^{-7}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2.822.7 kPa.

The quality of the CHir phase is very poor and leads to inconsistency between the CHi and CHir phase. The fast recovery may be caused by non-Darcy flow effects in the formation. No further analysis recommended.

# 6.3.2 Section 308.00-313.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 3.2 L/min at start of the CHi phase to 3.9 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The automatic rate control functioned well, the recorded flow rate is however a little bit noisy. The CHir phase shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase was matched using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows an upward trend at middle times followed by a horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir Phase. The analysis is presented in Appendix 2-50.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi show a slight downward trend. The flow dimension calculated by the slope of the derivative is n = 2.2. For the analysis of the CHi phases a homogeneous flow model was chosen. The flow dimension displayed during the CHir phase is n = 2 and no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-50.

## Selected representative parameters

The recommended transmissivity of  $6.5 \cdot 10^{-6}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $2.0 \cdot 10^{-6}$  to  $9.0 \cdot 10^{-6}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,867.5 kPa.

The radial flow analyses of the CHi and CHir phases show some inconsistency regarding the chosen flow models. However, regarding the derived transmissivities both phases show consistency. No further analysis is recommended.

## 6.3.3 Section 313.00–318.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 47 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-51.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.4 Section 318.00-323.00 m, test no. 1, injection

## Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 118 kPa in 20 minutes. This phenomenon is caused

by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-52.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 6.3.5 Section 343.00-348.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. However no large pressure loss occurred. The injection rate decreased from 75 mL/min at start of the CHi phase to 10 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The injection phase is a little bit noisy but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase shows an upward trend at middle times followed by a kind of horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. The derivative of the CHir phase shows an upward trend at middle times as well but no stabilization at late time, indicating no formation flow stabilization was reached. Both phases are matched using a two shell composite radial flow model. The analysis is presented in Appendix 2-53.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present analysis the upward trend at middle times is interpreted as a change of flow dimension. The calculation based on the slope of the derivatives indicates a flow dimension of n2 = 1.68 (CHi phase) and n2 = 1.76 (CHir phase), respectively. A two shell composite flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-53.

## Selected representative parameters

The recommended transmissivity of  $3.6 \cdot 10^{-9}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  to  $8.0 \cdot 10^{-9}$  m<sup>2</sup>/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.3.6 Section 348.00–353.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 82 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-54.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.7 Section 353.00–358.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 99 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-55.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 6.3.8 Section 358.00–363.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 130 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-56.

# Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.9 Section 383.00-388.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 74 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-57.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.10 Section 388.00-393.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 108 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-58.

# Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.11 Section 393.00-398.00 m, test no. 1, injection

## Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 40 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-59.

# Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.12 Section 398.00-403.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 234 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N<sub>2</sub> backpressure. However, no pressure loss occurred during the injection phase. The injection rate decreased from 7 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the very low flow rate the recorded data of the flow rate is very noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A two shell composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-60.

# Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the very poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $3.0 \cdot 10^{-09}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-10}$  to  $6.0 \cdot 10^{-09}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,712.4 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.3.13 Section 423.00-428.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 60 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-61.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.14 Section 428.00-433.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 82 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-62.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 6.3.15 Section 433.00-438.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 200 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-63.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 6.3.16 Section 438.00-443.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system functioned relatively well, except for oscillations occurring at the beginning of the phase. However, the CHi phase is still analysable. The injection rate decreased from 75 mL/min at start of the CHi phase to 70 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery).

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test no clear trend could be observed for the derivative of the CHi phase. However, the CHi phase was analysed using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows a horizontal stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-64.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the CHi derivative is n=2.2. For the analysis of the CHi phases a homogeneous flow model was chosen. The flow dimension displayed during the CHir phase is n=2 and no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-64.

#### Selected representative parameters

The recommended transmissivity of  $1.9 \cdot 10^{-7}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better derivative stabilization. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-8}$  to  $5.0 \cdot 10^{-7}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,087.3 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.3.17 Section 442.00-447.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 10 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 8 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 210 kPa.

Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 3.8·10<sup>-11</sup> m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the strong influence of the packer expansion the pressure before inflation has been assumed to be the initial formation pressure. Therefore the results of the late time derivative (e.g. outer zone transmissivity) should be regarded carefully. In case of the present analysis the PI phase was matched using a radial composite flow model with increasing transmissivity at some distance from the borehole. The analysis is presented in Appendix 2-65.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the downward trend at middle and late times of the derivative is interpreted as change of flow dimension. For the generalized radial flow analysis a composite flow model with n1 = 2 and n2 = 2.23 was used. The analysis is presented in Appendix 2-65.

#### Selected representative parameters

The recommended transmissivity of  $1.2 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase (inner zone). The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-11}$  to  $3.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.3.18 Section 447.00-452.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system worked relatively well, except some oscillations at the start of the injection. Due to the low flow rate the recorded data is a little bit noisy. However, the CHi phase is adequate for analysis. The injection rate decreased from 18 mL/min at start of the CHi phase to 13 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). The CHir shows a fast recovery, which adds uncertainty to the derivative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The response of the CHir phase is consistent with the presence of a large skin, which

in turn, is not consistent with the response observed during the CHi phase. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-66.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase indicates a flow dimension of 2. For this reason no generalized radial flow analysis was performed. The CHir phase does not allow a specific determination of the flow dimension, because of no clear flow stabilization. No generalized radial flow analysis was performed for the CHir phase.

#### Selected representative parameters

The recommended transmissivity of  $1.4\cdot10^{-08}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-09}$  to  $3.0\cdot10^{-08}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4.174.5 kPa.

The radial flow analysis of the CHi and CHir phases show little inconsistency, which can be attributed to the fast recovery of the CHir phase. No further analysis is recommended.

#### 6.3.19 Section 452.00-457.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 208 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system worked relatively well, except some oscillations at the start of the injection. Due to the relatively low flow rate the recorded data is noisy. The injection rate decreased from approx. 22 mL/min at start of the CHi phase to 17 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relatively fast recovery, which adds uncertainty to the derivative analyses. However, both phases are adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase (although noisy) shows a relatively flat derivative which can be interpreted as radial flow. A radial homogeneous flow model was used to analyse the CHi phase. The derivative of the CHir phase shows a unit slope downward trend at middle times, indicating a large positive skin. There is a slight indication of stabilization in the late time derivative. The CHir phase is matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-67.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is a little bit noisy and shows a horizontal stabilization, indicating a flow dimension n = 2. Due to the noise in the data

the interpretation of the flow dimension should be regarded carefully. No generalized radial flow analysis was performed. Due to the fast recovery and no clear flow stabilization of the CHir phase, no generalized radial flow analysis was performed, either. The analysis is presented in Appendix 2-67.

# Selected representative parameters

The recommended transmissivity of  $2.2 \cdot 10^{-8}$  m²/s was derived from the radial flow analysis of the CHi phase, which shows better data quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-9}$  to  $4.0 \cdot 10^{-8}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4.220.6 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency in the derived transmissivities, which is attributed to the fast recovery of the CHir phase. The fast recovery may be caused by non-Darcy flow effects in the formation. No further analysis is recommended.

#### 6.3.20 Section 457.00-462.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 170 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-68.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.21 Section 462.00-467.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 108 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-69.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 6.3.22 Section 483.00-488.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 90 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-70.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.23 Section 488.00-493.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 90 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-71.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 6.3.24 Section 493.00-498.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 10 kPa and drops after approx. 0.5 h. This can be explained by prolonged packer expansion in a relatively tight section. During the brief injection phase of the pulse injection a total volume of about 3 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 226 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $1.2 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the deconvoluted PI pressure shows a horizontal stabilization at middle and late times indicating radial flow. An infinite acting homogeneous radial flow model was used for the analysis. The analysis is presented in Appendix 2-72.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculation of the flow dimension based on the slope of derivative shows a flow dimension of n = 2 (radial flow). Therefore no generalized radial flow analysis was performed.

#### Selected representative parameters

The recommended transmissivity of  $2.6 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-11}$  to  $4.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.3.25 Section 498.00-503.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 241 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. However, no pressure loss occurred during the injection phase. The injection rate decreased from 8 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-73.

# Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

#### Selected representative parameters

The recommended transmissivity of  $2.5 \cdot 10^{-9}$  m²/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-10}$  to  $5.0 \cdot 10^{-09}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,650.5 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency can be attributed to the poor data quality of the CHi phase. However, regarding the derived transmissivities, both phases show consistency. No further analysis is recommended.

#### 6.3.26 Section 503.00-508.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 182 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system functioned well, except the oscillations at the beginning of the injection phase. The recorded data is however noisy, but still analysable. The injection rate decreased from approx 25 mL/min at start of the CHi phase to 17 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-74.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi show a slight downward trend. The flow dimension calculated by the slope of the derivative is n = 2.1. Due to the fact that the data of the CHi phase is relatively noisy, the results should be regarded carefully. A homogeneous flow model was chosen for the analysis of the CHi phase. No clear flow stabilization was reached during the CHir phase. This does not allow a specific determination of the flow dimension. The analysis is presented in Appendix 2-74.

#### Selected representative parameters

The recommended transmissivity of  $1.1\cdot10^{-08}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $7.0\cdot10^{-09}$  to  $5.0\cdot10^{-08}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,687.3 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.3.27 Section 508.00-513.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The start of the injection phase was a little bit noisy. The injection rate decreased from 48 mL/min at start of the CHi phase to 16 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recovery was measured 2 h. Both phases show no problems and are adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi derivative shows a slight upward trend and an infinite acting homogenous radial flow model was used. The CHir phase shows an upward trend at middle times and an indication of stabilization at late times. This behaviour is interpreted as a change of transmissivity at some distance from the borehole. A two shell composite radial flow model was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-75.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the slight upward trend of the CHi derivative is interpreted as a flow dimension of n = 1.9. A homogenous flow model was used for the analysis of the CHi phase. The derivative of the CHir phase is interpreted as a change of flow dimension at some distance form the borehole. A composite flow model with n = 2 and n = 1.86 was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-75.

#### Selected representative parameters

The recommended transmissivity of  $1.3 \cdot 10^{-08}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $7.0 \cdot 10^{-09}$  to  $3.0 \cdot 10^{-08}$  m<sup>2</sup>/s (this range includes the derived transmissivity from the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,738.8 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency as far as the flow model concerned which can be attributed to the noise in the early data of the CHi phase. No further analysis is recommended.

#### 6.3.28 Section 513.00-518.00 m, test no. 1-3, injection

#### Comments to test

Due to a technical problem with the regulation unit the test was repeated. The third test in this interval worked well.

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.7 L/min at start of the CHi phase to 1.2 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivatives of both phases show a clear horizontal stabilization at middle and late times. A homogeneous radial flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-76.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a clear horizontal stabilization which is indicative for a flow dimension of 2 (radial flow). For this reason no generalized radial flow analysis was necessary.

#### Selected representative parameters

The recommended transmissivity of  $4.0\cdot10^{-6}$  m²/s was derived from the radial flow analysis of the CHir phase, because it shows the most clear derivative stabilization. The confidence range for the interval transmissivity is estimated to be  $2.0\cdot10^{-6}$  to  $6.0\cdot10^{-6}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,794.0 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.3.29 Section 518.00-523.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5.7 L/min at start of the CHi phase to 3.1 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi and CHir phases show a flat derivative at middle and late times, indicating formation flow stabilization and radial flow. Both phases are analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-77.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of both phases show a horizontal stabilization with a slope of 0, indicating a flow dimension n = 2. Therefore no generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $4.7\cdot10^{-6}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $2.0\cdot10^{-6}$  to  $7.0\cdot10^{-6}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4.837.1 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

# 6.3.30 Section 523.00-528.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 15 mL/min at start of the CHi phase to 9 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-78.

#### Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

## Selected representative parameters

The recommended transmissivity of  $4.2\cdot10^{-8}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0\cdot10^{-8}$  to  $7.0\cdot10^{-8}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,881.0 kPa.

The radial flow analyses of the CHi and CHir phases show little inconsistency regarding the derived transmissivity. This inconsistency can be attributed to the poor data quality of the CHi phase. No further analysis is recommended.

# 6.3.31 Section 528.00-533.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from approx. 700 mL/min at start of the CHi phase to 50 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the Chi phase (although a little bit noisy) shows a relatively flat derivative. An infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a slight horizontal stabilization at middle times and a downward trend at late times, which is typical for a change of transmissivity away from the borehole. A two shell composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-79.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present analysis the CHi phase does not allow a specific determination of the flow dimension and no generalized radial flow analysis was performed for this phase. The calculated flow dimension based on the slope of the CHir derivative shows a flow dimension of n = 3 (spherical). A homogeneous flow model was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-79.

#### Selected representative parameters

The recommended transmissivity of  $6.7 \cdot 10^{-8}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $3.0 \cdot 10^{-8}$  to  $9.0 \cdot 10^{-8}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,932.1 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow models. If further analysis is planned, a total test simulation should help resolving this inconsistency.

#### 6.3.32 Section 533.00-538.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 190 mL/min at start of the CHi phase to 100 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHi phase is a little bit noisy, which can be attributed to the automatic regulation unit which was switching between the injection pump and the injection vessel. The CHir phase shows a relatively fast recovery. Both phases show no problems and are adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis both phases are matched using a homogeneous radial flow model. The analysis is presented in Appendix 2-80.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the CHi derivative is n = 2.3. A homogeneous flow model was used to match the CHi phase. No generalized radial flow analysis was performed for the CHir phase. The analysis is presented in Appendix 2-80.

#### Selected representative parameters

The recommended transmissivity of  $3.7 \cdot 10^{-7}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-8}$  to  $6.0 \cdot 10^{-7}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,980.7 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency, with the exception of the very high skin derived from the CHir phase. No further analysis is recommended.

#### 6.3.33 Section 538.00-543.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 242 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. Because of this, the pressure decreased during the injection by approx. 1 kPa. The injection rate decreased from 8 mL/min at start of the CHi phase to 2 mL/min at the end,

indicating a low interval transmissivity (consistent with the pulse recovery). Because of the low flow rate the recorded data of the flow rate is noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-81.

#### Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

#### Selected representative parameters

The recommended transmissivity of  $4.1\cdot10^{-9}$  m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0\cdot10^{-9}$  to  $1.0\cdot10^{-8}$  m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,028.7 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

#### 6.3.34 Section 563.00-568.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 63 kPa in 25 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-82.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 6.3.35 Section 568.00-573.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 60 kPa in 25 minutes. This phenomenon is caused

by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-83.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 6.3.36 Section 573.00-578.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A hydraulic connection between test interval and bottom zone (the pressure rose by 13 kPa during injection) was observed. The automatic regulation unit functioned well. However, the recorded data of the Chi phase is noisy. The injection rate decreased from 5.5 L/min at start of the CHi phase to 4.1 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relative fast recovery. Both phases are adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is very noisy. However, a homogeneous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a flat derivative at middle and late times, indicating radial flow. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-84.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase does not allow a specific determination of the flow dimension, because of the poor data quality. The derivative of the CHir phase shows a horizontal stabilization with a slope of 0, indicating a flow dimension n = 2. Therefore no generalized radial flow analysis was performed.

# Selected representative parameters

The recommended transmissivity of  $1.5 \cdot 10^{-5}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-6}$  to  $3.0 \cdot 10^{-5}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,350.3 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency, with the exception of a relatively high skin derived from the CHir phase. No further analysis is recommended.

# 6.3.37 Section 578.00-583.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. The pressure rose by 6 kPa in the bottom zone during the injection indicating a connection to the adjacent zone. The injection rate decreased from 7.5 L/min at start of the CHi phase to 5.6 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relative fast recovery. Both phases are adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is relatively flat and a homogeneous radial flow model was used for the analysis of this phase. The CHir phase shows a flat derivative at middle and late times, indicating radial flow. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-85.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present analysis the slope of the derivative of the CHi phase indicates a flow dimension of 2.1. A homogeneous flow model was used for the analysis of the CHi phase. The analysis is presented in Appendix 2-85. No generalized radial flow analysis was performed for the CHir phase.

#### Selected representative parameters

The recommended transmissivity of  $1.0 \cdot 10^{-5}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-6}$  to  $3.0 \cdot 10^{-5}$  m<sup>2</sup>/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.397.7 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency, with the exception of a relatively high skin derived from the CHir phase. No further analysis is recommended.

# 6.3.38 Section 583.00-588.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 4 kPa. This can be explained by prolonged packer expansion in a relatively tight section. During the brief injection phase of the pulse injection a total volume of about 3 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 242 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $1.2 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the deconvoluted PI pressure was matched using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-86.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculation of the flow dimension based on the slope of derivative shows a flow dimension of n = 1.4. A homogeneous flow model was used for the analysis of the PI phase. The analysis is presented in Appendix 2-86.

#### Selected representative parameters

The recommended transmissivity of  $1.2 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-12}$  to  $4.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

#### 6.3.39 Section 588.00-593.00 m, test no. 1, pulse injection

#### Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for approx. 40 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-87.

#### Selected representative parameters

Based on the test response the interval transmissivity is lower than 1.0·10<sup>-11</sup> m<sup>2</sup>/s.

No further analysis recommended.

# 6.3.40 Section 593.00-598.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 5 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 238 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $1.9 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the PI phase shows an upward trend at early times followed by a kind of stabilization at late times. The PI phase was matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-88.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test no reliable flow dimension can be calculated by the slope of derivative. No generalized radial flow analysis was performed.

#### Selected representative parameters

The recommended transmissivity of  $4.2 \cdot 10^{-12}$  m<sup>2</sup>/s was derived from the radial flow analysis of the PI phase. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-12}$  to  $7.0 \cdot 10^{-12}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.3.41 Section 598.00-603.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from approx 0.5 L/min at start of the CHi phase to 0.3 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi derivative shows a horizontal stabilization at middle times followed by an upward trend at late times. A two shell composite flow model with decreasing transmissivity at some distance from the test interval was used for the analysis of the CHi phase. The response of the CHir phase is consistent with the CHi phase and a two shell composite flow model was used for the analysis as well. The analysis is presented in Appendix 2-89.

## Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the both phases do not allow a reliable calculation of the flow dimension. No generalized radial flow analysis was performed.

#### Selected representative parameters

The recommended transmissivity of  $3.8 \cdot 10^{-07}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHi phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-08}$  to  $9.0 \cdot 10^{-07}$  m<sup>2</sup>/s (this range includes the derived transmissivity from the CHir phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,583.6 kPa.

The radial flow analyses of the CHi and CHir phases show relative good consistency. No further analysis is recommended.

# 6.3.42 Section 663.00-668.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 232 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with  $N_2$  backpressure. However, no large pressure loss occurred during the injection phase. The injection rate decreased from 5 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy but is still amenable for qualitative analysis. The CHir shows no problems and is adequate for quantitative analysis.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is noisy. However, the CHi phase was matched using a radial flow composite model with decreasing transmissivity away from the borehole. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. A two shell composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-90.

#### Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

#### Selected representative parameters

The recommended transmissivity of  $1.3 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-11}$  to  $4.0 \cdot 10^{-10}$  m<sup>2</sup>/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

# 6.3.43 Section 668.00-673.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 6 kPa. This can be explained by prolonged packer expansion in a relatively tight section. During the brief injection phase of the pulse injection a total volume of about 4 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 231 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $1.7 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the deconvoluted PI pressure was matched using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-91.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculation of the flow dimension based on the slope of derivative shows a flow dimension of n = 1.6. A homogeneous flow model was used for the analysis of the PI phase. The analysis is presented in Appendix 2-91.

#### Selected representative parameters

The recommended transmissivity of  $1.2 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-12}$  to  $4.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.3.44 Section 673.00-678.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 3 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 246 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $1.2 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

# Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the deconvoluted PI pressure show a horizontal stabilization at early times and a short downward trend at middle times followed by a new stabilization at a lower level. This behaviour is consistent with an increase of transmissivity at some distance from the borehole. A two shell composite radial flow model was used for the analysis of the PI phase. The analysis is presented in Appendix 2-91.

#### Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculated flow dimension is n = 2 (radial flow). No generalized radial flow analysis was performed.

#### Selected representative parameters

The recommended transmissivity of  $9.0 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the PI phase (inner zone). The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-11}$  to  $2.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 6.3.45 Section 678.00-683.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 4 kPa. This can be explained by prolonged packer expansion in a relatively tight section. During the brief injection phase of the pulse injection a total volume of about 4 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 246 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $1.5 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

#### Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the deconvoluted PI pressure was matched using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-93.

# Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculation of the flow dimension shows a flow dimension of n = 2 (radial flow). No generalized radial flow analysis was performed.

# Selected representative parameters

The recommended transmissivity of  $8.4 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $6.0 \cdot 10^{-11}$  to  $1.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

# 7 Synthesis

The synthesis chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

# 7.1 Summary of results

Table 7-1. General test data from constant head injection tests in KLX11A (for nomenclature see Appendix 4).

| Borehole | Borehole | Date and time      | Date and time      | අ        | <b>o</b> | <b>♣</b> | <b>‡</b> ‡  | g     | ق     | g     | ۾           | Te         | Test phases measured |
|----------|----------|--------------------|--------------------|----------|----------|----------|-------------|-------|-------|-------|-------------|------------|----------------------|
| dnoes    | seclow   | for test, start    | for test, stop     |          |          |          |             |       |       |       |             |            | Analysed test phases |
| Œ)       | (E)      | YYYYMMDD<br>hh:mm  | YYYYMMDD<br>hh:mm  | (m**3/s) | (m**3/s) | (s)      | (s)         | (kPa) | (kPa) | (kPa) | (kPa)       | <u>(</u> ) | marked bold          |
| 103.00   | 203.00   | 060629<br>14:32:00 | 060629<br>16:40:00 | 1.31E-04 | 1.37E-04 | 1,800    | 1,800       | 1,842 | 1,837 | 2,035 | 1,840       | 9.6        | CHi / CHir           |
| 203.00   | 303.00   | 060629<br>18:03:00 | 060629<br>20:21:00 | 1.52E-04 | 1.53E-04 | 1,800    | 1,800       | 2,780 | 2,776 | 2,975 | 2,777       | 1.         | CHi / CHir           |
| 303.00   | 403.00   | 060630<br>09:15:00 | 060630<br>11:12:00 | 5.67E-05 | 5.83E-05 | 1,800    | 1,800       | 3,714 | 3,712 | 3,907 | 3,713       | 12.6       | CHi / CHir           |
| 403.00   | 503.00   | 060630<br>13:11:00 | 060630<br>15:20:00 | 1.17E-06 | 1.33E-06 | 1,800    | 1,800       | 4,653 | 4,650 | 4,854 | 4,650       | 14.0       | CHi / CHir           |
| 503.00   | 603.00   | 060701<br>08:47:00 | 060701<br>10:50:00 | 1.91E-04 | 1.98E-04 | 1,800    | 1,800       | 5,578 | 5,580 | 5,795 | 2,600       | 15.6       | CHi / CHir           |
| 603.00   | 703.00   | 060701<br>12:14:00 | 060701<br>15:43:00 | 3.33E-08 | 5.00E-08 | 1,800    | 3,600       | 6,514 | 6,549 | 6,754 | 6,586       | 17.1       | CHi / CHir           |
| 703.00   | 803.00   | 060701<br>17:09:00 | 060702<br>01:32:00 | 3.33E-08 | 6.67E-08 | 1,800    | 21,600      | 7,443 | 7,477 | 7,680 | 7,451       | 18.6       | CHi / CHir           |
| 803.00   | 903.00   | 060702<br>09:11:00 | 060702<br>13:33:00 | 6.67E-08 | 1.00E-07 | 1,800    | 7,200       | 8,351 | 8,354 | 8,589 | 8,352       | 20.1       | CHi / CHir           |
| 876.00   | 976.00   | 060702<br>14:45:00 | 060702<br>16:49:00 | >N#      | >N#      | 10       | 3,978       | 9,027 | 9,042 | 9,253 | 9,202       | 21.2       | i <u>a</u>           |
| 103.00   | 123.00   | 060704<br>08:19:00 | 060704<br>09:46:00 | 2.33E-05 | 2.33E-05 | 1,200    | 1,200       | 1,091 | 1,093 | 1,293 | 1,093       | 8.4        | CHi / CHir           |
| 123.00   | 143.00   | 060704<br>10:31:00 | 060704<br>11:54:00 | 6.50E-05 | 6.67E-05 | 1,200    | 1,200       | 1,279 | 1,275 | 1,475 | 1,275       | 8.7        | CHi / CHir           |
| 143.00   | 163.00   | 060704<br>12:49:00 | 060704<br>14:32:00 | 6.67E-06 | 8.33E-06 | 1,200    | 1,800       | 1,469 | 1,464 | 1,671 | 1,469       | 8.9        | CHi / CHir           |
| 163.00   | 183.00   | 060704<br>15:05:00 | 060704<br>16:33:00 | 4.17E-05 | 4.33E-05 | 1,200    | 1,200       | 1,656 | 1,648 | 1,849 | 1,651       | 9.2        | CHi / CHir           |
| 183.00   | 203.00   | 060704<br>17:12:00 | 060704<br>18:14:00 | >N#      | >N#      | >N<br>#  | ><br>N<br># | 1,844 | >N#   | >N#   | ><br>N<br># | 9.5        | NN#                  |

| Boroholo | Boroholo    | Date and time      | Date and time      | c        | c        | +        | +      | ś     | 5     | 2        | ٤     | P        | Tast phases maasured   |
|----------|-------------|--------------------|--------------------|----------|----------|----------|--------|-------|-------|----------|-------|----------|------------------------|
| 201210   | Solow Solow | for tost start     | for tost ston      | វិ       | Ę        | <u>.</u> | ÷      | ŝ     | ī     | <u>م</u> | Σ     | <u>}</u> | Applying the tables    |
| dnas     | MOD (A)     | or test, start     | dois test, stop    | 1-10+    |          | 3        | 3      |       |       |          |       | Ć        | Alialysed test pliases |
| (E)      | (m)         | YYYYMMDD<br>hh:mm  | YYYYMMDD<br>hh:mm  | (m**3/s) | (m**3/s) | (s)      | (s)    | (kPa) | (kPa) | (кРа)    | (kPa) | (၁၂)     | marked bold            |
| 203.00   | 223.00      | 060704<br>18:50:00 | 060704<br>19:46:00 | >N#      | NN#      | >N#      | >N#    | 2,031 | \N#   | /N#      | /N#   | 9.8      | \N#                    |
| 223.00   | 243.00      | 060705<br>08:38:00 | 060705<br>10:07:00 | >N#      | >N#      | 10       | 2,700  | 2,216 | 2,233 | 2,458    | 2,255 | 10.0     | ā                      |
| 243.00   | 263.00      | 060705<br>10:48:00 | 060705<br>12:22:00 | 6.67E-07 | 7.00E-07 | 1,200    | 1,200  | 2,406 | 2,403 | 2,616    | 2,402 | 10.4     | CHi / CHir             |
| 263.00   | 283.00      | 060705<br>13:18:00 | 060705<br>14:44:00 | 1.65E-04 | 1.69E-04 | 1,200    | 1,200  | 2,594 | 2,588 | 2,789    | 2,590 | 10.8     | CHi / CHir             |
| 283.00   | 303.00      | 060705<br>15:25:00 | 060705<br>16:51:00 | >N#      | >N#      | 10       | 2,700  | 2,781 | 2,797 | 3,034    | 2,958 | 1.       | ā                      |
| 303.00   | 323.00      | 060705<br>17:25:00 | 060705<br>18:49:00 | 6.50E-05 | 6.83E-05 | 1,200    | 1,200  | 2,967 | 2,963 | 3,187    | 2,964 | 11.5     | CHi / CHir             |
| 323.00   | 343.00      | 060705<br>19:21:00 | 060706<br>00:42:00 | 8.33E-09 | 5.00E-09 | 099      | 14,400 | 3,155 | 3,159 | 3,377    | 3,155 | 11.8     | CHi / CHir             |
| 343.00   | 363.00      | 060706<br>08:48:00 | 060706<br>10:30:00 | 1.50E-07 | 3.00E-07 | 1,200    | 1,200  | 3,339 | 3,356 | 3,551    | 3,443 | 12.1     | CHi / CHir             |
| 363.00   | 383.00      | 060706<br>11:03:00 | 060706<br>12:55:00 | >N#      | >N#      | 10       | 3,960  | 3,530 | 3,536 | 3,753    | 3,693 | 12.3     | ā                      |
| 383.00   | 403.00      | 060706<br>13:34:00 | 060706<br>15:02:00 | 8.33E-08 | 8.33E-08 | 1,200    | 1,200  | 3,717 | 3,715 | 3,954    | 3,712 | 12.6     | CHi / CHir             |
| 403.00   | 423.00      | 060706<br>15:54:00 | 060706<br>17:22:00 | >N#      | >N#      | 10       | 2,460  | 3,903 | 3,908 | 4,141    | 4,062 | 12.9     | ā                      |
| 423.00   | 443.00      | 060706<br>17:56:00 | 060706<br>19:21:00 | 1.00E-06 | 1.00E-06 | 1,200    | 1,200  | 4,090 | 4,088 | 4,290    | 4,087 | 13.2     | CHi / CHir             |
| 443.00   | 463.00      | 060707<br>08:32:00 | 060707<br>10:01:00 | 5.00E-07 | 4.92E-07 | 1,200    | 1,200  | 4,271 | 4,269 | 4,513    | 4,269 | 13.5     | CHi / CHir             |
| 463.00   | 483.00      | 060707<br>10:33:00 | 060707<br>12:34:00 | >N#      | >N#      | 10       | 4,500  | 4,461 | 4,485 | 4,698    | 4,572 | 13.8     | ä                      |
| 483.00   | 503.00      | 060707<br>13:12:00 | 060707<br>14:44:00 | 1.17E-07 | 1.33E-07 | 1,200    | 1,200  | 4,650 | 4,649 | 4,899    | 4,642 | 14.0     | CHi / CHir             |

| Borehole Date a seclow for tes                | Date a<br>for tes    | Date and time<br>for test, start | Date and time<br>for test, stop | ď        | Q        | <b>₽</b> | <b>#</b> | o<br>0 | ā     | ď           | ď     | Te   | Test phases measured<br>Analysed test phases |
|-----------------------------------------------|----------------------|----------------------------------|---------------------------------|----------|----------|----------|----------|--------|-------|-------------|-------|------|----------------------------------------------|
| YYYYMMDD<br>hh:mm                             | MDD                  | YYYYMMD<br>hh:mm                 | . ō                             | (m**3/s) | (m**3/s) | (s)      | (s)      | (kPa)  | (kPa) | (kPa)       | (kPa) | (0°) | marked bold                                  |
| 523.00 060707 060707<br>15:12:00 16:39:00     | 0 4                  | 060707<br>16:39:00               |                                 | 5.83E-05 | 6.17E-05 | 1,200    | 1,200    | 4,838  | 4,837 | 5,037       | 4,838 | 14.4 | CHi / CHir                                   |
| 543.00 060707 060707<br>17:07:00 18:30:00     | 0 .                  | 060707<br>18:30:00               |                                 | 1.33E-06 | 1.33E-06 | 1,200    | 1,200    | 5,025  | 5,024 | 5,228       | 5,023 | 14.6 | CHi / CHir                                   |
| 563.00 060707 060708<br>19:07:00 08:26:00     | 0                    | 060708<br>08:26:00               |                                 | >N<br>#  | >N#      | 10       | 45,360   | 5,211  | 5,219 | 5,439       | 5,349 | 15.0 | <u>i</u>                                     |
| 583.00 060708 060708<br>08:58:00 10:21:00     |                      | 060708<br>10:21:00               |                                 | 1.47E-04 | 1.52E-04 | 1,200    | 1,200    | 5,395  | 5,392 | 5,590       | 5,394 | 15.1 | CHi / CHir                                   |
| 603.00 060708 060708<br>10:53:00 12:23:00     |                      | 060708<br>12:23:00               |                                 | 4.33E-06 | 4.50E-06 | 1,200    | 1,200    | 5,583  | 5,585 | 5,786       | 5,590 | 15.6 | CHi / CHir                                   |
| 623.00 060708 060708<br>13:17:00 14:41:00     | 060708<br>14:41:00   | 0                                |                                 | >N#      | >N<br>#  | 10       | 2,460    | 5,772  | 5,778 | 6,021       | 5,930 | 15.9 | <u>i</u>                                     |
| 643.00 060708 060708 #<br>15:12:00 16:39:00   | 060708<br>16:39:00   |                                  | #                               | >N#      | >N<br>#  | 10       | 2,460    | 5,957  | 5,963 | 6,183       | 6,172 | 16.2 | <u>i</u>                                     |
| 663.00 060708 060708 #I<br>17:11:00 18:34:00  | 060708<br>18:34:00   |                                  | #                               | >N#      | >N<br>#  | 10       | 2,400    | 6,144  | 6,153 | 6,368       | 6,133 | 16.5 | <u>i</u>                                     |
| 683.00 060708 060709 1.6<br>19:06:00 08:39:00 | 060709<br>08:39:00   | 0                                | 9.                              | 1.67E-08 | 3.67E-08 | 1,200    | 1,200    | 6,332  | 6,327 | 6,583       | 6,411 | 16.8 | CHi / CHir                                   |
| 703.00 060709 060709 #NV 09:11:00 10:40:00    | 060709               |                                  | #                               | ≥,       | >N<br>#  | 10       | 2,520    | 6,513  | 6,516 | 6,740       | 6,556 | 17.1 | <u>i</u>                                     |
| 723.00 060709 060709 5.C<br>11:08:00 13:27:00 | 060709<br>13:27:00   |                                  | 5.0                             | 5.00E-08 | 8.47E-08 | 1,200    | 2,400    | 6,700  | 6,718 | 6,928       | 6,761 | 17.3 | CHi / CHir                                   |
| 743.00 060709 060709 #N<br>13:58:00 15:13:00  | 060709               | 0                                | #                               | >N#      | >N<br>#  | N#       | >N<br>#  | 6,886  | >N#   | >N#         | >N#   | 17.6 | NN#                                          |
| 763.00 060709 060709 #I<br>15:45:00 16:56:00  | 060709<br>0 16:56:00 | 0                                | #                               | >N#      | >N<br>#  | N#       | >N<br>#  | 7,070  | >N#   | >N#         | >N#   | 17.9 | NN#                                          |
| 783.00 060709 060709 #<br>17:25:00 18:10:00   | 060709<br>0 18:10:00 | 0                                | #                               | >N#      | >N<br>#  | N#       | >N<br>#  | 7,254  | >N#   | ><br>N<br># | >N#   | 18.2 | NN#                                          |
| 803.00 060709 060709 #<br>18:43:00 20:01:00   | 060709<br>0 20:01:00 | 0                                | #                               | >N#      | >N<br>#  | >N<br>#  | >N<br>#  | 7,439  | >N#   | >N#         | >N#   | 18.5 | AN#                                          |

| 0104020  | 0,040,0    | Cont time          | Conit Land         | 0        | c        |         | ,           | •     |         | •       |          | ŕ        | To the state of th |
|----------|------------|--------------------|--------------------|----------|----------|---------|-------------|-------|---------|---------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poleilog |            | Date allo tille    | Date allo Illie    | ร๊       | ž        | ٩       | <u>u</u>    | ŝ     | ī.      | ဋ       | <u>5</u> | ≱<br>    | lest phases measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dnoes    | seclow     | for test, start    | for test, stop     |          |          |         |             |       |         |         |          |          | Analysed test phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Œ)       | <b>(E)</b> | YYYYMMDD<br>hh:mm  | YYYYMMDD<br>hh:mm  | (m**3/s) | (m**3/s) | (s)     | (s)         | (kPa) | (kPa)   | (kPa)   | (kPa)    | <b>်</b> | marked bold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 803.00   | 823.00     | 060710<br>08:19:00 | 060710<br>09:15:00 | N#       | NN#      | >N#     | >N#         | 7,623 | >N<br># | >N#     | >N#      | 18.8     | /N#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 823.00   | 843.00     | 060710<br>09:45:00 | 060710<br>10:37:00 | >N#      | >N#      | >N<br># | ><br>N<br># | 7,807 | >N<br># | ><br>N# | >N#      | 19.1     | NN#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 843.00   | 863.00     | 060710<br>11:10:00 | 060710<br>13:24:00 | 6.67E-08 | 1.05E-07 | 1,200   | 1,200       | 7,794 | 7,983   | 8,223   | 8,013    | 19.5     | CHi / CHir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 863.00   | 883.00     | 060710<br>14:04:00 | 060710<br>14:56:00 | >N#      | >N#      | >N<br># | ><br>N<br># | 8,180 | >N<br># | ><br>N# | >N#      | 19.8     | N#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 303.00   | 308.00     | 060712<br>07:38:00 | 060712<br>09:06:00 | 1.06E-05 | 1.16E-05 | 1,200   | 1,200       | 2,828 | 2,823   | 3,024   | 2,823    | 1.1      | CHi / CHir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 308.00   | 313.00     | 060712<br>09:30:00 | 060712<br>10:51:00 | 5.33E-05 | 5.61E-05 | 1,200   | 1,200       | 2,875 | 2,871   | 3,071   | 2,871    | 11.3     | CHi / CHir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 313.00   | 318.00     | 060712<br>11:13:00 | 060706<br>15:02:00 | >N#      | >N#      | >N<br># | ><br>N<br># | 2,925 | >N<br># | ><br>N# | >N#      | 4.11     | NN#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 318.00   | 323.00     | 060712<br>13:09:00 | 060712<br>12:03:00 | >N#      | >N#      | >N<br># | ><br>N<br># | 2,972 | >N<br># | ><br>N# | >N#      | 11.5     | NN#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 343.00   | 348.00     | 060712<br>14:31:00 | 060712<br>13:57:00 | 1.67E-07 | 3.33E-07 | 1,200   | 1,200       | 3,206 | 3,222   | 3,432   | 3,312    | 11.8     | CHi / CHir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 348.00   | 353.00     | 060712<br>16:38:00 | 060712<br>16:11:00 | >N#      | >N#      | >N<br># | >N<br>#     | 3,252 | >N<br># | ><br>N# | >N#      | 11.9     | N#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 353.00   | 358.00     | 060712<br>17:56:00 | 060712<br>17:38:00 | >N#      | >N#      | >N<br># | ><br>N<br># | 3,298 | >N<br># | ><br>N# | >N#      | 12.0     | NN#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 358.00   | 363.00     | 060713<br>07:52:00 | 060712<br>18:45:00 | >N#      | >N#      | >N<br># | ><br>N<br># | 3,342 | >N<br># | ><br>N# | >N#      | 12.0     | NN#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 383.00   | 388.00     | 060713<br>09:14:00 | 060713<br>08:41:00 | >N#      | >N#      | >N<br># | ><br>N<br># | 3,576 | >N<br># | ><br>N# | >N#      | 12.4     | NN#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 388.00   | 393.00     | 060713<br>10:28:00 | 060713<br>10:05:00 | >N<br>#  | >N#      | >N<br># | >N#         | 3,624 | >N<br># | >N#     | >N#      | 12.5     | >N#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 393.00   | 398.00     | 060713<br>12:29:00 | 060713<br>11:17:00 | >N#      | >N#      | >N<br># | ><br>N<br># | 3,673 | >N<br># | ><br>N# | >N#      | 12.5     | NN#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Borehole | Rorehole | Date and time      | Date and time      | d           | d        |            | 4     | ć     | ć            | c       | ć        | Ā           | Test phases measured |
|----------|----------|--------------------|--------------------|-------------|----------|------------|-------|-------|--------------|---------|----------|-------------|----------------------|
|          |          |                    |                    | ŝ           | Ę        | <b>9</b> - | ÷     | ŝ     | ī            | ž       | <u>t</u> | <u>&gt;</u> |                      |
| secnb    | seclow   | for test, start    | for test, stop     |             |          |            |       |       |              |         |          |             | Analysed test phases |
| (E)      | (E)      | YYYYMMDD<br>hh:mm  | YYYYMMDD<br>hh:mm  | (m**3/s)    | (m**3/s) | (s)        | (s)   | (kPa) | (kPa)        | (kPa)   | (kPa)    | (ၞ          | marked bold          |
| 398.00   | 403.00   | 060713<br>13:44:00 | 060713<br>13:20:00 | 8.33E-08    | 8.33E-08 | 1,200      | 1,200 | 3,718 | 3,717        | 3,951   | 3,715    | 12.6        | CHi / CHir           |
| 423.00   | 428.00   | 060713<br>15:46:00 | 060713<br>15:16:00 | ><br>N<br># | >N#      | >N#        | >N#   | 3,952 | >N#          | >N#     | >N#      | 13.0        | \N#                  |
| 428.00   | 433.00   | 060713<br>16:59:00 | 060713<br>16:55:00 | ><br>*      | >N#      | >N#        | >N#   | 3,998 | > <u>N</u> # | >N<br># | >N#      | 13.0        | \N#                  |
| 433.00   | 438.00   | 060714<br>07:59:00 | 060713<br>17:47:00 | ><br>N<br># | >N#      | >N#        | >N#   | 4,043 | > <u>N</u> # | >N#     | >N#      | 13.1        | \N#                  |
| 438.00   | 443.00   | 060714<br>09:17:00 | 060714<br>08:46:00 | 1.17E-06    | 1.16E-06 | 1,200      | 1,200 | 4,090 | 4,087        | 4,288   | 4,088    | 13.2        | CHi / CHir           |
| 442.00   | 447.00   | 060714<br>11:06:00 | 060714<br>10:39:00 | ><br>*      | >N#      | 10         | 3,840 | 4,133 | 4,147        | 4,357   | 4,150    | 13.3        | Ā                    |
| 447.00   | 452.00   | 060714<br>13:16:00 | 060714<br>12:51:00 | 2.17E-07    | 2.17E-07 | 1,200      | 1,200 | 4,175 | 4,176        | 4,377   | 4,175    | 13.3        | CHi / CHir           |
| 452.00   | 457.00   | 060714<br>15:01:00 | 060714<br>14:37:00 | 2.83E-07    | 2.95E-07 | 1,200      | 1,200 | 4,224 | 4,222        | 4,430   | 4,221    | 13.4        | CHi / CHir           |
| 457.00   | 462.00   | 060714<br>16:45:00 | 060714<br>16:22:00 | ><br>N<br># | >N#      | >N#        | >N#   | 4,271 | >N#          | >N<br># | >N#      | 13.5        | >N#                  |
| 462.00   | 467.00   | 060714<br>18:01:00 | 060714<br>17:35:00 | ><br>*      | >N#      | >N#        | >N#   | 4,317 | >N#          | >N<br># | >N#      | 13.5        | >N#                  |
| 483.00   | 488.00   | 060715<br>08:16:00 | 060714<br>18:50:00 | ><br>*      | >N#      | >N#        | >N#   | 4,509 | >N#          | >N#     | >N#      | 13.8        | \N#                  |
| 488.00   | 493.00   | 060715<br>09:29:00 | 060715<br>09:05:00 | ><br>\<br># | >N#      | >N#        | >N#   | 4,556 | >N#          | >N<br># | >N#      | 13.9        | >N#                  |
| 493.00   | 498.00   | 060715<br>10:47:00 | 060715<br>10:19:00 | ><br>*      | >N#      | 10         | 1500  | 4,605 | 4,613        | 4,839   | 4,617    | 14.0        | <u>i</u>             |
| 498.00   | 503.00   | 060715<br>14:04:00 | 060715<br>13:39:00 | 8.33E-08    | 1.00E-07 | 1,200      | 1,200 | 4,655 | 4,652        | 4,893   | 4,652    | 14.0        | CHi / CHir           |
| 503.00   | 508.00   | 060715<br>15:53:00 | 060715<br>15:29:00 | 2.83E-07    | 2.83E-07 | 1,200      | 1,200 | 4,700 | 4,705        | 4,887   | 4,735    | 14.1        | CHi / CHir           |

| Borehole | Borehole | Date and time      | Date and time      | <b>ී</b> | ď        | <b>-</b> 0- | ۳       | മ്    | ā       | മ്           | ď            | <u>•</u> | lest phases measured |
|----------|----------|--------------------|--------------------|----------|----------|-------------|---------|-------|---------|--------------|--------------|----------|----------------------|
| dnoes    | seclow   | for test, start    | for test, stop     |          |          |             |         |       |         |              |              |          | Analysed test phases |
| (E)      | (E)      | YYYYMMDD<br>hh:mm  | YYYYMMDD<br>hh:mm  | (m**3/s) | (m**3/s) | (s)         | (s)     | (kPa) | (kPa)   | (kPa)        | (kPa)        | <b>်</b> | marked bold          |
| 508.00   | 513.00   | 060715<br>18:09:00 | 060715<br>17:47:00 | 2.67E-07 | 3.12E-07 | 1,200       | 7,200   | 4,747 | 4,751   | 4,950        | 4,746        | 14.2     | CHi / CHir           |
| 513.00   | 518.00   | 060808<br>15:30:00 | 060808<br>17:15:00 | 1.93E-05 | 1.98E-05 | 1,200       | 1,200   | 4,797 | 4,795   | 4,996        | 4,794        | 14.3     | CHi / CHir           |
| 518.00   | 523.00   | 060808<br>17:47:00 | 060808<br>19:37:00 | 5.12E-05 | 5.33E-05 | 1,200       | 1,200   | 4,844 | 4,842   | 5,042        | 4,844        | 4.<br>4. | CHi / CHir           |
| 523.00   | 528.00   | 060809<br>08:08:00 | 060809<br>09:41:00 | 1.43E-07 | 1.43E-07 | 1,200       | 1,200   | 4,884 | 4,885   | 5,086        | 4,884        | 14.5     | CHi / CHir           |
| 528.00   | 533.00   | 060809<br>10:08:00 | 060809<br>11:34:00 | 7.83E-07 | 8.33E-07 | 1,200       | 1,200   | 4,931 | 4,932   | 5,132        | 4,931        | 14.6     | CHi / Chir           |
| 533.00   | 538.00   | 060809<br>12:48:00 | 060809<br>14:16:00 | 1.67E-06 | 1.75E-06 | 1,200       | 1,200   | 4,983 | 4,981   | 5,180        | 4,981        | 14.6     | CHi / CHir           |
| 538.00   | 543.00   | 060809<br>14:40:00 | 060809<br>16:19:00 | 3.33E-08 | 4.50E-08 | 1,200       | 1,200   | 5,028 | 5,032   | 5,274        | 5,032        | 14.7     | CHi / CHir           |
| 563.00   | 568.00   | 060809<br>16:59:00 | 060809<br>17:53:00 | >N#      | >N#      | N#          | N#      | 5,262 | >N<br># | > <u>N</u> # | >N#          | 15.0     | NN#                  |
| 568.00   | 573.00   | 060809<br>18:17:00 | 060809<br>19:11:00 | >N#      | >N#      | >N<br>#     | >N<br># | 5,308 | >N#     | >N#          | > <u>N</u> # | 15.1     | N#                   |
| 573.00   | 578.00   | 060810<br>08:06:00 | 060810<br>09:34:00 | 6.85E-05 | 7.02E-05 | 1,200       | 1,200   | 5,349 | 5,350   | 5,550        | 5,351        | 15.2     | CHi / CHir           |
| 578.00   | 583.00   | 060810<br>10:02:00 | 060810<br>11:28:00 | 9.33E-05 | 9.72E-05 | 1,200       | 1,200   | 5,398 | 5,397   | 5,598        | 5,399        | 15.1     | CHi / CHir           |
| 583.00   | 588.00   | 060810<br>12:20:00 | 060810<br>14:15:00 | >N#      | >N#      | 10          | 3,888   | 5,447 | 5,452   | 5,694        | 5,519        | 15.4     | Pi                   |
| 588.00   | 593.00   | 060810<br>14:41:00 | 060810<br>16:05:00 | >N#      | >N#      | N#          | >N<br># | 5,262 | >N<br># | > <u>N</u> # | ><br>N#      | 15.4     | N#                   |
| 593.00   | 598.00   | 060810<br>16:33:00 | 060810<br>18:19:00 | >N#      | >N#      | 10          | 3,679   | 5,540 | 5,546   | 5,784        | 5,719        | 15.5     | <b>Pi</b>            |
| 598.00   | 603.00   | 060811<br>08:01:00 | 060811<br>09:26:00 | 4.48E-06 | 4.80E-06 | 1,200       | 1,200   | 5,582 | 5,582   | 5,782        | 5,586        | 15.6     | CHI / CHİr           |

| Borehole | Borehole<br>seclow |                    | Date and time for test, stop | σ̈       | <b>Q</b>                                              | <b>*</b> | ##    | °d                | ā     | ρ <sub>ο</sub>    | ď     | Te <sub>w</sub>   | Test phases measured<br>Analysed test phases |
|----------|--------------------|--------------------|------------------------------|----------|-------------------------------------------------------|----------|-------|-------------------|-------|-------------------|-------|-------------------|----------------------------------------------|
| (m)      | (m)                | YYYYMMDD<br>hh:mm  | YYYYMMDD<br>hh:mm            | (m**3/s) | (m**3/s)                                              | (s)      | (s)   | (kPa)             | (kPa) | (кРа) (кРа) (кРа) | (kPa) | (၁ <sub>၀</sub> ) | marked bold                                  |
| 663.00   | 00'899             | 060811<br>10:29:00 | 060811<br>13:01:00           | 1.67E-08 | 1.67E-08 2.50E-08 1,200 1,200 6,188 6,196 6,428 6,261 | 1,200    | 1,200 | 6,188             | 6,196 | 6,428             | 6,261 | 16.5              | CHi / CHir                                   |
| 00'899   | 673.00             | 060811<br>13:30:00 | 060811<br>15:14:00           | >N<br>#  | >N<br>#                                               | 10       | 3,582 | 6,237 6,245 6,458 | 6,245 | 6,458             | 6,366 | 16.6              | <b>Pi</b>                                    |
| 673.00   | 678.00             | 060811<br>15:38:00 | 060811<br>17:22:00           | >N<br>#  | >N<br>#                                               | 10       | 3,693 | 6,283 62,88       | 62,88 | 6,534             | 6,296 | 16.7              | id                                           |
| 678.00   | 683.00             | 060811<br>17:45:00 | 060811<br>20:53:00           | >N<br>#  | >N<br>#                                               | 10       | 9,105 | 6,329 6,332       | 6,332 | 6,578             | 6,338 | 16.8              | <u>i</u> d                                   |

#NV: Not analysed.

CHi: Constant Head injection phase.

CHir: Recovery phase following the constant head injection phase. Pi: Pulse injection phase.

Pulse injection phase.

Table 7-2. Results from radial flow analysis of constant head tests in KLX11A (for nomenclature see Appendix 4).

| Interval | Interval position | Stationary flow | flow     | Transien    | Transient analysis |                       |                 |                  |                 |         |         |         |         |               |       |                 |                   |                  |
|----------|-------------------|-----------------|----------|-------------|--------------------|-----------------------|-----------------|------------------|-----------------|---------|---------|---------|---------|---------------|-------|-----------------|-------------------|------------------|
|          |                   | parameters      | v        | Flow regime | ime                | Formation             | tion parameters |                  |                 |         |         |         |         |               |       |                 | Static conditions | litions          |
| d        | wol               | S/O             | M        | Perturb.    | Recovery           | <b>1</b> <sup>4</sup> | T <sub>r2</sub> | T <sub>s</sub> 1 | T <sub>s2</sub> | Ļ       | T       | Ттмах   | ပ       | <b>~</b>      | dt,   | dt <sub>2</sub> | *d                | h <sub>wif</sub> |
| m btoc   | m btoc            | m²/s            | m²/s     | Phase       | Phase              | m²/s                  | m²/s            | m²/s             | m²/s            | m²/s    | m²/s    | m²/s    | m³/Pa   | ı             | min   | min             | кРа               | m.a.s.l.         |
| 103.00   | 203.00            | 6.51E-06        | 8.47E-06 | 2           | WBS2               | 1.6E-05               | >N#             | 2.5E-05          | >N#             | 1.6E-05 | 8.0E-06 | 3.0E-05 | 3.1E-09 | 6.7           | 0.73  | 21.10           | 1,838.6           | 11.45            |
| 203.00   | 303.00            | 7.48E-06        | 9.74E-06 | 2           | WBS2               | 2.4E-05               | >N#             | 3.2E-05          | >N#             | 3.2E-05 | 9.0E-06 | 5.0E-05 | 2.3E-09 | 19.1          | 0.40  | 5.27            | 2,776.6           | 10.70            |
| 303.00   | 403.00            | 2.85E-06        | 3.71E-06 | 2           | WBS22              | 6.9E-06               | >N#             | 1.1E-05          | 6.0E-06         | 6.0E-06 | 3.0E-06 | 9.0E-06 | 4.4E-10 | 14.2          | 1.78  | 9.33            | 3,705.2           | 10.58            |
| 403.00   | 503.00            | 5.61E-08        | 7.31E-08 | 2           | WBS2               | 2.1E-07               | >N#             | 2.7E-07          | >N#             | 2.7E-07 | 8.0E-08 | 6.0E-07 | 2.4E-10 | 20.2          | >N#   | >N#             | 4,649.1           | 12.21            |
| 503.00   | 603.00            | 8.72E-06        | 1.14E-05 | 2           | WBS2               | 1.9E-05               | >N#             | 2.4E-05          | >N#             | 2.4E-05 | 8.0E-06 | 5.0E-05 | 3.3E-09 | 7.4           | 89.0  | 22.28           | 5,579.0           | 12.66            |
| 603.00   | 703.00            | 1.60E-09        | 2.08E-09 | 2           | WBS2               | 5.3E-10               | >N#             | 2.3E-10          | >N#             | 2.3E-10 | 9.0E-11 | 6.0E-10 | 1.9E-10 | 9.1           | >N#   | >N#             | 6,513.4           | 14.05            |
| 703.00   | 803.00            | 1.61E-09        | 2.10E-09 | 2           | WBS2               | 2.9E-10               | >N#             | 2.0E-10          | >N#             | 2.0E-10 | 9.0E-11 | 4.0E-10 | 2.4E-10 | -2.7          | >N#   | >N#             | 7,429.3           | 14.06            |
| 803.00   | 903.00            | 3.62E-09        | 2.78E-09 | 2           | WBS2               | 9.8E-10               | >N#             | 2.9E-09          | >N#             | 2.9E-09 | 8.0E-10 | 4.0E-09 | 3.1E-10 | 1.7           | >N#   | >N#             | 8,333.1           | 13.37            |
| 876.00   | 976.00            | >N#             | >N#      | >N#         | 2                  | >N#                   | >N#             | 4.0E-11          | >N#             | 4.0E-11 | 1.0E-11 | 8.0E-11 | 2.6E-10 | -1.5          | >N#   | >N#             | >N#               | >N#              |
| 103.00   | 123.00            | 1.14E-06        | 1.20E-06 | 2           | WBS2               | 2.1E-06               | >N#             | 4.9E-06          | >N#             | 4.9E-06 | 3.0E-06 | 8.0E-06 | 6.3E-10 | 19.7          | 0.61  | 6.73            | 1,092.9           | 10.46            |
| 123.00   | 143.00            | 3.19E-06        | 3.34E-06 | 22          | WBS22              | 9.4E-06               | 1.5E-05         | 8.1E-06          | 2.8E-05         | 8.1E-06 | 7.0E-06 | 1.0E-05 | 1.2E-09 | 7.9           | 0.47  | 1.60            | 1,275.5           | 9.97             |
| 143.00   | 163.00            | 3.16E-07        | 3.31E-07 | 2           | WBS22              | 3.3E-07               | >N#             | 6.6E-07          | 1.4E-07         | 1.4E-07 | 8.0E-08 | 4.0E-07 | 9.5E-11 | <del>1.</del> | 6.49  | 27.49           | 1,443.8           | 8.03             |
| 163.00   | 183.00            | 2.03E-06        | 2.13E-06 | 7           | WBS2               | 6.5E-06               | >N#             | 7.2E-06          | >N#             | 6.5E-06 | 4.0E-06 | 1.0E-05 | 6.7E-10 | 10.9          | 0.49  | 16.72           | 1,650.5           | 10.02            |
| 183.00   | 203.00            | >N#             | >N#      | >N#         | N#                 | >N#                   | >N#             | >N#              | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#           | >N#   | >N#             | NX#               | >N#              |
| 203.00   | 223.00            | >N#             | >N#      | >N#         | N#                 | >N#                   | >N#             | >N#              | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#           | >N#   | >N#             | NX#               | >N#              |
| 223.00   | 243.00            | >N#             | >N#      | >N#         | 2                  | >N#                   | >N#             | 3.3E-10          | >N#             | 3.3E-10 | 1.0E-10 | 6.0E-10 | 5.8E-11 | 0.1           | 1.13  | 22.45           | NX#               | >N#              |
| 243.00   | 263.00            | 3.07E-08        | 3.21E-08 | 2           | WBS22              | 6.1E-08               | >N#             | 3.7E-08          | 1.4E-07         | 3.7E-08 | 8.0E-09 | 8.0E-08 | 5.9E-11 | 4.8           | >N#   | >N#             | 2,401.2           | 10.42            |
| 263.00   | 283.00            | 8.05E-06        | 8.42E-06 | 7           | WBS2               | 2.4E-05               | >N#             | 3.6E-05          | >N#             | 3.6E-05 | 9.0E-06 | 6.0E-05 | 3.2E-09 | 19.0          | 0.55  | 5.08            | 2,589.2           | 10.58            |
| 283.00   | 303.00            | >N#             | >N#      | >N#         | 2                  | >N#                   | >N#             | 2.2E-11          | >N#             | 2.2E-11 | 9.0E-12 | 6.0E-11 | 5.6E-11 | 7.0-          | >N#   | >N#             | NX#               | >N#              |
| 303.00   | 323.00            | 2.85E-06        | 2.98E-06 | 2           | WBS22              | 6.4E-06               | >N#             | 1.1E-05          | 5.8E-06         | 5.8E-06 | 3.0E-06 | 9.0E-06 | 4.8E-10 | 1.4           | 0.31  | 7.93            | 2,958.2           | 10.24            |
| 323.00   | 343.00            | 1.50E-10        | 1.57E-10 | 7           | WBS2               | 9.2E-11               | >N#             | 5.5E-11          | >N#             | 5.5E-11 | 2.0E-11 | 9.0E-11 | 1.2E-11 | 1.0           | >N#   | >N#             | 3,137.1           | 9.51             |
| 343.00   | 363.00            | 7.55E-09        | 7.89E-09 | 22          | WBS22              | 3.9E-09               | 1.7E-09         | 4.3E-09          | 2.6E-09         | 4.3E-09 | 1.0E-09 | 8.0E-09 | 2.5E-10 | -3.4          | >N#   | >N#             | >N#               | >N#              |
| 363.00   | 383.00            | >N#             | >N#      | >N#         | 2                  | >N#                   | >N#             | 1.1E-11          | >N#             | 1.1E-11 | 9.0E-12 | 5.0E-11 | 3.6E-11 | 0.0           | 15.64 | 60.85           | >N#               | >N#              |
| 383.00   | 403.00            | 3.42E-09        | 3.58E-09 | 7           | WBS2               | 2.8E-09               | >N#             | 3.3E-09          | >N#             | 3.3E-09 | 9.0E-10 | 5.0E-09 | 6.1E-11 | 2.5           | >N#   | >N#             | 3,699.9           | 10.04            |
| 403.00   | 423.00            | >N#             | >N#      | ^N#         | 2                  | >N#                   | >N#             | 2.9E-11          | >N#             | 2.9E-11 | 9.0E-12 | 8.0E-11 | 6.8E-11 | 0.1-0         | >N#   | >N#             | >N#               | >N#              |
| 423.00   | 443.00            | 4.86E-08        | 5.08E-08 | 7           | WBS2               | 4.2E-08               | >N#             | 2.0E-07          | >N#             | 2.0E-07 | 8.0E-08 | 6.0E-07 | 4.6E-11 | 21.1          | 1.40  | 90.9            | 4,086.5           | 11.59            |
| 443.00   | 463.00            | 2.01E-08        | 2.10E-08 | 2           | WBS2               | 3.1E-08               | >N#             | 1.2E-07          | >N#             | 3.1E-08 | 9.0E-09 | 6.0E-08 | 5.0E-11 | 2.0           | 0.38  | 17.02           | 4,269.7           | 11.35            |
| 463.00   | 483.00            | >N#             | >N#      | >N#         | 2                  | >N#                   | >N#             | 5.7E-11          | >N#             | 5.7E-11 | 2.0E-11 | 9.0E-11 | 6.3E-11 | 6.0           | 9.04  | 32.95           | >N#               | >N#              |
| 483.00   | 503.00            | 4.58E-09        | 4.79E-09 | 2           | WBS22              | 4.3E-09               | >N#             | 2.5E-09          | 4.1E-08         | 2.5E-09 | 9.0E-10 | 5.0E-09 | 6.0E-11 | 0.2           | >N#   | >N#             | 4,645.5           | 11.84            |

| Interval position | osition | Stationary flow | flow     | Transien    | Transient analysis |           |                 |                  |                 |         |         |         |          |      |      |                 |                   |                  |
|-------------------|---------|-----------------|----------|-------------|--------------------|-----------|-----------------|------------------|-----------------|---------|---------|---------|----------|------|------|-----------------|-------------------|------------------|
|                   |         | parameters      | s        | Flow regime | ime                | Formation | on parameters   |                  |                 |         |         |         |          |      |      |                 | Static conditions | ditions          |
| dn                | wol     | g/s             | ΜL       | Perturb.    | Recovery           | <u>_</u>  | T <sub>22</sub> | T <sub>s</sub> 1 | T <sub>s2</sub> | Ļ       | T       | Ттмах   | ပ        | w    | dt,  | dt <sub>2</sub> | <u>*</u> а        | h <sub>wif</sub> |
| m btoc            | m btoc  | m²/s            | m²/s     | Phase       | Phase              | m²/s      | m²/s            | m²/s             | m²/s            | m²/s    | m²/s    | m²/s    | m³/Pa    | ı    | min  | min             | кРа               | m.a.s.l.         |
| 503.00            | 523.00  | 2.86E-06        | 2.99E-06 | 2           | WBS2               | 6.0E-06   | NA#             | 4.1E-06          | AN#             | 4.1E-06 | 1.0E-06 | 7.0E-06 | 1.2E-09  | 1.0  | 0.92 | 14.08           | 4,830.4           | 11.80            |
| 523.00            | 543.00  | 6.41E-08        | 6.71E-08 | 2           | WBS2               | 9.6E-08   | >N#             | 2.2E-07          | >N#             | 2.2E-07 | 8.0E-08 | 6.0E-07 | 8.5E-11  | 15.0 | 2.05 | 14.05           | 5,023.2           | 12.57            |
| 543.00            | 563.00  | >N#             | >N<br>#  | >N#         | 22                 | >N#       | >N#             | 1.2E-12          | 3.0E-13         | 1.2E-12 | 7.0E-13 | 4.0E-12 | 1.1E-11  | 4.0- | >N#  | ><br> <br>      | >N#               | >N#              |
| 563.00            | 583.00  | 7.27E-06        | 7.60E-06 | 2           | WBS2               | 2.0E-05   | >N#             | 2.7E-05          | >N#             | 2.7E-05 | 9.0E-06 | 5.0E-05 | 1.6E-09  | 13.5 | 0.45 | 17.96           | 5,392.3           | 12.47            |
| 583.00            | 603.00  | 2.11E-07        | 2.21E-07 | 22          | WBS22              | 5.4E-07   | 1.9E-07         | 7.9E-07          | 2.5E-07         | 7.9E-07 | 5.0E-07 | 1.0E-06 | 1.6E-10  | 14.7 | >N#  | >N#             | 5,581.5           | 12.91            |
| 603.00            | 623.00  | >N#             | >N<br>#  | >N#         | 2                  | >N#       | >N#             | 4.4E-11          | >N#             | 4.4E-11 | 1.0E-11 | 9.0E-11 | 5.5E-11  | 7.0- | 2.90 | 35.22           | >N#               | >N#              |
| 623.00            | 643.00  | >N#             | >N<br>#  | >N#         | 2                  | >N#       | >N#             | 1.3E-11          | 1.8E-12         | 1.3E-11 | 9.0E-12 | 4.0E-11 | 6.0E-11  | -1.5 | >N#  | ><br> <br>      | >N#               | >N#              |
| 643.00            | 663.00  | >N#             | >N#      | >N#         | 2                  | >N#       | >N#             | 2.1E-12          | >N#             | 2.1E-12 | 9.0E-13 | 6.0E-12 | 3.1E-11  | -1.0 | >N#  | ><br>\<br>#     | >N#               | >N#              |
| 663.00            | 683.00  | 6.39E-10        | 6.68E-10 | 22          | WBS2               | 6.5E-10   | 2.0E-10         | 6.3E-11          | >N#             | 2.0E-10 | 9.0E-11 | 7.0E-10 | 4.6E-11  | -1.6 | 2.68 | 15.04           | 6,317.5           | 12.80            |
| 683.00            | 703.00  | >N#             | >N#      | >N#         | 22                 | >N#       | >N#             | 2.6E-10          | 1.5E-10         | 1.5E-10 | 6.0E-11 | 3.0E-10 | 5.3E-11  | -0.1 | >N#  | ><br>\<br>#     | >N#               | >N#              |
| 703.00            | 723.00  | 2.34E-09        | 2.44E-09 | 2           | WBS2               | 1.85E-10  | >N#             | 2.6E-10          | >N#             | 2.6E-10 | 8.0E-11 | 6.0E-10 | 1.4E-10  | -3.1 | >N#  | >N#             | >N#               | >N#              |
| 723.00            | 743.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | >N#              | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 743.00            | 763.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | \N#              | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | ><br>\<br>#     | >N#               | >N#              |
| 763.00            | 783.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | \N#              | NA*             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 783.00            | 803.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | \N#              | NA*             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 803.00            | 823.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | \N#              | NA*             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 823.00            | 843.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | \N#              | NA*             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 843.00            | 863.00  | 2.73E-09        | 2.85E-09 | 2           | WBS2               | 8.5E-10   | >N#             | 8.2E-10          | NA*             | 8.2E-10 | 5.0E-10 | 1.0E-09 | 8.8E-11  | -2.3 | >N#  | >N#             | >N#               | >N#              |
| 863.00            | 883.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | \N#              | NA*             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 303.00            | 308.00  | 5.16E-07        | 4.26E-07 | 2           | WBS2               | 6.00E-07  | >N#             | 2.4E-06          | >N#             | 6.0E-07 | 2.0E-07 | 9.0E-07 | 3.62E-11 | 0.3  | 0.50 | 17.83           | 2,822.7           | 10.66            |
| 308.00            | 313.00  | 2.62E-06        | 2.16E-06 | 2           | WBS22              | 6.96E-06  | >N#             | 1.3E-05          | 6.46E-06        | 6.5E-06 | 2.0E-06 | 9.0E-06 | 3.46E-10 | 20.1 | 3.33 | 12.15           | 2,867.5           | 10.5             |
| 313.00            | 318.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 318.00            | 323.00  | >N#             | \N#      | >N#         | >N#                | N#        | >N#             | N#               | NA#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | ^N#      | N#   | >N#  | >N#             | >N#               | >N#              |
| 343.00            | 348.00  | 7.79E-09        | 6.43E-09 | 22          | WBS22              | 6.32E-09  | 2.2E-09         | 3.6E-09          | 2.08E-09        | 3.6E-09 | 1.0E-09 | 8.0E-09 | 1.29E-10 | -3.6 | >N#  | >N#             | >N#               | >N#              |
| 348.00            | 353.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 353.00            | 358.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | NN#               | >N#              |
| 358.00            | 363.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | ∧N#              | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | >N#               | >N#              |
| 383.00            | 388.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | NX#               | >N#              |
| 388.00            | 393.00  | >N#             | >N#      | >N#         | >N#                | >N#       | >N#             | N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | >N#  | >N#  | >N#             | NN#               | >N#              |
| 393.00            | 398.00  | >N#             | \N#      | >N#         | >N#                | N#        | >N#             | N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#      | N#   | >N#  | >N#             | >N#               | >N#              |

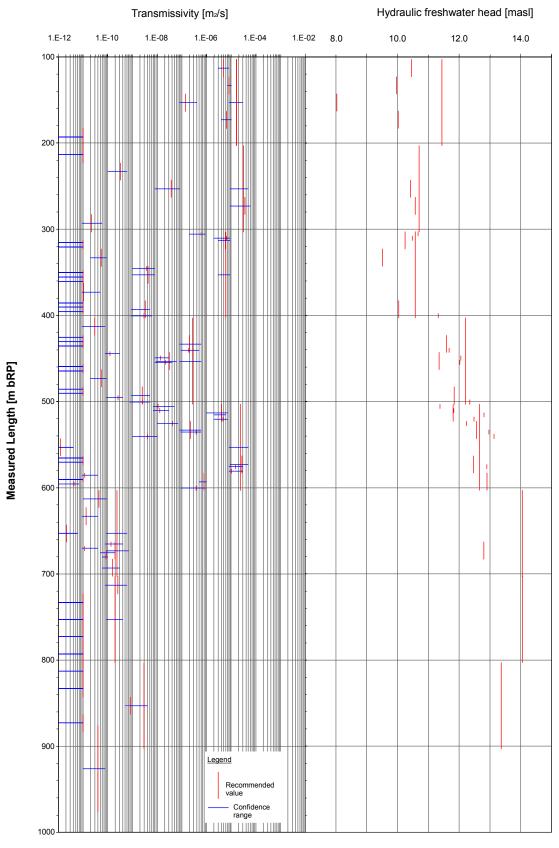
| Interval | Interval position | Stationary flow | flow     | Transien    | Transient analysis |           |                |                   |                 |         |         |         |         |      |         |                 |                                      |          |
|----------|-------------------|-----------------|----------|-------------|--------------------|-----------|----------------|-------------------|-----------------|---------|---------|---------|---------|------|---------|-----------------|--------------------------------------|----------|
|          |                   | parameters      | (A)      | Flow regime | ime                | Formation | on parameters  |                   |                 |         |         |         |         |      |         |                 | Static conditions                    | ditions  |
| d        | NOI               | Q/s             | M        | Perturb.    | Recovery           | Tn        | T <sub>2</sub> | T <sub>s</sub> 1  | T <sub>s2</sub> | Ļ       | T       | Ттмах   | ပ       | ~    | dt,     | dt <sub>2</sub> | *d                                   | hwif     |
| m btoc   | m btoc            | m²/s            | m²/s     | Phase       | Phase              | m²/s      | m²/s           | m <sup>2</sup> /s | m²/s            | m²/s    | m²/s    | m²/s    | m³/Pa   | ı    | min     | ш               | kPa                                  | m.a.s.l. |
| 398.00   | 403.00            | 3.49E-09        | 2.88E-09 | 2           | WBS22              | 3.3E-09   | >N#            | 3.0E-09           | 2.0E-08         | 3.0E-09 | 9.0E-10 | 6.0E-09 | 2.0E-11 | 3.1  | NN#     | \N#             | 3,712.4                              | 11.32    |
| 423.00   | 428.00            | >N#             | >N#      | >N<br>#     | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | >N<br>#                              | >N#      |
| 428.00   | 433.00            | >N#             | >N#      | >N<br>#     | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | >N<br>#                              | >N#      |
| 433.00   | 438.00            | >N#             | >N#      | >N#         | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | >N#                                  | >N#      |
| 438.00   | 443.00            | 5.69E-08        | 4.70E-08 | 2           | WBS2               | 1.4E-07   | >N#            | 1.9E-07           | >N#             | 1.9E-07 | 9.0E-08 | 5.0E-07 | 2.4E-11 | 15.7 | 0.88    | 7.93            | 4,087.3                              | 11.68    |
| 442.00   | 447.00            | >N#             | >N#      | >N#         | 22                 | >N#       | >N#            | 1.2E-10           | 3.2E-10         | 1.2E-10 | 8.0E-11 | 3.0E-10 | 3.8E-11 | 0.2  | 0.95    | 5.33            | >N#                                  | >N#      |
| 447.00   | 452.00            | 8.78E-09        | 1.06E-08 | 2           | WBS2               | 1.4E-08   | >N#            | 6.3E-08           | >N#             | 1.4E-08 | 8.0E-09 | 3.0E-08 | 1.3E-11 | 3.5  | 1.95    | 13.05           | 4,174.5                              | 12.05    |
| 452.00   | 457.00            | 1.34E-08        | 1.10E-08 | 2           | WBS2               | 2.2E-08   | >N#            | 8.2E-08           | >N#             | 2.2E-08 | 8.0E-09 | 4.0E-08 | 1.1E-11 | 5.4  | 2.28    | 15.33           | 4,220.6                              | 12.02    |
| 457.00   | 462.00            | >N#             | >N#      | >N#         | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | N#                                   | >N#      |
| 462.00   | 467.00            | >N#             | >N#      | >N#         | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | N#                                   | >N#      |
| 483.00   | 488.00            | >N#             | >N#      | >N<br>#     | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | >N#                                  | >N#      |
| 488.00   | 493.00            | >N#             | >N#      | >N#         | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | N#                                   | >N#      |
| 493.00   | 498.00            | >N#             | >N#      | >N<br>#     | 2                  | >N#       | >N#            | 2.6E-10           | >N#             | 2.6E-10 | 9.0E-11 | 4.0E-10 | 1.2E-11 | 1.0  | 0.47    | 23.02           | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | >N#      |
| 498.00   | 503.00            | 3.90E-10        | 2.80E-09 | 2           | WBS22              | 3.8E-09   | >N#            | 2.5E-09           | 1.8E-08         | 2.5E-09 | 8.0E-10 | 5.0E-09 | 2.2E-11 | 1.6  | >N#     | >N#             | 4,650.5                              | 12.35    |
| 503.00   | 508.00            | 1.53E-08        | 1.26E-08 | 2           | WBS2               | 1.4E-08   | >N#            | 1.1E-08           | >N#             | 1.1E-08 | 7.0E-09 | 5.0E-08 | 7.7E-10 | 1.2  | >N#     | >N#             | 4,687.3                              | 11.38    |
| 508.00   | 513.00            | 1.31E-08        | 1.09E-08 | 7           | WBS22              | 7.1E-09   | >N#            | 1.3E-08           | 6.3E-09         | 1.3E-08 | 7.0E-09 | 3.0E-08 | 1.8E-11 | -0.3 | 0.70    | 2.08            | 4,738.0                              | 11.83    |
| 513.00   | 518.00            | 9.44E-07        | 7.79E-07 | 2           | WBS2               | 1.5E-06   | >N#            | 4.0E-06           | >N#             | 4.0E-06 | 2.0E-06 | 6.0E-06 | 4.9E-10 | 19.9 | 1.15    | 8.73            | 4,794.0                              | 12.81    |
| 518.00   | 523.00            | 2.51E-06        | 2.07E-06 | 2           | WBS2               | 5.4E-06   | >N#            | 4.7E-06           | >N#             | 4.7E-06 | 2.0E-06 | 7.0E-06 | 1.2E-09 | 3.3  | 1.04    | 9.11            | 4,837.1                              | 12.49    |
| 523.00   | 528.00            | 7.00E-09        | 5.77E-09 | 2           | WBS2               | 9.1E-09   | >N#            | 4.2E-08           | >N#             | 4.2E-08 | 1.0E-08 | 7.0E-08 | 4.6E-11 | 32.6 | >N#     | >N#             | 4,881.0                              | 12.24    |
| 528.00   | 533.00            | 3.84E-08        | 3.17E-08 | 2           | WBS22              | 6.7E-08   | >N#            | 6.8E-08           | 6.8E-07         | 6.7E-08 | 3.0E-08 | 9.0E-08 | 2.3E-11 | 2.0  | 1.09    | 11.33           | 4,932.1                              | 12.73    |
| 533.00   | 538.00            | 8.22E-08        | 6.78E-08 | 7           | WBS2               | 1.7E-07   | >N#            | 3.7E-07           | >N#             | 3.7E-07 | 9.0E-08 | 6.0E-07 | 3.0E-11 | 21.3 | >N#     | >N#             | 4,980.7                              | 12.96    |
| 538.00   | 543.00            | 1.35E-09        | 1.12E-09 | 7           | WBS2               | 1.1E-09   | >N#            | 4.1E-09           | >N#             | 4.1E-09 | 1.0E-09 | 1.0E-08 | 1.9E-11 | 10.0 | >N#     | >N#             | 5,028.7                              | 13.13    |
| 563.00   | 568.00            | >N#             | >N#      | >N<br>#     | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | N#                                   | >N#      |
| 568.00   | 573.00            | >N#             | >N#      | >N#         | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | N#                                   | >N#      |
| 573.00   | 578.00            | 3.36E-06        | 2.77E-06 | 2           | WBS2               | 9.7E-06   | >N#            | 1.5E-05           | >N#             | 1.5E-05 | 8.0E-06 | 3.0E-05 | 7.7E-10 | 19.7 | 0.53    | 8.47            | 5,350.3                              | 12.90    |
| 578.00   | 583.00            | 4.56E-06        | 3.76E-06 | 7           | WBS2               | 1.0E-05   | >N#            | 2.1E-05           | >N#             | 1.0E-05 | 8.0E-06 | 3.0E-05 | 1.4E-09 | 9.6  | 0.88    | 15.88           | 5,397.7                              | 13.02    |
| 583.00   | 588.00            | >N#             | >N#      | >N<br>#     | 2                  | >N#       | >N#            | 1.2E-11           | >N#             | 1.2E-11 | 9.0E-12 | 4.0E-11 | 1.2E-11 | 7.0- | >N#     | >N#             | >N#                                  | >N#      |
| 588.00   | 593.00            | >N#             | >N#      | >N#         | >N#                | >N#       | >N#            | >N#               | >N#             | 1.0E-11 | 1.0E-13 | 1.0E-11 | >N#     | >N#  | >N#     | >N#             | N#                                   | >N#      |
| 593.00   | 598.00            | >N#             | >N#      | >N#         | 2                  | >N#       | >N#            | 4.2E-12           | >N#             | 4.2E-12 | 1.0E-12 | 7.0E-12 | 1.9E-11 | 0.0  | >N<br># | >N#             | >N#                                  | >N#      |
| 598.00   | 603.00            | 2.20E-07        | 1.82E-07 | 22          | WBS22              | 3.8E-07   | 1.9E-07        | 8.7E-07           | 2.9E-07         | 3.8E-07 | 9.0E-08 | 9.0E-07 | 1.2E-10 | 3.9  | 0.83    | 4.65            | 5,583.6                              | 13.12    |

| Interval | position          | nterval position Stationary flow |                                     | Transient analysis | t analysis                       |                      |                        |                  |                 |                                 |         |                                  |                      |          |      |                 |                   |                  |
|----------|-------------------|----------------------------------|-------------------------------------|--------------------|----------------------------------|----------------------|------------------------|------------------|-----------------|---------------------------------|---------|----------------------------------|----------------------|----------|------|-----------------|-------------------|------------------|
|          |                   | parameters                       | <sub>o</sub>                        | Flow regime        |                                  | Formation parameters | parameters             |                  |                 |                                 |         |                                  |                      |          |      |                 | Static conditions | nditions         |
| dn       | low Q/s           | Q/s                              | Ψ                                   | Perturb.           | Perturb. Recovery T <sub>n</sub> | T <sub>H</sub>       | <b>T</b> <sup>22</sup> | T <sub>s</sub> 1 | T <sub>s2</sub> | Ļ                               | Ттмін   | Ттмах                            | ပ                    | <b>~</b> | dt,  | dt <sub>2</sub> | *a                | h <sub>wif</sub> |
| m btoc   | m btoc            | m²/s                             | m btoc m btoc m <sup>2</sup> /s Pha | Phase              | Phase Phase m <sup>2</sup> /s    |                      | m²/s                   | m²/s             | m²/s            | m²/s                            | m²/s    | m²/s                             | m³/Pa                | ı        | min  | min             | кРа               | m.a.s.l.         |
| 663.00   | 00.899            | 7.05E-10                         | 5.82E-10                            | 22                 | WBS22 1.0E-10                    | 1.0E-10              | 3.9E-11                | 1.3E-10          | 5.4E-11         | 3.9E-11 1.3E-10 5.4E-11 1.3E-10 | 8.0E-11 | 8.0E-11 4.0E-10 3.9E-11 -2.8 #NV | 3.9E-11              | -2.8     | >N#  | >N#             | >N#               | /N#              |
| 00.899   | 668.00 673.00 #NV | >N#                              | >N#                                 | >N#                | 2                                | >N#                  | >N#                    | 1.2E-11          | 1.2E-11 #NV     | 1.2E-11                         | 9.0E-12 | 9.0E-12 4.0E-11 1.7E-11 0.3      | 1.7E-11              | 0.3      | 6.71 | 42.07           | >N#               | >N#              |
| 673.00   | 678.00            | >N#                              | >N#                                 | >N#                | 2                                | ^N#                  | >N#                    | 9.0E-11          | 9.0E-11 1.1E-10 | 9.0E-11                         | 5.0E-11 |                                  | 2.0E-10 1.2E-11      | 0.1      | 2.36 | 8.90            | >N#               | >N#              |
| 678.00   | 683.00            | \N#                              | >N#                                 | >N#                | 7                                | >N#                  | >N#                    | 8.4E-11          | >N#             | 8.4E-11                         | 6.0E-11 | 1.0E-10                          | 1.0E-10 1.5E-11 -0.3 | -0.3     | 1.95 | 16.97           | ∧N#               | >N#              |

# Notes

- T1 and T2 refer to the transmissivity(s) derived from the analysis while using the recommended flow model. In case a homogeneous flow model was recommended only one T value is reported, in case a two zones composite model was recommended both T1 and T2 are given. T<sub>T</sub> denotes the recommended transmissivity.
- The parameter p\* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHIR phase using straight line or N
- The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used. type-curve extrapolation. က

Table 7-3. Results from generalized radial flow analysis of constant head tests in KLX11A (for nomenclature see Appendix 4).


| Interval | position | Stationary<br>parameter |                 |             | sient a<br>regim | ınalysis<br>e  |                | Formatio       | n parame       | ters           |          |             |
|----------|----------|-------------------------|-----------------|-------------|------------------|----------------|----------------|----------------|----------------|----------------|----------|-------------|
| up       | low      | Q/s                     | TM              | Pertu       | rb.              | Recovery       | Phase          | T <sub>f</sub> | T <sub>s</sub> | T <sub>T</sub> | С        | ξ           |
| m btoc   | m btoc   | m²/s                    | m²/s            | Phase<br>n₁ | e<br>n₂          | n <sub>1</sub> | n <sub>2</sub> | m²/s           | m²/s           | m²/s           | m³/Pa    | _           |
| 103.00   | 203.00   | 6.51E-06                | 8.47E-06        | 2.1         | #NV              | WBS2.1         | #NV            | 6.2E-06        | 7.4E-06        | 6.2E-06        | 3.2E-09  | 2.3         |
| 203.00   | 303.00   | 7.48E-06                | 9.74E-06        | 2.1         | #NV              | WBS 2.1        | #NV            | 8.7E-06        | 8.1E-06        | 8.1E-06        | 2.0E-09  | 5.8         |
| 303.00   | 403.00   | 2.85E-06                | 3.71E-06        | 2.2         | #NV              | #NV            | #NV            | 1.5E-06        | #NV            | 1.5E-06        | 4.4E-10  | 0.0         |
| 403.00   | 503.00   | 5.61E-08                | 7.31E-08        | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 503.00   | 603.00   | 8.72E-06                | 1.14E-05        | 2.1         | #NV              | WBS 2.1        | #NV            | 7.7E-06        | 9.0E-06        | 9.0E-06        | 3.6E-09  | 2.2         |
| 603.00   | 703.00   | 1.60E-09                | 2.08E-09        | 1.58        | #NV              | #NV            | #NV            | 1.6E-09        |                | 1.6E-09        | 1.9E-10  | -1.7        |
| 703.00   | 803.00   | 1.61E-09                | 2.10E-09        | 1.5         | #NV              | #NV            | #NV            | 6.0E-10        |                | 6.0E-10        |          | -3.2        |
| 803.00   | 903.00   | 3.62E-09                | 2.78E-09        | 1.7         | #NV              |                | #NV            | 1.8E-09        | #NV            | 1.8E-09        | 3.1E-10  | -2.1        |
| 876.00   | 976.00   | #NV                     | #NV             | #NV         | #NV              |                | #NV            | #NV            | 6.2E-10        | 6.2E-10        | 2.6E-10  | -0.6        |
| 103.00   | 123.00   | 1.14E-06                | 1.20E-06        | #NV         | #NV              |                | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 123.00   | 143.00   | 3.19E-06                | 3.34E-06        | 2.3         | 2.38             | WBS 2.3        | WBS 2.4        |                | 1.2E-06        | 1.2E-06        | 1.1E-09  | 0.0         |
| 143.00   | 163.00   | 3.16E-07                | 3.31E-07        | 2.3         | #NV              |                | #NV            | 6.7E-08        | #NV            | 6.7E-08        | 9.5E-11  | -3.5        |
| 163.00   | 183.00   | 2.03E-06                | 2.13E-06        | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | -3.5<br>#NV |
| 183.00   | 203.00   | #NV                     | 2.13E-06<br>#NV | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV<br>#NV     | #NV      | #NV         |
|          |          | #NV                     | #NV<br>#NV      | #NV         |                  |                | #NV            | #NV            | #NV            | #NV<br>#NV     | #NV      | #NV         |
| 203.00   | 223.00   |                         |                 |             | #NV              |                |                |                |                |                |          |             |
| 223.00   | 243.00   | #NV                     | #NV             | #NV         | #NV              | 1.79           | #NV            | #NV            | 8.5E-10        | 8.5E-10        | 5.8E-11  | 0.8         |
| 243.00   | 263.00   | 3.07E-08                | 3.21E-08        | #NV         | #NV              |                | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 263.00   | 283.00   | 8.05E-06                | 8.42E-06        | #NV         | #NV              |                | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 283.00   | 303.00   | #NV                     | #NV             | #NV         | #NV              | 1.49           | #NV            | #NV            | 1.0E-10        | 1.0E-10        | 5.6E-11  | -4.9        |
| 303.00   | 323.00   | 2.85E-06                | 2.98E-06        | 2.3         | #NV              |                | #NV            | 9.7E-07        | #NV            | 9.7E-07        | 4.8E-10  | -1.8        |
| 323.00   | 343.00   | 1.50E-10                | 1.57E-10        | #NV         | #NV              |                | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 343.00   | 363.00   | 7.55E-09                | 7.89E-09        | 2           | 1.6              | WBS 2          | WBS 1.6        | 4.0E-09        | 4.3E-09        | 4.3E-09        | 2.5E-10  | -3.4        |
| 363.00   | 383.00   | #NV                     | #NV             | #NV         | #NV              | 1.75           | #NV            | #NV            | 3.2E-11        | 3.2E-11        | 3.6E-11  | 0.7         |
| 383.00   | 403.00   | 3.42E-09                | 3.58E-09        | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 403.00   | 423.00   | #NV                     | #NV             | #NV         | #NV              | 1.45           | #NV            | #NV            | 1.8E-10        | 1.8E-10        | 6.8E-11  | 0.6         |
| 423.00   | 443.00   | 4.86E-08                | 5.08E-08        | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 443.00   | 463.00   | 2.01E-08                | 2.10E-08        | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 463.00   | 483.00   | #NV                     | #NV             | #NV         | #NV              | 1.7            | #NV            | #NV            | 1.6E-10        | 1.6E-10        | 6.25E-11 | 0.0         |
| 483.00   | 503.00   | 4.58E-09                | 4.79E-09        | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 503.00   | 523.00   | 2.86E-06                | 2.99E-06        | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 523.00   | 543.00   | 6.41E-08                | 6.71E-08        | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 543.00   | 563.00   | #NV                     | #NV             | #NV         | #NV              | 1              | #NV            | #NV            | 1.7E-11        | 1.7E-11        | 1.1E-11  | 0.1         |
| 563.00   | 583.00   | 7.27E-06                | 7.60E-06        | 2.1         | #NV              | WBS 2.1        | #NV            | 7.0E-06        | 8.2E-06        | 8.2E-06        | 2.0E-09  | 5.8         |
| 583.00   | 603.00   | 2.11E-07                | 2.21E-07        | 2           | 1.9              | WBS 2          | WBS 1.95       | 55.4E-07       | 7.9E-07        | 7.9E-07        | 1.6E-10  | 14.7        |
| 603.00   | 623.00   | #NV                     | #NV             | #NV         | #NV              | 1.5            | #NV            | #NV            | 1.1E-09        | 1.1E-09        | 5.5E-11  | 1.9         |
| 623.00   | 643.00   | #NV                     | #NV             | #NV         | #NV              | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 643.00   | 663.00   |                         | #NV             | #NV         | #NV              |                | #NV            | #NV            | 5.3E-12        | 5.3E-12        | 3.1E-11  | -0.9        |
| 663.00   |          | 6.39E-10                | 6.68E-10        | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 683.00   | 703.00   |                         | #NV             | #NV         | #NV              |                | 1.87           | #NV            | 2.6E-10        | 2.6E-10        | 5.3E-11  | -1.3        |
| 703.00   |          | 2.34E-09                | 2.44E-09        | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 723.00   | 743.00   |                         | #NV             | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 743.00   | 763.00   |                         | #NV             | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 763.00   | 783.00   |                         | #NV             | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 783.00   | 803.00   |                         | #NV             | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
|          | 823.00   |                         | #NV             | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV<br>#NV     | #NV      | #NV         |
|          |          |                         |                 |             |                  |                |                |                |                |                |          |             |
|          | 843.00   |                         | #NV             | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 843.00   |          | 2.73E-09                | 2.85E-09        | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 863.00   | 883.00   |                         | #NV             | #NV         |                  | #NV            | #NV            | #NV            | #NV            | #NV            | #NV      | #NV         |
| 303.00   |          | 5.16E-07                | 4.26E-07        | 1.9         |                  | #NV            | #NV            | 1.47E-06       |                |                | 3.62E-11 |             |
| 308.00   | 313.00   | 2.62E-06                | 2.16E-06        | 2.2         | #NV              | #NV            | #NV            | 1.49E-06       | i#NV           | 1.49E-06       | 3.46E-10 | 0.9         |

| up         low         Q/s         TM         Perturb. Phase n1         Recovery Phase n1         T₁         T₅           313.00         318.00         #NV         #NV <td< th=""><th>m²/s #NV #NV 9 3.6E-09 #NV #NV #NV #NV #NV #NV #NV #NV #NV #NV</th><th>C m³/Pa #NV #NV 1.29E-10 #NV #NV #NV #NV #NV #NV #NV #NV #NV #NV</th><th>\$</th></td<> | m²/s #NV #NV 9 3.6E-09 #NV  | C m³/Pa #NV #NV 1.29E-10 #NV | \$                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|
| m btoc         m btoc         m²/s         m²/s         n₁         n₂         n₁         n₂         m²/s         m²/s           313.00         318.00         *NV                                                                                                                                                                                    | m²/s #NV #NV 99 3.6E-09 #NV | m³/Pa #NV #NV 1.29E-10 #NV   | #NV<br>#NV<br>0 -3.6<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV |
| m btoc         m btoc         m²/s         m²/s         n₁         n₂         n₁         n₂         m²/s         m²/s           313.00         318.00         #NV         <                                                                                                                                                                          | #NV #NV 99 3.6E-09 #NV      | #NV #NV 1.29E-10 #NV         | #NV<br>#NV<br>0 -3.6<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV |
| 318.00 323.00 #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #NV 3.6E-09 #NV             | #NV 1.29E-10 #NV             | #NV 0 -3.6 #NV #NV #NV #NV #NV #NV #NV #NV                     |
| 343.00       348.00       7.79E-09       6.43E-09       2       1.68       WBS 2       WBS 1.76 6.30E-09 3.6E-09 3.4B-09 3.5B-00 3.53.00 353.00 4NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 3.6E-09 #NV               | 1.29E-10 #NV                 | 9 -3.6<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV        |
| 348.00         353.00         #NV         #                                                                                                                                                                      | #NV                         | #NV #NV #NV #NV #NV #NV #NV #NV #NV                              | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV                  |
| 353.00       358.00       #NV                                                                                                                                                                                                                                                                          | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>2.8E-08        | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV                    | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV                         |
| 358.00       363.00       #NV                                                                                                                                                                                                                                                                          | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>2.8E-08        | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV                           | #NV<br>#NV<br>#NV<br>#NV<br>#NV                                |
| 383.00       388.00       #NV                                                                                                                                                                                                                                                                          | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV<br>2.8E-08               | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>#NV                           | #NV<br>#NV<br>#NV<br>#NV                                       |
| 388.00       393.00       #NV                                                                                                                                                                                                                                                                          | #NV<br>#NV<br>#NV<br>#NV<br>#NV<br>2.8E-08                      | #NV<br>#NV<br>#NV<br>#NV<br>#NV                                  | #NV<br>#NV<br>#NV<br>#NV                                       |
| 393.00       398.00       #NV                                                                                                                                                                                                                                                                          | #NV<br>#NV<br>#NV<br>#NV<br>2.8E-08                             | #NV<br>#NV<br>#NV<br>#NV                                         | #NV<br>#NV<br>#NV                                              |
| 398.00       403.00       3.49E-09       2.88E-09       #NV       #NV<                                                                                                                                                                                                                                                               | #NV<br>#NV<br>#NV<br>2.8E–08                                    | #NV<br>#NV<br>#NV                                                | #NV<br>#NV                                                     |
| 423.00       428.00       #NV                                                                                                                                                                                                                                                                          | #NV<br>#NV<br>#NV<br>2.8E–08                                    | #NV<br>#NV<br>#NV                                                | #NV                                                            |
| 428.00       433.00       #NV       1.2E-7       447.00       452.00       8.78E-09       1.06E-08       #NV                                                                                                                                                                                                                                                                 | #NV<br>#NV<br>2.8E–08                                           | #NV<br>#NV                                                       |                                                                |
| 433.00       438.00       #NV       1.2E-7       #NV                                                                                                                                                                                                                                                                       | #NV<br>2.8E-08                                                  | #NV                                                              | #NV                                                            |
| 438.00 443.00 5.69E-08 4.70E-08 2.2 #NV #NV #NV 2.8E-08 #NV 442.00 447.00 #NV #NV #NV #NV 2 2.23 #NV 1.2E-7447.00 452.00 8.78E-09 1.06E-08 #NV #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8E-08                                                         |                                                                  |                                                                |
| 442.00 447.00 #NV #NV #NV #NV 2 2.23 #NV 1.2E-7447.00 452.00 8.78E-09 1.06E-08 #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |                                                                  | #NV                                                            |
| 447.00 452.00 8.78E-09 1.06E-08 #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 1.2E-10                                                      | 2.4E-11                                                          | 1.59                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | 3.8E-11                                                          | 0.2                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #NV                                                             | #NV                                                              | #NV                                                            |
| 452.00 457.00 1.34E-08 1.10E-08 #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #NV                                                             | #NV                                                              | #NV                                                            |
| 457.00 462.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 462.00 467.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 483.00 488.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 488.00 493.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 493.00 498.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 498.00 503.00 3.90E-10 2.80E-09 #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #NV                                                             | #NV                                                              | #NV                                                            |
| 503.00 508.00 1.53E-08 1.26E-08 2.1 #NV #NV #NV 7.9E-09 #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.9E-09                                                         | 7.7E-10                                                          | 0.1                                                            |
| 508.00 513.00 1.31E-08 1.09E-08 1.9 #NV WBS 2 WBS 1.861.2E-08 1.3E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08 1.3E-08                                                      | 1.8E-11                                                          | -0.3                                                           |
| 513.00 518.00 9.44E-07 7.79E-07 #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #NV                                                             | #NV                                                              | #NV                                                            |
| 518.00 523.00 2.51E-06 2.07E-06 #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #NV                                                             | #NV                                                              | #NV                                                            |
| 523.00 528.00 7.00E-09 5.77E-09 #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #NV                                                             | #NV                                                              | #NV                                                            |
| 528.00 533.00 3.84E-08 3.17E-08 #NV #NV 3 #NV #NV 3.14E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -09 3.14E-09                                                    | 9 9.5E-12                                                        | 0.816                                                          |
| 533.00 538.00 8.22E-08 6.78E-08 2.3 #NV #NV #NV 2.8E-08 #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.8E-08                                                         | #NV                                                              | 0.454                                                          |
| 538.00 543.00 1.35E-09 1.12E-09 #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #NV                                                             | #NV                                                              | #NV                                                            |
| 563.00 568.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 568.00 573.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 573.00 578.00 3.36E-06 2.77E-06 #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #NV                                                             | #NV                                                              | #NV                                                            |
| 578.00 583.00 4.56E-06 3.76E-06 2.1 #NV #NV #NV 4.2E-06 #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.15E-06                                                        | 6 #NV                                                            | 1.415                                                          |
| 583.00 588.00 #NV #NV #NV #NV 1.4 #NV #NV 2.55E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -10 2.6E-10                                                     | 2.6E-10                                                          | 0.633                                                          |
| 588.00 593.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 593.00 598.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 598.00 603.00 2.20E-07 1.82E-07 #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #NV                                                             | #NV                                                              | #NV                                                            |
| 663.00 668.00 7.05E-10 5.82E-10 #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #NV                                                             | #NV                                                              | #NV                                                            |
| 668.00 673.00 #NV #NV #NV #NV 1.6 #NV #NV 5.67E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -11 5.7E–11                                                     | 1.7E-11                                                          | 0.9                                                            |
| 673.00 678.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |
| 678.00 683.00 #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #NV                                                             | #NV                                                              | #NV                                                            |

#### Notes

- 1 n1 and n2 refer to the transmissivity(s) derived from the analysis while using the recommended flow model. In case a homogeneous flow model was recommended only one n value is reported, in case a two zones composite model was recommended both n1 and n2 are given.
- The flow regime description refers to the genaralized radial flow analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only a n1 value is used a homogeneous flow model was used in the analysis, if a value is given for n1 and n2 two shell composite model was used.

The Figures 7-1 to 7-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.



**Figure 7-1.** Results summary – profiles of transmissivity and equivalent freshwater head, transmissivities derived from injectiontests, freshwater head extrapolated.

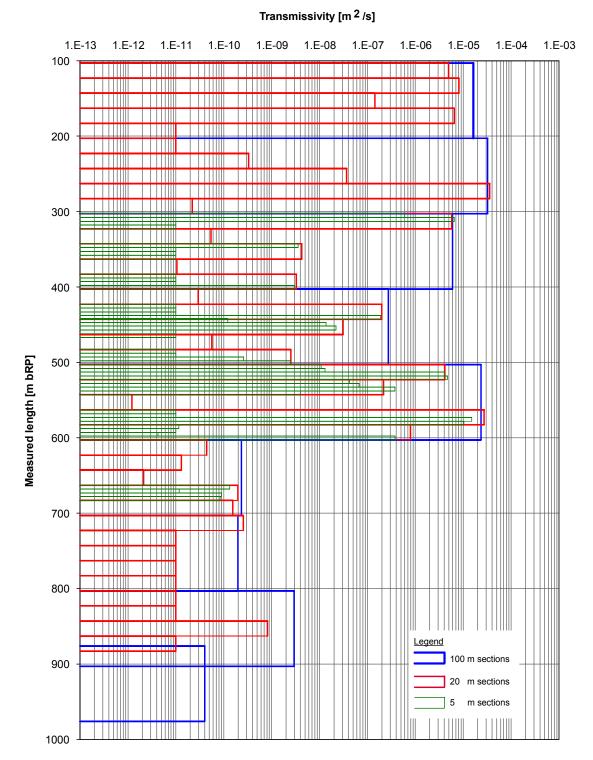



Figure 7-2. Results summary – profile of transmissivity.

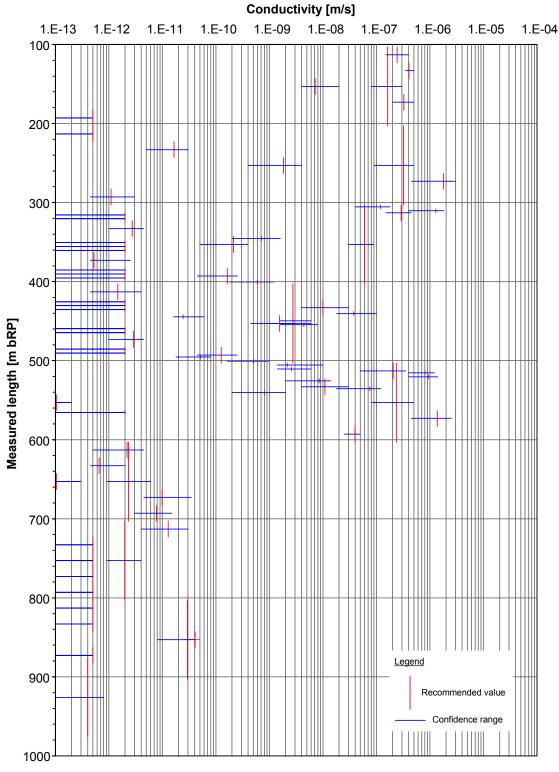



Figure 7-3. Results summary – profile of hydraulic conductivity.

#### 7.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

#### 7.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T<sub>M</sub> and Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see Figure 7-4).

The correlation analysis shows that the steady state derived transmissivities differ by less than one order of magnitude from the transmissivities derived from the transient analysis.

# 7.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to an unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval. The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). A minimum value for the test zone compressibility is given by the water compressibility which is approx.  $5 \cdot 10^{-10}$  1/Pa. For the calculation of the theoretical wellbore storage coefficient a test zone compressibility of  $7 \cdot 10^{-10}$  1/Pa was used. The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

Figure 7-5 presents a cross-plot of the matched and theoretical wellbore storage coefficients.

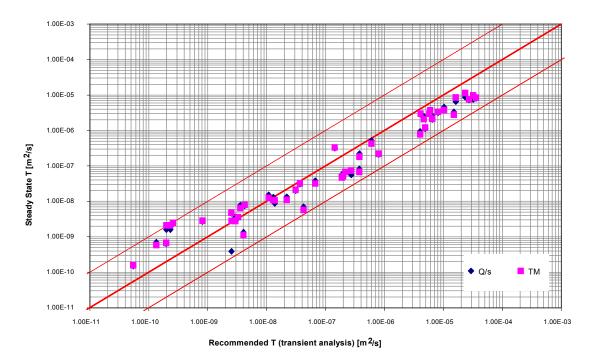



Figure 7-4. Correlation analysis of transmissivities derived by steady state and transient methods.

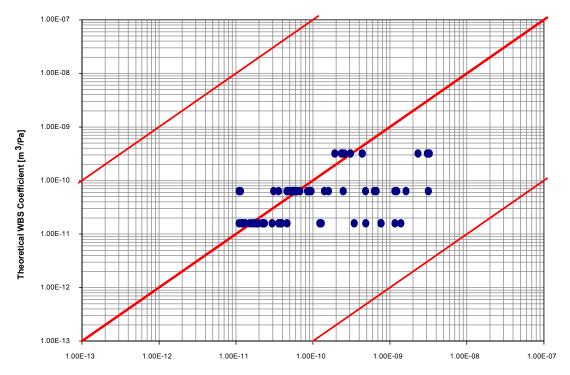



Figure 7-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients are up to one orders of magnitude larger than the theoretical values for the 100 m Tests and up to two orders of magnitude larger for the 20 m and 5 m tests. This phenomenon was already observed at the previous boreholes. A two orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by two orders of magnitude does not seem probable. The discrepancy can be more likely explained by increased compressibility of the packer system. In order to better understand this phenomenon, a series of tool compressibility tests should be conducted in order to measure the tool compressibility and to assess to what extent the system behaves elastically.

#### 8 Conclusions

#### 8.1 Transmissivity

Figure 7-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 5.5.7.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

In few cases the tests were not analysable because the compliance phase following the packer inflation was to long or because the conducted preliminary pulse did not recover. Both responses are indicative for a very low interval transmissivity and a transmissivity value of  $1 \cdot 10^{-11}$  m<sup>2</sup>/s was recommended (regarded as the upper limit of the confidence range).

If the conducted preliminary pulse injection (PI) showed a slow recovery the pulse test was prolonged and no further injection test was performed. The pulse test was used for a quantitative analysis. The recommended transmissivities of the pulse tests range between  $1.2 \cdot 10^{-12}$  m<sup>2</sup>/s and  $3.3 \cdot 10^{-10}$  m<sup>2</sup>/s.

The recommended transmissivities derived from the conducted injection tests (CHi and CHir) range between  $2.0 \cdot 10^{-10}$  m<sup>2</sup>/s and  $2.7 \cdot 10^{-5}$  m<sup>2</sup>/s.

The transmissivity profiles in Figures 7-1 and 7-2 show two distinct zones. The first zone between 100 m and 600 m shows all in all a relatively high and medium transmissisivity (except some sections with a transmissivity below  $3 \cdot 10^{-9}$  m<sup>2</sup>/s). The average transmissivity in this zone is  $2.9 \cdot 10^{-6}$  m<sup>2</sup>/s. The second zone between 600 m and 980 m shows relatively low transmissivities and the average transmissivity is  $2.5 \cdot 10^{-10}$  m<sup>2</sup>/s.

A few 20 m and 5 m sections show larger transmissivities than the appropriate longer interval. The differences are relatively small and are covered by the confidence range.

#### 8.2 Equivalent freshwater head

Figure 7-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 5.5.6.

The head profile shows a freshwater head that is slightly increasing with depth. The freshwater head ranges from 8.0 m to 14.1 m. This increase can be explained by higher salinity of the water down in the borehole.

The uncertainty related to the derived freshwater heads is dependent on the test section transmissivity. Due to the relatively short pressure recovery phase, the static pressure extrapolation becomes increasingly uncertain at lower transmissivities.

#### 8.3 Generalized radial flow analysis

In addition to the radial flow analysis a generalized radial flow analysis was performed. The generalized radial flow analysis is based on the flow model developed by /Barker 1988/ and allows the modelling of flow dimensions between 1 (linear flow) and 3 (spherical flow). Figure 8-1 presents the statistical distribution of the derived flow dimension with respect to the interval length.

The statistical distribution chart contains only the tests that were analysable with the GRF and tests with clear radial flow (n = 2). Tests with insufficent data quality e.g. noise or no clear flow stabilization were not counted in the chart. No value (e.g. below measurement limit) tests are also not included in the statistic. The basis for the chart is,

- 100 m section: 8 number of tests "with a flow dimension".
- 20 m section: 18 number of tests "with a flow dimension".
- 5 m section: 20 number of tests "with a flow dimension".

This totals 46 tests out of 93 tests have a value.

The figure shows that the most of the generalized radial flow analyses result in a flow dimension below n = 2. This behaviour indicates that sub-cylindrical flow prevails.

The general expectation is that the length of the test section would influence the derived flow dimension in the sense that a longer test interval would rather tend to display cylindrical flow geometry when compared with a shorter test section. Due to the fact that a shorter test section (e.g. 5 m) would act more like a selective source than a longer interval (e.g. 100 m) the assumption is that a short interval would rather show linear flow (only one fracture influences the response) or by spherical flow (due to the short length of the test section the occurrence of vertical flow components becomes more probable). Comparing this hypothesis with the results of the generalized radial flow analysis it can be seen that a clear relationship between interval length and derived flow dimension does not exist. This may be attributed to the relatively small amount of evaluated tests.

In addition, given the data quality (i.e. relatively short duration of the individual test phases) there is considerable uncertainty in the derived flow dimension.

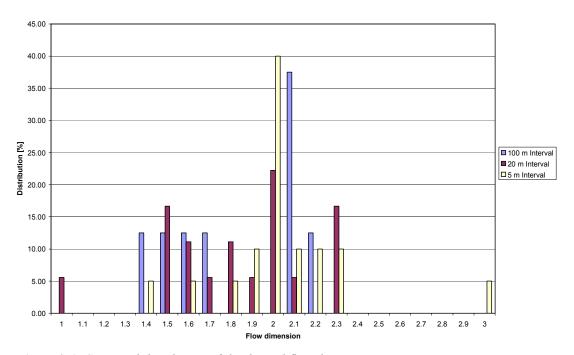



Figure 8-1. Statistical distribution of the derived flow dimension.

#### 8.4 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity or a change in flow dimension with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In some cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with low transmissivities (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of –0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests.

#### 9 References

**Barker J A, 1988.** A generalized radial flow model for hydraulic tests in fractured rock. Water Resour. Res. 24(10), 1796–1804.

**Bourdet D, Ayoub J A, Pirard Y M, 1989.** Use of pressure derivative in well-test interpretation. Coc. Of Petroleum Engineers, SPE Formation Evaluation, pp. 293–302.

**Chakrabarty C, Enachescu C, 1997.** Using the Devolution Approach for Slug Test Analysis: Theory and Application. Ground Water Sept.-Oct. 1997, pp. 797–806

Gringarten A C, 1986. Computer-aided well-test analysis. SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. Petroway, Inc. Palo Alto, Calif.

**Horner D R, 1951.** Pressure build-up in wells. Third World Pet. Congress, E.J. Brill, Leiden II, pp. 503–521.

**Jacob C E, Lohman S W, 1952.** Nonsteady flow to a well of constant drawdown in an extensive aquifer. Transactions, American Geophysical Union, Volume 33, No 4, pp. 559–569.

**Moye D G, 1967.** Diamond drilling for foundation exploration Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp. 95–100.

**Peres A M M, Onur M, Reynolds A C, 1989.** A new analysis procedure for determining aquifer properties from slug test data. Water Resour. Res. v. 25, no. 7, pp. 1591–1602.

**Puigdomenech I, 2001.** Hydrochemical stability of groundwaters surrounding a spent nuclear fuel repository in a 100,000 year perspective. SKB TR-01-28, Svensk Kärnbränslehantering AB.

Ramey H J Jr, Agarwal R G, Martin R G I, 1975. Analysis of "Slug Test" or DST flow Period data. J. Can. Pet. Tec. September 1975.

**SKB**, **2002.** Execution programme for the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering AB.

**SKB**, **2006**. Programme for further investigations of bedrock, soil, water and environment in Laxemar subarea. Oskarshamn site investigation. SKB R-06-29, Svensk Kärnbränslehantering AB.

Borehole: KLX11A

# **APPENDIX 1**

File Description Table

Borehole: KLX11A

# **APPENDIX 2**

Analysis diagrams

Borehole: KLX11A

### **APPENDIX 3**

Test Summary Sheets

Borehole: KLX11 A

### **APPENDIX 4**

Nomenclature

| Character       | SICADA designation | Explanation                                                                                                                                              | Dimension                             | Unit                                |
|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|
| Variables,      | constants          |                                                                                                                                                          | •                                     |                                     |
| $A_{w}$         |                    | Horizontal area of water surface in open borehole, not                                                                                                   | [L <sup>2</sup> ]                     | m <sup>2</sup>                      |
|                 |                    | including area of signal cables, etc.                                                                                                                    |                                       |                                     |
| b               |                    | Aquifer thickness (Thickness of 2D formation)                                                                                                            | [L]                                   | m                                   |
| В               |                    | Width of channel                                                                                                                                         | [L]                                   | m                                   |
| L               |                    | Corrected borehole length                                                                                                                                | [L]                                   | m                                   |
| L <sub>0</sub>  |                    | Uncorrected borehole length                                                                                                                              | [L]                                   | m                                   |
| L <sub>p</sub>  |                    | Point of application for a measuring section based on its centre point or centre of gravity for distribution of transmissivity in the measuring section. | [L]                                   | m                                   |
| L <sub>w</sub>  |                    | Test section length.                                                                                                                                     | [L]                                   | m                                   |
| dL              |                    | Step length, Positive Flow Log - overlapping flow logging. (step length, PFL)                                                                            | [L]                                   | m                                   |
| r               |                    | Radius                                                                                                                                                   | [L]                                   | m                                   |
| r <sub>w</sub>  |                    | Borehole, well or soil pipe radius in test section.                                                                                                      | [L]                                   | m                                   |
| r <sub>we</sub> |                    | Effective borehole, well or soil pipe radius in test section. (Consideration taken to skin factor)                                                       | [L]                                   | m                                   |
| r <sub>s</sub>  |                    | Distance from test section to observation section, the shortest distance.                                                                                | [L]                                   | m                                   |
| r <sub>t</sub>  |                    | Distance from test section to observation section, the <b>interpreted</b> shortest distance via conductive structures.                                   | [L]                                   | m                                   |
| $r_D$           |                    | Dimensionless radius, r <sub>D</sub> =r/r <sub>w</sub>                                                                                                   | =                                     | -                                   |
| Z               |                    | Level above reference point                                                                                                                              | [L]                                   | m                                   |
| Z <sub>r</sub>  |                    | Level for reference point on borehole                                                                                                                    | [L]                                   | m                                   |
| Z <sub>wu</sub> |                    | Level for test section (section that is being flowed), upper limitation                                                                                  | [L]                                   | m                                   |
| Z <sub>wl</sub> |                    | Level for test section (section that is being flowed), lower limitation                                                                                  |                                       | m                                   |
| Z <sub>ws</sub> |                    | Level for sensor that measures response in test section (section that is flowed)                                                                         | [L]                                   | m                                   |
| Z <sub>ou</sub> |                    | Level for observation section, upper limitation                                                                                                          | [L]                                   | m                                   |
| Z <sub>ol</sub> |                    | Level for observation section, lower limitation                                                                                                          | [L]                                   | m                                   |
| Z <sub>os</sub> |                    | Level for sensor that measures response in observation section                                                                                           | [L]                                   | m                                   |
| _               |                    |                                                                                                                                                          | 34-12-                                | ļ .                                 |
| E               |                    | Evaporation:                                                                                                                                             | [L³/(T L²)]                           | mm/y,<br>mm/d,                      |
|                 |                    | hydrological budget:                                                                                                                                     | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s                   |
| ET              |                    | Evapotranspiration                                                                                                                                       | [L <sup>3</sup> /(T L <sup>2</sup> )] | mm/y,<br>mm/d,<br>m <sup>3</sup> /s |
|                 |                    | hydrological budget:                                                                                                                                     | [L <sup>3</sup> /T]                   |                                     |
| Р               |                    | Precipitation                                                                                                                                            | [L <sup>3</sup> /(T L <sup>2</sup> )] | mm/y,<br>mm/d,                      |
| -               |                    | hydrological budget:                                                                                                                                     | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s                   |
| R               |                    | Groundwater recharge                                                                                                                                     | [L <sup>3</sup> /(T L <sup>2</sup> )] | mm/y,<br>mm/d,                      |
|                 |                    | hydrological budget:                                                                                                                                     | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s                   |
| D               |                    | Groundwater discharge                                                                                                                                    | [L <sup>3</sup> /(T L <sup>2</sup> )] | mm/y,<br>mm/d,                      |
|                 |                    | hydrological budget:                                                                                                                                     | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s                   |
| $Q_R$           |                    | Run-off rate                                                                                                                                             | [L <sup>3</sup> /T]                   | m³/s                                |
| $Q_p$           |                    | Pumping rate                                                                                                                                             | [L³/T]                                | m³/s                                |
| $Q_I$           |                    | Infiltration rate                                                                                                                                        | [L <sup>3</sup> /T]                   | m³/s                                |
| Q               |                    | Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$                                                                                            | [L <sup>3</sup> /T]                   | m³/s                                |
| $Q_0$           |                    | (Flow rate) Flow in test section during undisturbed conditions (flow                                                                                     | [L <sup>3</sup> /T]                   | m³/s                                |
| Q <sub>p</sub>  |                    | logging). Flow in test section immediately before stop of flow.                                                                                          | [L <sup>3</sup> /T]                   | m³/s                                |
| •               |                    | Stabilised pump flow in flow logging.                                                                                                                    | _                                     |                                     |

| Character SICADA designation        |        | Explanation                                                                                                                                                                      | Dimension                            | Unit              |
|-------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|
| Q <sub>m</sub>                      |        | Arithmetical mean flow during perturbation phase.                                                                                                                                | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| Q <sub>1</sub>                      |        | Flow in test section during pumping with pump flow Q <sub>p1</sub> , (flow logging).                                                                                             | [L <sup>3</sup> /T]                  | m³/s              |
| Q <sub>2</sub>                      |        | Flow in test section during pumping with pump flow $Q_{p1}$ , (flow logging).                                                                                                    | [L <sup>3</sup> /T]                  | m³/s              |
| ΣQ                                  | SumQ   | Cumulative volumetric flow along borehole                                                                                                                                        | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| $\Sigma Q_0$                        | SumQ0  | Cumulative volumetric flow along borehole, undisturbed conditions (ie, not pumped)                                                                                               | [L³/T]                               | m³/s              |
| $\Sigma Q_1$                        | SumQ1  | Cumulative volumetric flow along borehole, with pump flow Q <sub>p1</sub>                                                                                                        | [L <sup>3</sup> /T]                  | m³/s              |
| $\Sigma Q_2$                        | SumQ2  | Cumulative volumetric flow along borehole, with pump flow Q <sub>p2</sub>                                                                                                        | [L <sup>3</sup> /T]                  | m³/s              |
| $\Sigma Q_{C1}$                     | SumQC1 | Corrected cumulative volumetric flow along borehole, $\Sigma Q_1$ - $\Sigma Q_0$                                                                                                 | [L <sup>3</sup> /T]                  | m³/s              |
| $\Sigma Q_{C2}$                     | SumQC2 | Corrected cumulative volumetric flow along borehole, $\Sigma Q_2$ - $\Sigma Q_0$                                                                                                 | [L <sup>3</sup> /T]                  | m³/s              |
| q                                   |        | Volumetric flow per flow passage area (Specific discharge (Darcy velocity, Darcy flux, Filtration velocity)).                                                                    | ([L <sup>3</sup> /T*L <sup>2</sup> ] | m/s               |
| V                                   |        | Volume                                                                                                                                                                           | [L <sup>3</sup> ]                    | m <sup>3</sup>    |
| $V_{w}$                             |        | Water volume in test section.                                                                                                                                                    | [L <sup>3</sup> ]                    | m <sup>3</sup>    |
| V <sub>p</sub>                      |        | Total water volume injected/pumped during perturbation phase.                                                                                                                    | [L <sup>3</sup> ]                    | m <sup>3</sup>    |
| V                                   |        | Velocity                                                                                                                                                                         | $([L^3/T*L^2]$                       | m/s               |
| V <sub>a</sub>                      |        | Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity));. $v_a=q/n_e$                                                 | ([L <sup>3</sup> /T*L <sup>2</sup> ] | m/s               |
|                                     |        |                                                                                                                                                                                  |                                      |                   |
| t                                   |        | Time                                                                                                                                                                             | [T]                                  | hour,mi<br>n,s    |
| t <sub>o</sub>                      |        | Duration of rest phase before perturbation phase.                                                                                                                                | [T]                                  | S                 |
| t <sub>p</sub>                      |        | Duration of perturbation phase. (from flow start as far as $p_p$ ).                                                                                                              | [T]                                  | s                 |
| t <sub>F</sub>                      |        | Duration of recovery phase (from $p_p$ to $p_F$ ).                                                                                                                               | [T]                                  | S                 |
| t <sub>1</sub> , t <sub>2</sub> etc |        | Times for various phases during a hydro test.                                                                                                                                    | [T]                                  | hour,mi<br>n,s    |
| dt                                  |        | Running time from start of flow phase and recovery phase respectively.                                                                                                           | [T]                                  | s                 |
| dt <sub>e</sub>                     |        | $dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.                                                                           | [T]                                  | S                 |
| t <sub>D</sub>                      |        | $t_D = T \cdot t / (S \cdot r_w^2)$ . Dimensionless time                                                                                                                         | -                                    | -                 |
| р                                   |        | Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations. | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>a</sub>                      |        | Atmospheric pressure                                                                                                                                                             | $[M/(LT)^2]$                         | kPa               |
| p <sub>t</sub>                      |        | Absolute pressure; p <sub>t</sub> =p <sub>a</sub> +p <sub>g</sub>                                                                                                                | $[M/(LT)^2]$                         | kPa               |
| p <sub>g</sub>                      |        | Gauge pressure; Difference between absolute pressure and atmospheric pressure.                                                                                                   | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>0</sub>                      |        | Initial pressure before test begins, prior to packer expansion.                                                                                                                  | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>i</sub>                      |        | Pressure in measuring section before start of flow.                                                                                                                              | $[M/(LT)^2]$                         | kPa               |
| P <sub>f</sub>                      |        | Pressure during perturbation phase.                                                                                                                                              | $[M/(LT)^2]$                         | kPa               |
| $p_s$                               |        | Pressure during recovery.                                                                                                                                                        | $[M/(LT)^2]$                         | kPa               |
| $p_p$                               |        | Pressure in measuring section before flow stop.                                                                                                                                  | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>F</sub>                      |        | Pressure in measuring section at end of recovery.                                                                                                                                | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>D</sub>                      |        | $p_D = 2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$ , Dimensionless pressure                                                                                                         |                                      | -                 |
| dp                                  |        | Pressure difference, drawdown of pressure surface between two points of time.                                                                                                    | [M/(LT) <sup>2</sup> ]               | kPa               |

| Character SICADA designation |  | Explanation                                                                                                                                                                                              | Dimension              | Unit |  |
|------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|--|
|                              |  | $dp_f = p_i - p_f$ or $= p_f - p_i$ , drawdown/pressure increase of pressure surface between two points of time during perturbation phase. $dp_f$ usually expressed positive.                            | [M/(LT) <sup>2</sup> ] | kPa  |  |
| dp <sub>s</sub>              |  | $dp_s = p_s - p_p$ or $= p_p - p_s$ , pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dp_s$ usually expressed positive.                                | [M/(LT) <sup>2</sup> ] | kPa  |  |
| dp <sub>p</sub>              |  | $dp_p = p_i - p_p$ or $= p_p - p_i$ , <b>maximal</b> pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dp_p$ expressed positive.                     | [M/(LT) <sup>2</sup> ] | kPa  |  |
| dp <sub>F</sub>              |  | $dp_F = p_p - p_F$ or $= p_F - p_p$ , <b>maximal</b> pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dp_F$ expressed positive.                         | [M/(LT) <sup>2</sup> ] | kPa  |  |
| Н                            |  | Total head; (potential relative a reference level) (indication of h for phase as for p). H=h <sub>e</sub> +h <sub>p</sub> +h <sub>v</sub>                                                                | [L]                    | m    |  |
| h                            |  | Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head)); (indication of h for phase as for p). h=h <sub>e</sub> +h <sub>p</sub> | [L]                    | m    |  |
| h <sub>e</sub>               |  | Height of measuring point (Elevation head); Level above reference level for measuring point.                                                                                                             | [L]                    | m    |  |
| h <sub>p</sub>               |  | Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point                                           | [L]                    | m    |  |
| h <sub>v</sub>               |  | Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)                                                                           | [L]                    | m    |  |
| S                            |  | Drawdown; Drawdown from undisturbed level (same as dh <sub>o</sub> , positive)                                                                                                                           | [L]                    | m    |  |
| Sp                           |  | Drawdown in measuring section before flow stop.                                                                                                                                                          | [L]                    | m    |  |
| h <sub>0</sub>               |  | Initial above reference level before test begins, prior to packer expansion.                                                                                                                             | [L]                    | m    |  |
| h <sub>i</sub>               |  | Level above reference level in measuring section before start of flow.                                                                                                                                   | [L]                    | m    |  |
| h <sub>f</sub>               |  | Level above reference level during perturbation phase.                                                                                                                                                   | [L]                    | m    |  |
| h <sub>s</sub>               |  | Level above reference level during recovery phase.                                                                                                                                                       | [L]                    | m    |  |
| h <sub>p</sub>               |  | Level above reference level in measuring section before flow stop.                                                                                                                                       | [L]                    | m    |  |
| h <sub>F</sub>               |  | Level above reference level in measuring section at end of recovery.                                                                                                                                     | [L]                    | m    |  |
| dh                           |  | Level difference, drawdown of water level between two points of time.                                                                                                                                    | [L]                    | m    |  |
| dh <sub>f</sub>              |  | $dh_f = h_i - h_f$ or $= h_f - h_i$ , drawdown/pressure increase of pressure surface between two points of time during perturbation phase. $dh_f$ usually expressed positive.                            | [L]                    | m    |  |
| dh <sub>s</sub>              |  | $dh_s = h_s - h_p$ or $= h_p - h_s$ , pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dh_s$ usually expressed positive.                                | [L]                    | m    |  |
| dh <sub>p</sub>              |  | $dh_p = h_i - h_p$ or $= h_p - h_i$ , maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dh_p$ expressed positive.                            | [L]                    | m    |  |
| dh <sub>F</sub>              |  | $dh_F = h_p - h_F$ or $= h_F - h_p$ , maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dh_F$ expressed positive.                            | [L]                    | m    |  |
| Te <sub>w</sub>              |  | Temperature in the test section (taken from temperature logging). Temperature                                                                                                                            |                        | °C   |  |
| Te <sub>w0</sub>             |  | Temperature in the test section during undisturbed conditions (taken from temperature logging).                                                                                                          |                        | °C   |  |

| Character         | naracter SICADA Explanation designation |                                                                                                                                              |                     |                  |
|-------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| Te <sub>o</sub>   | are or greater or                       | Temperature in the observation section (taken from temperature logging). Temperature                                                         |                     | °C               |
| EC <sub>w</sub>   |                                         | Electrical conductivity of water in test section.                                                                                            |                     | mS/m             |
| EC <sub>w0</sub>  |                                         | Electrical conductivity of water in test section during                                                                                      |                     | mS/m             |
| 0                 |                                         | undisturbed conditions.                                                                                                                      |                     |                  |
| EC <sub>o</sub>   |                                         | Electrical conductivity of water in observation section                                                                                      |                     | mS/m             |
| TDS <sub>w</sub>  |                                         | Total salinity of water in the test section.                                                                                                 | [M/L <sup>3</sup> ] | mg/L             |
| TDS <sub>w0</sub> |                                         | Total salinity of water in the test section during undisturbed conditions.                                                                   | [M/L <sup>3</sup> ] | mg/L             |
| TDS₀              |                                         | Total salinity of water in the observation section.                                                                                          | [M/L <sup>3</sup> ] | mg/L             |
| g                 |                                         | Constant of gravitation (9.81 m*s <sup>-2</sup> ) (Acceleration due to gravity)                                                              | [L/T <sup>2</sup> ] | m/s <sup>2</sup> |
| π                 | pi                                      | Constant (approx 3.1416).                                                                                                                    | [-]                 |                  |
| π<br>r            |                                         | Residual. $r=p_c-p_m$ , $r=h_c-h_m$ , etc. Difference between measured data ( $p_m$ , $h_m$ , etc) and estimated data ( $p_c$ , $h_c$ , etc) |                     |                  |
| ME                |                                         | Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$                                                                               |                     |                  |
| NME               |                                         | Normalized ME. NME=ME/(x <sub>MAX</sub> -x <sub>MIN</sub> ), x: measured variable considered.                                                |                     |                  |
| MAE               |                                         | Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n}  r_i $                                                                                |                     |                  |
| NMAE              |                                         | Normalized MAE. NMAE=MAE/(x <sub>MAX</sub> -x <sub>MIN</sub> ), x: measured variable considered.                                             |                     |                  |
| RMS               |                                         | Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_i^2\right)^{0.5}$                                                           |                     |                  |
| NRMS              |                                         | Normalized RMR. NRMR=RMR/(x <sub>MAX</sub> -x <sub>MIN</sub> ), x: measured variable considered.                                             |                     |                  |
| SDR               |                                         | Standard deviation of residual.                                                                                                              |                     |                  |
|                   |                                         | $SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$                                                                          |                     |                  |
| SEMR              |                                         | Standard error of mean residual.                                                                                                             |                     |                  |
|                   |                                         | $SEMR = \left(\frac{1}{n(n-1)} \sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$                                                                     |                     |                  |
| Parameter:        | S                                       |                                                                                                                                              |                     |                  |
| Q/s               |                                         | Specific capacity $s=dp_p$ or $s=s_p=h_0-h_p$ (open borehole)                                                                                | [L <sup>2</sup> /T] | m²/s             |
| D                 |                                         | Interpreted flow dimension according to Barker, 1988.                                                                                        | [-]                 | -                |
| dt₁               |                                         | Time of starting for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.          | [T]                 | S                |
| dt <sub>2</sub>   |                                         | End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.               | [T]                 | S                |
| dt <sub>L</sub>   |                                         | Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.                               | [T]                 | S                |
| ТВ                |                                         | Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one-dimensional structure              | [L <sup>3</sup> /T] | m³/s             |
| T                 |                                         | Transmissivity                                                                                                                               | [L <sup>2</sup> /T] | m²/s             |
| T <sub>M</sub>    |                                         | Transmissivity according to Moye (1967)                                                                                                      | [L <sup>2</sup> /T] | m²/s             |
| T <sub>Q</sub>    |                                         | Evaluation based on Q/s and regression curve between Q/s and T, as example see Rhén et al (1997) p. 190.                                     | [L <sup>2</sup> /T] | m²/s             |
| Ts                |                                         | Transmissivity evaluated from slug test                                                                                                      | [L <sup>2</sup> /T] | m²/s             |

| Character           | SICADA designation | lesignation                                                                                                                                                                                                                                                                                |                     |                |  |  |  |  |
|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|--|--|--|--|
| T <sub>D</sub>      |                    | Transmissivity evaluated from PFL-Difference Flow Meter                                                                                                                                                                                                                                    | [L <sup>2</sup> /T] | m²/s           |  |  |  |  |
| Tı                  |                    | Transmissivity evaluated from Impeller flow log                                                                                                                                                                                                                                            |                     | m²/s           |  |  |  |  |
| $T_{Sf}$ , $T_{Lf}$ |                    | Transient evaluation based on semi-log or log-log                                                                                                                                                                                                                                          | [L <sup>2</sup> /T] | m²/s           |  |  |  |  |
|                     |                    | diagram for perturbation phase in injection or pumping.                                                                                                                                                                                                                                    | 2                   | 2.             |  |  |  |  |
| $T_{Ss}, T_{Ls}$    |                    | Transient evaluation based on semi-log or log-log diagram for recovery phase in injection or pumping.                                                                                                                                                                                      | [L <sup>2</sup> /T] | m²/s           |  |  |  |  |
| T <sub>T</sub>      |                    | Transient evaluation (log-log or lin-log). Judged best evaluation of T <sub>Sf</sub> , T <sub>Lf</sub> , T <sub>Ss</sub> , T <sub>Ls</sub>                                                                                                                                                 | [L <sup>2</sup> /T] | m²/s           |  |  |  |  |
| T <sub>NLR</sub>    |                    | Evaluation based on non-linear regression.                                                                                                                                                                                                                                                 | [L <sup>2</sup> /T] | m²/s           |  |  |  |  |
| T <sub>Tot</sub>    |                    | Judged most representative transmissivity for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).                                                                                                                | [L²/T]              | m²/s           |  |  |  |  |
| K                   |                    | Hydraulic conductivity                                                                                                                                                                                                                                                                     | [L/T]               | m/s            |  |  |  |  |
| K <sub>s</sub>      |                    | Hydraulic conductivity based on spherical flow model                                                                                                                                                                                                                                       | [L/T]               | m/s            |  |  |  |  |
| K <sub>m</sub>      |                    | Hydraulic conductivity matrix, intact rock                                                                                                                                                                                                                                                 | [L/T]               | m/s            |  |  |  |  |
| k                   |                    | Intrinsic permeability                                                                                                                                                                                                                                                                     | [L <sup>2</sup> ]   | m <sup>2</sup> |  |  |  |  |
| kb                  |                    | Permeability-thickness product: kb=k·b                                                                                                                                                                                                                                                     | [L <sup>3</sup> ]   | m <sup>3</sup> |  |  |  |  |
| NO.                 |                    | T criticability trilokticso product. No 10 b                                                                                                                                                                                                                                               | [ <u>-</u> ]        | 1              |  |  |  |  |
| SB                  |                    | Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure                                                                                                                                                    | [L]                 | m              |  |  |  |  |
| SB*                 |                    | Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure                                                                                                                                            | [L]                 | m              |  |  |  |  |
| S                   |                    | Storage coefficient, (Storativity)                                                                                                                                                                                                                                                         | [-]                 | -              |  |  |  |  |
| S*                  |                    | Assumed storage coefficient                                                                                                                                                                                                                                                                | [-]                 | -              |  |  |  |  |
| S <sub>y</sub>      |                    | Theoretical specific yield of water (Specific yield; unconfined storage. Defined as total porosity (n) minus retention capacity (S <sub>r</sub> )                                                                                                                                          | [-]                 | -              |  |  |  |  |
| S <sub>ya</sub>     |                    | Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. $S_{ya}$ = $S_y$ (often called $S_y$ in literature)                              | [-]                 | -              |  |  |  |  |
| S <sub>r</sub>      |                    | Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.                                                             | [-]                 | -              |  |  |  |  |
| S <sub>f</sub>      |                    | Fracture storage coefficient                                                                                                                                                                                                                                                               | [-]                 | -              |  |  |  |  |
| S <sub>m</sub>      |                    | Matrix storage coefficient                                                                                                                                                                                                                                                                 | [-]                 | -              |  |  |  |  |
| S <sub>NLR</sub>    |                    | Storage coefficient, evaluation based on non-linear regression                                                                                                                                                                                                                             | [-]                 |                |  |  |  |  |
| S <sub>Tot</sub>    |                    | Judged most representative storage coefficient for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).                                                                                                           | [-]                 | -              |  |  |  |  |
| 2                   |                    | Specific storage coefficient: confined storage                                                                                                                                                                                                                                             | [ 1/L]              | 1/m            |  |  |  |  |
| S <sub>s</sub>      |                    | Specific storage coefficient; confined storage.                                                                                                                                                                                                                                            |                     | 1/m            |  |  |  |  |
| S <sub>s</sub> *    |                    | Assumed specific storage coefficient; confined storage.                                                                                                                                                                                                                                    | [ 1/L]              | 1/m            |  |  |  |  |
| C <sub>f</sub>      |                    | Hydraulic resistance: The hydraulic resistance is an aquitard with a flow vertical to a two-dimensional formation. The inverse of c is also called Leakage coefficient. c <sub>i</sub> =b'/K' where b' is thickness of the aquitard and K' its hydraulic conductivity across the aquitard. | [T]                 | S              |  |  |  |  |
| L <sub>f</sub>      |                    | Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents characteristics of the aquifer.                                                                                                                                                                                     | [L]                 | m              |  |  |  |  |
|                     |                    |                                                                                                                                                                                                                                                                                            |                     |                |  |  |  |  |

| Character         | SICADA designation | Explanation                                                                                                                                                                                                                                                                                                                            | Dimension                           | Unit                 |
|-------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|
| ٤*                | Skin               | Assumed skin factor                                                                                                                                                                                                                                                                                                                    | [-]                                 | -                    |
| ξ*<br>C           |                    | Wellbore storage coefficient                                                                                                                                                                                                                                                                                                           | $[(LT^2)\cdot M^2]$                 | m³/Pa                |
| C <sub>D</sub>    |                    | $C_D = C \cdot \rho_w g / (2\pi \cdot S \cdot r_w^2)$ , Dimensionless wellbore storage coefficient                                                                                                                                                                                                                                     | [-]                                 | _                    |
| ω                 | Stor-ratio         | $ω$ = $S_f$ /( $S_f$ + $S_m$ ), storage ratio (Storativity ratio); the ratio of storage coefficient between that of the fracture and total storage.                                                                                                                                                                                    | [-]                                 | -                    |
| λ                 | Interflow-coeff    | $\lambda$ = $\alpha$ · (K <sub>m</sub> / K <sub>f</sub> ) · $r_w^2$ interporosity flow coefficient.                                                                                                                                                                                                                                    | [-]                                 | -                    |
| $T_GRF$           |                    | Transmissivity interpreted using the GRF method                                                                                                                                                                                                                                                                                        | [L <sup>2</sup> /T]                 | m²/s                 |
| S <sub>GRF</sub>  |                    | Storage coefficient interpreted using the GRF method                                                                                                                                                                                                                                                                                   | [ 1/L]                              | 1/m                  |
| D <sub>GRF</sub>  |                    | Flow dimension interpreted using the GRF method                                                                                                                                                                                                                                                                                        | [-]                                 | -                    |
| C <sub>w</sub>    |                    | Water compressibility; corresponding to β in hydrogeological literature.                                                                                                                                                                                                                                                               | [(LT <sup>2</sup> )/M]              | 1/Pa                 |
| C <sub>r</sub>    |                    | Pore-volume compressibility, (rock compressibility);<br>Corresponding to α/n in hydrogeological literature.                                                                                                                                                                                                                            | [(LT <sup>2</sup> )/M]              | 1/Pa                 |
| Ct                |                    | $c_t = c_r + c_w$ , total compressibility; compressibility per volumetric unit of rock obtained through multiplying by the total porosity, n. (Presence of gas or other fluids can be included in $c_t$ if the degree of saturation (volume of respective fluid divided by n) of the pore system of respective fluid is also included) | [(LT <sup>2</sup> )/M]              | 1/Pa                 |
| nc <sub>t</sub>   |                    | Porosity-compressibility factor: nc <sub>t</sub> = n·c <sub>t</sub>                                                                                                                                                                                                                                                                    | [(LT <sup>2</sup> )/M]              | 1/Pa                 |
| nc <sub>t</sub> b |                    | Porosity-compressibility-thickness product: nc <sub>t</sub> b= n·c <sub>t</sub> ·b                                                                                                                                                                                                                                                     | $[(L^2T^2)/M]$                      | m/Pa                 |
| n                 |                    | Total porosity                                                                                                                                                                                                                                                                                                                         |                                     | -                    |
| n <sub>e</sub>    |                    | Kinematic porosity, (Effective porosity)                                                                                                                                                                                                                                                                                               | -                                   | -                    |
| е                 |                    | Transport aperture. e = n <sub>e</sub> ·b                                                                                                                                                                                                                                                                                              | [L]                                 | m                    |
|                   | Danish             | Describe                                                                                                                                                                                                                                                                                                                               | FR 4 /1 31                          | 1 // 3\              |
| ρ                 | Density            | Density                                                                                                                                                                                                                                                                                                                                | [M/L <sup>3</sup> ]                 | kg/(m³)              |
| ρ <sub>w</sub>    | Density-w          | Fluid density in measurement section during pumping/injection                                                                                                                                                                                                                                                                          | [M/L <sup>3</sup> ]                 | kg/(m³)              |
| $\rho_0$          | Density-o          | Fluid density in observation section                                                                                                                                                                                                                                                                                                   | [M/L <sup>3</sup> ]                 | kg/(m³)              |
| $ ho_{\sf sp}$    | Density-sp         | Fluid density in standpipes from measurement section                                                                                                                                                                                                                                                                                   | [M/L <sup>3</sup> ]                 | kg/(m <sup>3</sup> ) |
| μ                 | my                 | Dynamic viscosity  Dynamic viscosity (Fluid density in measurement section                                                                                                                                                                                                                                                             | [M/LT]                              | Pa s<br>Pa s         |
| μ <sub>w</sub>    | my                 | during pumping/injection)                                                                                                                                                                                                                                                                                                              | [M/LT]                              |                      |
| FC <sub>T</sub>   |                    | Fluid coefficient for intrinsic permeability, transference of k to K; K=FC <sub>T</sub> ·k; FC <sub>T</sub> = $\rho_w$ ·g/ $\mu_w$                                                                                                                                                                                                     | [1/LT]                              | 1/(ms)               |
| FCs               |                    | Fluid coefficient for porosity-compressibility, transference of $c_t$ to $S_s$ ; $S_s$ = $FC_S$ · $n$ · $c_t$ ; $FC_S$ = $\rho_w$ · $g$                                                                                                                                                                                                | [ M/T <sup>2</sup> L <sup>2</sup> ] | Pa/m                 |
| Index on K        | , T and S          | 10. o(10 03; 03 . 03 o(; 1 03 pw g                                                                                                                                                                                                                                                                                                     |                                     |                      |
| S                 |                    | S: semi-log                                                                                                                                                                                                                                                                                                                            |                                     |                      |
| L                 |                    | L: log-log                                                                                                                                                                                                                                                                                                                             |                                     |                      |
| f                 |                    | Pump phase or injection phase, designation following S or L (withdrawal)                                                                                                                                                                                                                                                               |                                     |                      |
| S                 |                    | Recovery phase, designation following S or L (recovery)                                                                                                                                                                                                                                                                                |                                     |                      |
| NLR               |                    | NLR: Non-linear regression. Performed on the entire test sequence, perturbation and recovery                                                                                                                                                                                                                                           |                                     |                      |
| М                 |                    | Moye                                                                                                                                                                                                                                                                                                                                   |                                     |                      |
| GRF               |                    | Generalised Radial Flow according to Barker (1988)                                                                                                                                                                                                                                                                                     |                                     |                      |
| m                 |                    | Matrix                                                                                                                                                                                                                                                                                                                                 |                                     |                      |
| f                 |                    | Fracture                                                                                                                                                                                                                                                                                                                               |                                     |                      |
| Т                 |                    | Judged best evaluation based on transient evaluation.                                                                                                                                                                                                                                                                                  |                                     |                      |

| Character SICADA Explanation designation |                | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dimension | Unit |
|------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| Tot                                      |                | Judged most representative parameter for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |
| b                                        |                | Bloch property in a numerical groundwater flow model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      |
| е                                        |                | Effective property (constant) within a domain in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |      |
| C                                        |                | numerical groundwater flow model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |
| Index on p                               | and Q          | Transcriber groundwater new meder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         |      |
| 0                                        |                | Initial condition, undisturbed condition in open holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |
| i                                        |                | Natural, "undisturbed" condition of formation parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |
| f                                        |                | Pump phase or injection phase (withdrawal, flowing phase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |      |
| S                                        |                | Recovery, shut-in phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |
| р                                        |                | Pressure or flow in measuring section at end of perturbation period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |      |
| F                                        |                | Pressure in measuring section at end of recovery period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |      |
| m                                        |                | Arithmetical mean value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |
| С                                        |                | Estimated value. The index is placed last if index for "where" and "what" are used. Simulated value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |      |
| m                                        |                | Measured value. The index is placed last if index for<br>"where" and "what" are used. Measured value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      |
| Some misc                                | ellaneous inde | xes on p and h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |      |
| W                                        |                | Test section (final difference pressure during flow phase in test section can be expressed dp <sub>wp</sub> ; First index shows "where" and second index shows "what")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |
| 0                                        |                | Observation section (final difference pressure during flow phase in observation section can be expressed dp <sub>op</sub> ; First index shows "where" and second index shows "what")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      |
| f                                        |                | Fresh-water head. Water is normally pumped up from section to measuring hoses where pressure and level are observed. Density of the water is therefore approximately the same as that of the measuring section. Measured groundwater level is therefore normally represented by what is defined as point-water head. If pressure at the measuring level is recalculated to a level for a column of water with density of fresh water above the measuring point it is referred to as fresh-water head and h is indicated last by an f. Observation section (final level during flow phase in observation section can be expressed h <sub>opf</sub> ; the first index shows "where" and the second index shows "what" and the last one "recalculation") |           |      |

|                                              | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Sum                                | mary Sheet                        |                                               |                                           |                                        |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------|
| Project:                                     | Oskarshamn site inve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stigatio                             | n Test type:[1]                   |                                               |                                           | CHi                                    |
| Area:                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Laxem                                | ar Test no:                       |                                               |                                           |                                        |
| Borehole ID:                                 | KI X11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | A Test start:                     | +                                             |                                           | 060629 14:32                           |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |                                               |                                           |                                        |
| Test section from - to (m):                  | 103.00-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 203.00                               | m Responsible for test execution: |                                               |                                           | Stephan Roh                            |
| Section diameter, 2·r <sub>w</sub> (m):      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07                                 | 6 Responsible for                 |                                               | Crist                                     | ian Enachescı                          |
| Linear plot Q and p                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | test evaluation:                  |                                               | Recovery period                           |                                        |
| · · · · · · · · · · · · · · · · · · ·        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Indata                            | <u>, , , , , , , , , , , , , , , , , , , </u> | Indata                                    | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |
| 2400                                         | KLX11A_103.00-203.00_060629_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section                            | p <sub>0</sub> (kPa) =            | 1842                                          |                                           |                                        |
| 2200                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P above 18<br>P below                | p <sub>i</sub> (kPa ) =           | 1837                                          |                                           |                                        |
| 2000                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                   | $p_p(kPa) =$                      | 2035                                          | p <sub>F</sub> (kPa ) =                   | 184                                    |
| 200                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                   | $Q_p (m^3/s) =$                   | 1.31E-04                                      |                                           |                                        |
| 1800 ·                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                   | to (a) -                          | 1800                                          | t <sub>F</sub> (s) =                      | 180                                    |
| 중 1800 -<br>1 1800 -<br>1 1800 -<br>1 1800 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                   | S el S* (-)=                      |                                               | S el S <sup>*</sup> (-)=                  | 1.00E-0                                |
| apole apole                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | EC <sub>w</sub> (mS/m)=           |                                               | 00.0()                                    |                                        |
| 1400                                         | The state of the s | †®                                   | Temp <sub>w</sub> (gr C)=         | 9.6                                           |                                           |                                        |
| 1200                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                    | Derivative fact.=                 |                                               | Derivative fact.=                         | 0.0                                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                    |                                   | ***                                           |                                           |                                        |
| 1000                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                    |                                   |                                               |                                           |                                        |
| 0.00 0.50 1.00 Elap                          | 1.50 2.00 seed Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.50                                 | Results                           |                                               | Results                                   |                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Q/s $(m^2/s)=$                    | 6.5E-06                                       |                                           |                                        |
| Log-Log plot incl. derivates-                | flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | $T_{\rm M} (m^2/s) =$             | 8.5E-06                                       |                                           |                                        |
| Elapsed tir                                  | me [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | Flow regime:                      | transient                                     | Flow regime:                              | transient                              |
| 102                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\neg$                               | $dt_1$ (min) =                    | 0.73                                          | $dt_1$ (min) =                            | 0.9                                    |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | $dt_2 (min) =$                    | 21.10                                         | $dt_2$ (min) =                            | 27.4                                   |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ┥.                                   | $T (m^2/s) =$                     | 1.6E-05                                       | $T (m^2/s) =$                             | 2.5E-0                                 |
| 101                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-1</sup>                     | S (-) =                           | 1.0E-06                                       | . , ,                                     | 1.0E-0                                 |
| 1                                            | <b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | $K_s (m/s) =$                     |                                               | $K_s (m/s) =$                             | 2.5E-0                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | C (4/m) -                         |                                               | $S_s(1/m) =$                              | 1.0E-0                                 |
| 팅 10 <sup>0</sup>                            | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10-2                                 | C (m <sup>3</sup> /Pa) =          | NA                                            | $C (m^3/Pa) =$                            | 3.1E-0                                 |
| 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | $C_D(-) =$                        | NA                                            | $C_D(-) =$                                | 3.4E-0                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ξ(-) =                            |                                               | ξ(-) =                                    | 13.                                    |
| 10-1                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>-3</sup>                     | Ç (-) —                           | 0.7                                           | ς (-) –                                   | 10.2                                   |
|                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | $T_{GRF}(m^2/s) =$                | 6.2E-06                                       | $T_{GRF}(m^2/s) =$                        | 7.4E-0                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-4</sup>                     | $S_{GRF}(-) =$                    | 1.0E-06                                       |                                           | 1.0E-0                                 |
| 10 11 10 1                                   | 10 <sup>13</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 14                                | D <sub>GRF</sub> (-) =            |                                               | D <sub>GRF</sub> (-) =                    | 2.                                     |
| Log-Log plot incl. derivatives               | - recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | Selected repres                   |                                               |                                           |                                        |
| Hapsed tim                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | dt <sub>1</sub> (min) =           |                                               | $C (m^3/Pa) =$                            | 3.1E-0                                 |
| 102                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | $dt_2 (min) =$                    |                                               | $C_D(-) =$                                | 3.4E-0                                 |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                    | $T_T (m^2/s) =$                   | 1.6E-05                                       |                                           | 6.                                     |
| - a de state de contraction                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                  | S(-) =                            | 1.0E-06                                       |                                           | <del>-</del>                           |
| Ze se    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>                      | $K_s (m/s) =$                     | 8.0E-07                                       |                                           |                                        |
| 101                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                   |                                   | 5.0E-08                                       |                                           |                                        |
| . // . `                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | 5.0⊑-08                                       |                                           |                                        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                   | Comments:                         |                                               | C1 (F 5 2)                                | : .16 -4                               |
| \(\frac{1}{2}\).                             | . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F10 <sup>1</sup>                     |                                   |                                               | f 1.6E-5 m2/s was do                      |                                        |
| 10                                           | A Commence of the Commence of  | 10                                   |                                   |                                               | se, which shows the range for the interva |                                        |
| • • • • • • • • • • • • • • • • • • • •      | A STATE OF THE STA | $\dashv$                             |                                   |                                               | m2/s. The static pre-                     |                                        |
| · •                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |                                               |                                           |                                        |
|                                              | A Maria Mari | 3                                    |                                   |                                               | om the CHir phase u                       |                                        |
|                                              | I Same Aller and A Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>10 <sup>5</sup> 10 <sup>0</sup> | at transducer depth               | n, was derived fro                            |                                           | sing straight                          |

|              |                                               | CHii                                                             |
|--------------|-----------------------------------------------|------------------------------------------------------------------|
|              |                                               | 1                                                                |
|              |                                               | 060629 18:03                                                     |
|              |                                               |                                                                  |
|              |                                               | Stephan Rohs                                                     |
|              | Crist                                         | ian Enachescı                                                    |
|              | Recovery period                               |                                                                  |
|              | Indata                                        |                                                                  |
| 2780         | )                                             |                                                                  |
| 2776         | 5                                             |                                                                  |
| 2975         | p <sub>F</sub> (kPa ) =                       | 277                                                              |
| 1.52E-04     | l.                                            |                                                                  |
| 1800         | t <sub>F</sub> (s) =                          | 180                                                              |
|              | S el S <sup>*</sup> (-)=                      | 1.00E-0                                                          |
|              | 0010()                                        |                                                                  |
| 11.1         |                                               |                                                                  |
| 0.02         |                                               | 0.0                                                              |
| 0.02         | Derivative last.                              | 0.0                                                              |
|              |                                               |                                                                  |
|              | Results                                       |                                                                  |
| 7.5E-06      | 6                                             |                                                                  |
| 9.7E-06      | 6                                             |                                                                  |
| ransient     | Flow regime:                                  | transient                                                        |
| 0.68         | $dt_1$ (min) =                                | 0.4                                                              |
|              | $dt_2 \text{ (min)} =$                        | 5.2                                                              |
|              | $T (m^2/s) =$                                 | 3.2E-0                                                           |
| 1.0E-06      |                                               | 1.0E-0                                                           |
|              | $K_s (m/s) =$                                 | 3.2E-0                                                           |
|              | $S_s(1/m) =$                                  | 1.0E-0                                                           |
| 1.0L-00      | ,                                             |                                                                  |
|              | $C (m^3/Pa) =$                                | 2.3E-0                                                           |
| NA           | C <sub>D</sub> (-) =                          | 2.6E-01                                                          |
| 18.7         | ζ ξ (-) =                                     | 19.1                                                             |
| 8 7F-06      | $T_{GRF}(m^2/s) =$                            | 8.1E-06                                                          |
| 1.0E-06      |                                               | 1.0E-0                                                           |
|              | $D_{GRF}(-) =$                                | 2.                                                               |
| tative paran |                                               |                                                                  |
|              | <u>-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1</u> | 2 2 5 0                                                          |
| 0.40         | 0 (III /I u)                                  | 2.3E-0                                                           |
| 5.27         | 5 ( )                                         | 2.6E-0                                                           |
| 3.2E-05      |                                               | 19.                                                              |
| 1.0E-06      |                                               |                                                                  |
| 1.6E-06      |                                               |                                                                  |
| 5.0E-08      | <u> </u>                                      |                                                                  |
|              |                                               |                                                                  |
|              | f 3.2E-5 m2/s was d                           |                                                                  |
|              | ase, which shows the                          |                                                                  |
|              | range for the interva<br>m2/s. The static pre |                                                                  |
|              |                                               |                                                                  |
|              |                                               |                                                                  |
| · r · ·      | . ,                                           |                                                                  |
|              |                                               | derived from the CHir phase u<br>Horner plot to a value of 2,776 |

|                                                  | Test Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ımı                    | mary Sheet                              |                 |                                               |                 |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|-----------------|-----------------------------------------------|-----------------|
| Project:                                         | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation                  | Test type:[1]                           |                 |                                               | CHi             |
| Area:                                            | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emar                   | Test no:                                |                 |                                               |                 |
| Borehole ID:                                     | KLX11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | Test start:                             |                 |                                               | 060630 09:15    |
| Test section from - to (m):                      | 303.00-403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 m                   | Responsible for                         |                 |                                               | Stephan Roh     |
| , ,                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | test execution:                         |                 |                                               | -               |
| Section diameter, 2·r <sub>w</sub> (m):          | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ).076                  | Responsible for test evaluation:        |                 | Crist                                         | ian Enachesci   |
| Linear plot Q and p                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Flow period                             |                 | Recovery period                               |                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                     | Indata                                  |                 | Indata                                        |                 |
| 3900 - KLX11A_303.00-403.00_060630_1_CHir_Q_r    | P section P above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | p <sub>0</sub> (kPa) =                  | 3714            |                                               |                 |
|                                                  | • P bdaw<br>• O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ľ                      | p <sub>i</sub> (kPa ) =                 | 3712            |                                               |                 |
| 3700                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                      | $p_p(kPa) =$                            |                 | p <sub>F</sub> (kPa ) =                       | 371             |
| 3500                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                      | $Q_p (m^3/s) =$                         | 5.67E-05        |                                               |                 |
| [kPa]                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 E                    | tp (s) =                                | 1800            | t <sub>F</sub> (s) =                          | 180             |
| 5 3300 : :                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Injection Rate [1/min] | S el S <sup>*</sup> (-)=                | 1.00E-06        | S el S <sup>*</sup> (-)=                      | 1.00E-0         |
| 80 a 3100                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Injection              | EC <sub>w</sub> (mS/m)=                 |                 |                                               |                 |
| ***                                              | The state of the s |                        | Temp <sub>w</sub> (gr C)=               | 12.6            |                                               |                 |
| 2900                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                      | Derivative fact.=                       | 0.07            | Derivative fact.=                             | 0.0             |
| 2700                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                      |                                         |                 |                                               |                 |
| 200                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                      | Danilla                                 |                 | Describe                                      |                 |
| 0.00 0.20 0.40 0.60 0.80 1.<br>Elapsed           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00                   | Results                                 | 0.05.00         | Results                                       | ı               |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Q/s $(m^2/s)=$                          | 2.9E-06         |                                               |                 |
| Log-Log plot incl. derivates- fl                 | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | $T_{\rm M}  ({\rm m}^2/{\rm s}) =$      | 3.7E-06         |                                               |                 |
| 10, <sup>-4</sup> 10, <sup>-3</sup> Elapsed time | [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                      | Flow regime:                            | transient       | Flow regime:                                  | transient       |
| 102                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $dt_1$ (min) =                          |                 | $dt_1$ (min) =                                | 1.7             |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>0</sup>        | $dt_2$ (min) =                          |                 | $dt_2 (min) =$                                | 9.3             |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $T (m^2/s) =$                           | 6.9E-06         | $T (m^2/s) =$                                 | 6.0E-0          |
| - 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                    | S (-) =                                 | 1.0E-06         | S (-) =                                       | 1.0E-0          |
| 101                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | $K_s (m/s) =$                           | 6.9E-08         | $K_s (m/s) =$                                 | 6.0E-0          |
| 5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-1</sup> ∈     | $S_s(1/m) =$                            | 1.0E-08         | $S_s(1/m) =$                                  | 1.0E-0          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d)' [min               | $C (m^3/Pa) =$                          | NA              | C (m <sup>3</sup> /Pa) =                      | 4.4E-1          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                   | $C_D(-) =$                              | NA              | $C_D(-) =$                                    | 4.8E-0          |
| 100                                              | و المعالم المع |                        | ξ(-) =                                  |                 | ξ(-) =                                        | 14.             |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-2</sup>       | ∂ (-) —                                 | 0.0             | <i>⊳</i> (⁻) −                                |                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $T_{GRF}(m^2/s) =$                      | 1.5E-06         | T (m²/a) -                                    | NA              |
|                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003                  | $S_{GRF}(III/S) =$ $S_{GRF}(-) =$       | 1.0E-06         | $T_{GRF}(m^2/s) = S_{GRF}(-) =$               | NA              |
| 10 <sup>10</sup> 10 <sup>11</sup> tD             | 10 <sup>12</sup> 10 <sup>13</sup> 10 <sup>14</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                         |                 | $D_{GRF}(-)$ =                                | NA              |
| Log-Log plot incl. derivatives-                  | wa a a sua mu ma mi a d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | D <sub>GRF</sub> (-) = Selected represe |                 |                                               | INA             |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |                 |                                               | 4 4 5 4         |
| Elapsed time [10 <sup>-3</sup> ]                 | 10,2 10,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | dt <sub>1</sub> (min) =                 | 1.78            | $C (m^3/Pa) =$                                | 4.4E-1          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $dt_2 \text{ (min)} =$                  |                 | $C_D(-) =$                                    | 4.8E-0          |
|                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00                     | $T_T (m^2/s) =$                         | 6.0E-06         |                                               | 14.             |
| A                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | S (-) =                                 | 1.0E-06         |                                               |                 |
| 101                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02                     | $K_s$ (m/s) =                           | 3.0E-07         |                                               |                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $S_s (1/m) =$                           | 5.0E-08         |                                               |                 |
| na   //                                          | [3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ); KPa]                | Comments:                               |                 |                                               |                 |
|                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0, (p-p0)*             | The recommended                         |                 | f 6.0E-6 m2/s was de                          |                 |
| 100                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01 4                   |                                         |                 | ise (outer zone), whi                         |                 |
|                                                  | The state of the s |                        |                                         |                 | The confidence range                          |                 |
|                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                         |                 | E-6 to 9.0E-6 m2/s.                           |                 |
|                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                         |                 | oth, was derived from<br>on in the Horner plo |                 |
|                                                  | 103 10 1051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                     | 3,705.2 kPa.                            | ime extrapolati | on in the Horner pio                          | t to a value of |
| 10 <sup>1</sup> 10 <sup>2</sup>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |                 |                                               |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ımı                                   | mary Sheet                                    |                    |                                           |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------|-------------------------------------------|------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atior                                 | Test type:[1]                                 |                    |                                           | CHi              |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ema                                   | r Test no:                                    |                    |                                           | •                |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <11 <i>I</i>                          | Test start:                                   |                    |                                           | 060630 13:11     |
| Took on the or forms to (m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    |                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Responsible for test execution:               |                    |                                           | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .076                                  | Responsible for test evaluation:              |                    | Crist                                     | ian Enachescu    |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Flow period                                   |                    | Recovery period                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Indata                                        |                    | Indata                                    |                  |
| KLX11A_403.00-503.00_060630_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6                                   | p <sub>0</sub> (kPa) =                        | 4653               |                                           |                  |
| الم بسار أ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A P above P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | p <sub>i</sub> (kPa ) =                       | 4650               |                                           |                  |
| 4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | $p_p(kPa) =$                                  |                    | p <sub>F</sub> (kPa ) =                   | 4650             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                   | $Q_p (m^3/s) =$                               | 1.17E-06           |                                           |                  |
| 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 4200 - 42 | <b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | min)                                  | tp (s) =                                      |                    | t <sub>F</sub> (s) =                      | 180              |
| 2 400 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | injection Rate [l/min]                | S el S <sup>*</sup> (-)=                      | 1.00E-06           | S el S <sup>*</sup> (-)=                  | 1.00E-0          |
| ownhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Injectio                              | EC <sub>w</sub> (mS/m)=                       |                    |                                           |                  |
| <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                   | Temp <sub>w</sub> (gr C)=                     | 14.0               |                                           |                  |
| 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Derivative fact.=                             | 0.07               | Derivative fact.=                         | 0.0              |
| 3700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    |                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    |                                           |                  |
| 0.00 0.50 1.00 Elapsed Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.50 2.00<br>te [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                   | Results                                       | F 0F 00            | Results                                   | I                |
| <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Q/s $(m^2/s)=$                                | 5.6E-08            |                                           |                  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | $T_{\rm M}  ({\rm m}^2/{\rm s}) =$            | 7.3E-08            |                                           |                  |
| 10, <sup>-4</sup> 10, <sup>-3</sup> 10, <sup>-2</sup> Elapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | Flow regime:                                  | transient          | Flow regime:                              | transient        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | $dt_1 (min) =$                                | NA                 | $dt_1 (min) =$                            | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                    | $dt_2 (min) =$                                | NA                 | $dt_2 (min) =$                            | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>1</sup>                       | $T (m^2/s) =$                                 |                    | $T (m^2/s) =$                             | 2.7E-0           |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | S (-) =                                       | 1.0E-06            |                                           | 1.0E-0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                     | $K_s (m/s) =$                                 |                    | $K_s (m/s) =$                             | 2.7E-0           |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , , , , , , , , , , , , , , , , , , | $S_s(1/m) =$                                  |                    | $S_s(1/m) =$                              | 1.0E-0           |
| dbi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10° [10]                              | $C (m^3/Pa) =$                                | NA                 | $C (m^3/Pa) =$                            | 2.4E-1           |
| 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/0                                   | $C_D(-) =$                                    | NA                 | $C_D(-) =$                                | 2.6E-0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                                   | ξ (-) =                                       | 8.5                | ξ (-) =                                   | 20.              |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | $T_{GRF}(m^2/s) =$                            | NA                 | $T_{GRF}(m^2/s) =$                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 -1                                 | $S_{GRF}(III/S) =$                            | NA                 | $S_{GRF}(III/S) =$                        | NA               |
| 10 <sup>10</sup> 10 <sup>11</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 <sup>12</sup> 10 <sup>13</sup> 10 <sup>14</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | $D_{GRF}(-) =$                                | NA                 | $D_{GRF}(-)$ =                            | NA               |
| Log-Log plot incl. derivatives- r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | Selected represe                              |                    |                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | $dt_1 (min) =$                                | NA                 | C (m <sup>3</sup> /Pa) =                  | 2.4E-1           |
| 10 <sup>2</sup> Hapsed tighe [n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA                 | $C_D(-) =$                                | 2.4E-0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 2                                             | 2.7E-07            |                                           | 20.5             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00                                    | $T_T (m^2/s) = S (-) =$                       | 1.0E-06            |                                           | 20               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 <sup>2</sup>                        | $K_s (m/s) =$                                 | 1.4E-08            |                                           |                  |
| 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o                                     | $S_s (11/s) =$ $S_s (1/m) =$                  | 5.0E-08            |                                           |                  |
| <i>[</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                               | 3.0L-00            |                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 (F                                  | The management of                             |                    | 62.7-10.7 2/2 2                           | daniara d Cuarra |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | اء<br>10 ج                            | i ne recommended                              |                    | f 2.7•10-7 m2/s was<br>phase, which shows |                  |
| 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                               |                    | nce range for the inte                    |                  |
| /.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and a second sec |                                       | transmissivity is es                          | timated to be 8.0  | •10-8 to 6.0•10-7 m                       | 2/s. The static  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | pressure measured                             | at transducer de   | oth, was derived from                     | m the CHir       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0°                                    |                                               | t line extrapolati | on in the Horner plo                      | ot to a value of |
| 10 <sup>d</sup> 10 <sup>f</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup> 10 <sup>3</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 3,705.2 kPa.                                  |                    |                                           |                  |

|                                                | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sum                                             | mary Sheet                      |           |                                           |                                       |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------|-----------|-------------------------------------------|---------------------------------------|
| Project:                                       | Oskarshamn site inves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tigation                                        | Test type:[1]                   |           |                                           | CHi                                   |
| Area:                                          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | axema                                           | r Test no:                      |           |                                           | 1                                     |
| Borehole ID:                                   | l k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (I X11/                                         | Test start:                     |           |                                           | 060701 08:47                          |
| Borchole IB.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                 |           |                                           |                                       |
| Test section from - to (m):                    | 503.00-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03.00 m                                         | Responsible for test execution: |           |                                           | Stephan Rohs                          |
| Section diameter, 2·r <sub>w</sub> (m):        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                                           | Responsible for                 |           | Crist                                     | ian Enachescu                         |
| Linear plot Q and p                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | test evaluation:                |           | Recovery period                           |                                       |
| Emedi plot & and p                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Indata                          |           | Indata                                    |                                       |
| 5900                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                              | p <sub>0</sub> (kPa) =          | 5578      |                                           |                                       |
| KLX11A_503.00-603.00_060701_1_CHIr_Q_r         | P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | section<br>above 18<br>below                    | p <sub>i</sub> (kPa ) =         | 5580      |                                           |                                       |
| 5700                                           | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                              | $p_p(kPa) =$                    | 5795      | p <sub>F</sub> (kPa ) =                   | 560                                   |
| 5500                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                              | $Q_p (m^3/s) =$                 | 1.91E-04  |                                           |                                       |
| · ·                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | $\operatorname{tp}(s) =$        |           | t <sub>F</sub> (s) =                      | 1800                                  |
| (eg) suno-                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 [u w/] es                                    | S el S <sup>*</sup> (-)=        |           | S el S <sup>*</sup> (-)=                  | 1.00E-0                               |
| · .                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 12 10 11 12 11 12 11 12 11 11 11 11 11 11 11 | EC <sub>w</sub> (mS/m)=         | 1.002 00  | 3 61 3 (-)-                               | 1.002 0                               |
| g                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 <u>e</u>                                      | Temp <sub>w</sub> (gr C)=       | 15.6      |                                           |                                       |
| 4900                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                               | Derivative fact.=               |           | Derivative fact.=                         | 0.0                                   |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                               | Derivative fact.=               | 0.02      | Derivative fact.=                         | 0.0                                   |
| 4700                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                               |                                 | 1         |                                           |                                       |
| 4500                                           | 1,<br>1,50 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                               | Results                         |           | Results                                   |                                       |
|                                                | 150 200<br>Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | $Q/s (m^2/s)=$                  | 8.7E-06   |                                           |                                       |
| Log-Log plot incl. derivates- fl               | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | $T_{\rm M} (m^2/s) =$           | 1.1E-05   |                                           |                                       |
|                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | Flow regime:                    | transient | Flow regime:                              | transient                             |
| 10 <sup>-3</sup> 10 <sup>-2</sup> Elapsed time | "10 <sub>1</sub> -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>'</u>                                        | $dt_1 (min) =$                  |           | $dt_1 \text{ (min)} =$                    | 0.6                                   |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                             | $dt_2 (min) =$                  |           | $dt_2 \text{ (min)} =$                    | 22.28                                 |
| 1                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                             | , ,                             |           | $T (m^2/s) =$                             | 2.4E-0                                |
| †                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-1                                            | <u> </u>                        | 1.0E-06   |                                           | 1.0E-0                                |
| 101                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0 ( )                           |           | $K_s(m/s) =$                              | 2.4E-0                                |
| 1                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                                            | -5 ()                           |           | - ' '                                     |                                       |
| •                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Luin II                                         | $S_s(1/m) =$                    |           | $S_s(1/m) =$                              | 1.0E-0                                |
| <u> </u>                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 2                                            | $C (m^3/Pa) =$                  | NA        | $C (m^3/Pa) =$                            | 3.3E-09                               |
| 100                                            | 4<br>, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | $C_D(-) =$                      | NA        | $C_D(-) =$                                | 3.6E-0                                |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                                           | ξ (-) =                         | 4.8       | ξ (-) =                                   | 7.4                                   |
|                                                | in the dark of the second of t | •                                               | 2                               | 7.75.00   | 2                                         | 0.05.0                                |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-3</sup>                                | $T_{GRF}(m^2/s) =$              |           | $T_{GRF}(m^2/s) =$                        | 9.0E-06                               |
| 10 <sup>9</sup> 10 <sup>10</sup> tD            | 10 <sup>11</sup> 10 <sup>12</sup> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 <sup>13</sup>                                 | $S_{GRF}(-) =$                  | 1.0E-06   |                                           | 1.0E-0                                |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | D <sub>GRF</sub> (-) =          |           | D <sub>GRF</sub> (-) =                    | 2.                                    |
| Log-Log plot incl. derivatives-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Selected represe                | <u> </u>  |                                           |                                       |
| Elapsed time [h                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٦.                                              | $dt_1 (min) =$                  | 0.68      | Ο (III /I α)                              | 3.3E-0                                |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>3</sup>                                 | $dt_2 (min) =$                  |           | $C_D(-) =$                                | 3.6E-0                                |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | †                                               | $T_T (m^2/s) =$                 | 2.4E-05   |                                           | 7.4                                   |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                             | S (-) =                         | 1.0E-06   |                                           |                                       |
| 107                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                               | $K_s (m/s) =$                   | 1.2E-06   |                                           |                                       |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>                                 | $S_s(1/m) =$                    | 5.0E-08   |                                           |                                       |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 (00-0)                                       | Comments:                       |           |                                           | · · · · · · · · · · · · · · · · · · · |
| -   //                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 (6                                           | The recommended                 |           | f 2.4E-5 m2/s was de                      |                                       |
| 100                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | radiai iiow anarysis            |           | se, which shows the                       |                                       |
| 7                                              | Maria and and a second a second and a second a second and | 101                                             |                                 |           | range for the interval                    |                                       |
| •                                              | ن مدیست                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                 |           | m2/s. The static preson the CHir phase us |                                       |
|                                                | an and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                               |                                 |           | t to a value of 5,579                     |                                       |
| 101 102                                        | 10 <sup>3</sup> 10 <sup>4</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>.</u>                                        | January January I               | pio       |                                           |                                       |
| tD/CD                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 1                               |           |                                           |                                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                          | umi                | mary Sheet                                          |                 |                                            |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|-----------------------------------------------------|-----------------|--------------------------------------------|-----------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi                         | gatior             | Test type:[1]                                       |                 |                                            | CHi             |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                             | kema               | Test no:                                            |                 |                                            | •               |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KI                                              | X11A               | Test start:                                         |                 |                                            | 060701 12:14    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                    |                                                     |                 |                                            |                 |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion from - to (m): 603.00-703.00 m             |                    | Responsible for test execution:                     |                 |                                            | Stephan Rohs    |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | 0.076              | Responsible for test evaluation:                    |                 | Crist                                      | ian Enachescu   |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                    | Flow period                                         |                 | Recovery period                            |                 |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                    | Indata                                              |                 | Indata                                     |                 |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KLX11A_603.00-703.00_060701_1_CHir_Q_r          | 0.010              | p <sub>0</sub> (kPa) =                              | 6514            |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.009              | p <sub>i</sub> (kPa ) =                             | 6549            |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.008              | $p_p(kPa) =$                                        | 6754            | p <sub>F</sub> (kPa ) =                    | 658             |
| 6600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                        | 0.007              | $Q_p (m^3/s) =$                                     | 3.33E-08        |                                            |                 |
| [eps]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P section P above P below                       | 10.006 €           | tp (s) =                                            | 1800            | t <sub>F</sub> (s) =                       | 360             |
| B 6000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · Q                                             | Rate [l/m in] 9000 | S el S <sup>*</sup> (-)=                            |                 | S el S <sup>*</sup> (-)=                   | 1.00E-0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i.<br>F                                         | lujection P        | EC <sub>w</sub> (mS/m)=                             |                 | 3 61 3 (-)-                                |                 |
| 800<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ę<br>S                                          | 0.004              | Temp <sub>w</sub> (gr C)=                           | 17.1            |                                            |                 |
| 5900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.003              | Derivative fact.=                                   |                 | Derivative fact.=                          | 0.0             |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 0.002              | Derivative lact.                                    | 0.2             | Derivative fact.                           | 0.0             |
| 5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.001              |                                                     |                 |                                            |                 |
| 5500<br>0.00 0.50 1.00 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 250 300                                     | 0.000              | Results                                             |                 | Results                                    |                 |
| Elapsed Time [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                    | Q/s $(m^2/s)=$                                      | 1.6E-09         |                                            |                 |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w period                                        |                    |                                                     | 2.1E-09         |                                            |                 |
| Log-Log plot ilici. delivates- ilo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w periou                                        |                    | T <sub>M</sub> (m <sup>2</sup> /s)=<br>Flow regime: | transient       | Flow regime:                               | transient       |
| 10, <sup>-3</sup> Elapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .10.1                                           |                    | $dt_1 \text{ (min)} =$                              | NA              |                                            | NA              |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                    | ` ′                                                 |                 | dt <sub>1</sub> (min) =                    |                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 10 <sup>3</sup>    | dt <sub>2</sub> (min) =                             | NA<br>5 05 40   | $dt_2 (min) =$                             | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·           |                    | $T (m^2/s) =$                                       |                 | $T (m^2/s) =$                              | 2.3E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 300                | S (-) =                                             | 1.0E-06         |                                            | 1.0E-0          |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                    | $K_s (m/s) =$                                       |                 | $K_s (m/s) =$                              | 2.3E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . • . · · · · · · · · · · · · · · · · ·         | 10 <sup>2</sup>    | $S_s(1/m) =$                                        |                 | $S_s(1/m) =$                               | 1.0E-0          |
| GB(J) GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . *. *.                                         | /o/ [mi            | C (m³/Pa) =                                         | NA              | C (m³/Pa) =                                | 1.9E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 30                 | $C_D(-) =$                                          | NA              | $C_D(-) =$                                 | 2.1E-0          |
| 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                    | ξ (-) =                                             | -1.4            | ξ (-) =                                    | -1.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 <sup>1</sup>    |                                                     |                 |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                    | $T_{GRF}(m^2/s) =$                                  | 1.6E-09         | · GKF(··· / • /                            | NA              |
| 10-1, 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> | 3                  | $S_{GRF}(-) =$                                      | 1.0E-06         |                                            | NA              |
| tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                    | D <sub>GRF</sub> (-) =                              |                 | D <sub>GRF</sub> (-) =                     | NA              |
| Log-Log plot incl. derivatives- r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecovery period                                  |                    | Selected represe                                    |                 | ieters.                                    |                 |
| Bapsed time (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | ı                  | $dt_1$ (min) =                                      | NA              | C (m³/Pa) =                                | 1.9E-1          |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 300                | $dt_2$ (min) =                                      | NA              | $C_D(-) =$                                 | 2.1E-0          |
| A STATE OF THE PARTY OF THE PAR |                                                 | 10 <sup>2</sup>    | $T_T (m^2/s) =$                                     | 2.3E-10         |                                            | -1.9            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10                 | S (-) =                                             | 1.0E-06         |                                            |                 |
| 10-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 30                 | $K_s (m/s) =$                                       | 1.2E-11         |                                            |                 |
| got.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 30                 | $S_s(1/m) =$                                        | 5.0E-08         |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 101                | Comments:                                           |                 |                                            |                 |
| <sup>3</sup> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | - Q                |                                                     |                 | f 2.3E-10 m2/s was                         |                 |
| 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | 3                  | radial flow analysis                                | of the CHir pha | se, which shows the                        | better data and |
| joint 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | ľ                  |                                                     |                 | ange for the interva                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 <sup>0</sup>    |                                                     |                 | 0 m2/s (this range i                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                    |                                                     |                 | The static pressure<br>the CHir phase usin |                 |
| 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> | ļ                  |                                                     |                 | value of 6,513.4 kl                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                    |                                                     |                 |                                            |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                                | Sumi            | mary Sheet                             |           |                                                |              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------|----------------------------------------|-----------|------------------------------------------------|--------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site invest                                | igatior         | Test type:[1]                          |           |                                                | CHi          |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | La                                                    | xema            | Test no:                               |           |                                                |              |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K                                                     | LX11A           | Test start:                            |           | 060701 17                                      |              |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 703.00-801                                            | 3 00 m          | Responsible for                        |           | Stephan R                                      |              |  |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 700.00-000                                            |                 | test execution:                        |           |                                                |              |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 0.076           | Responsible for test evaluation:       |           | Crist                                          | ian Enachesc |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                 | Flow period                            |           | Recovery period                                |              |  |
| 7800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 0.010           | Indata                                 |           | Indata                                         |              |  |
| KLX11A_703.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -803.00_060701_1_CHir_Q_r<br>• P section<br>• P above | 0.009           | p <sub>0</sub> (kPa) =                 | 7443      |                                                |              |  |
| 7800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • P below                                             |                 | p <sub>i</sub> (kPa ) =                | 7477      |                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 800.0           | $p_p(kPa) =$                           |           | p <sub>F</sub> (kPa ) =                        | 745          |  |
| 7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                     | 0.007           | $Q_p (m^3/s) =$                        | 3.33E-08  |                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.006 =         | tp (s) =                               | 1800      | $t_F$ (s) =                                    | 2160         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Rate [l/m in ]  | S el S <sup>*</sup> (-)=               | 1.00E-06  | S el S <sup>*</sup> (-)=                       | 1.00E-0      |  |
| 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 0.004 III       | EC <sub>w</sub> (mS/m)=                |           |                                                |              |  |
| ă                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                 | Temp <sub>w</sub> (gr C)=              | 18.6      |                                                |              |  |
| 6800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 0.003           | Derivative fact.=                      | 0.1       | Derivative fact.=                              | 0.0          |  |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 0.002           |                                        |           |                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.001           |                                        |           |                                                |              |  |
| 0.00 1.00 2.00 3.00 4.00<br>Elaps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00 6.00 7.00 8.00<br>ed Time [h]                    | 9.00            | Results                                |           | Results                                        | ı            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                 | Q/s $(m^2/s)=$                         | 1.6E-09   |                                                |              |  |
| Log-Log plot incl. derivates-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flow period                                           |                 | $T_M (m^2/s)=$                         | 2.1E-09   |                                                |              |  |
| Elapsed tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne [h]                                                |                 | Flow regime:                           | transient | Flow regime:                                   | transient    |  |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 3000            | $dt_1$ (min) =                         | NA        | $dt_1$ (min) =                                 | NA           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 3000            | $dt_2$ (min) =                         | NA        | $dt_2$ (min) =                                 | NA           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 10 <sup>3</sup> | $T (m^2/s) =$                          | 2.9E-10   | $T (m^2/s) =$                                  | 2.0E-1       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                 | S (-) =                                | 1.0E-06   | S (-) =                                        | 1.0E-0       |  |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Por principal and the second                          | 300             | $K_s (m/s) =$                          | 2.9E-12   | $K_s (m/s) =$                                  | 2.0E-1       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                 | ]               | $S_{s}(1/m) =$                         | 1.0E-08   | $S_s(1/m) =$                                   | 1.0E-0       |  |
| D Advantage of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | 10 <sup>2</sup> | C (m³/Pa) =                            | NA        | $C (m^3/Pa) =$                                 | 2.4E-1       |  |
| 5 Some Good day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • · · · · · · · · · · · · · · · · · · ·               | 3               | $C_D(-) =$                             | NA        | $C_D(-) =$                                     | 2.6E-0       |  |
| 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                   | 30              | ξ(-) =                                 |           | ξ(-) =                                         | -2.          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                                                    | 30              | 5()                                    | 1         | 5()                                            |              |  |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | 10 <sup>1</sup> | $T_{GRF}(m^2/s) =$                     | 6.0F-10   | $T_{GRF}(m^2/s) =$                             | NA           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                 | $S_{GRF}(m/s) =$ $S_{GRF}(-) =$        | 1.0E-06   |                                                | NA           |  |
| 10 <sup>-2</sup> 10 <sup>-1</sup> t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <sup>0</sup> 10 <sup>1</sup> 10                    | 2               |                                        |           |                                                | NA           |  |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                 | D <sub>GRF</sub> (-) = Selected repres |           | - OKI ( )                                      | INA          |  |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o (b)                                                 |                 |                                        |           |                                                | 2 45 4       |  |
| 10 1 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | ì               | dt <sub>1</sub> (min) =                | NA        | $C (m^3/Pa) =$                                 | 2.4E-1       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 3000            | $dt_2 (min) =$                         | NA        | $C_D(-) =$                                     | 2.6E-0       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                 | $T_T (m^2/s) =$                        | 2.0E-10   |                                                | -2.          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 10 <sup>3</sup> | S (-) =                                | 1.0E-06   |                                                |              |  |
| 10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | -               | $K_s (m/s) =$                          | 1.0E-11   |                                                |              |  |
| pitth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 300             | $S_s (1/m) =$                          | 5.0E-08   |                                                |              |  |
| a de la companya de l |                                                       | 2               | Comments:                              |           |                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 10 <sup>2</sup> |                                        |           | f 2.0E-10 m2/s was                             |              |  |
| 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | ,               |                                        |           | ase, which shows the                           |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 30              |                                        |           | range for the interva<br>10 m2/s. The static p |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                 |                                        |           | derived from the CH                            |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 10 <sup>1</sup> |                                        |           | orner plot to a value                          |              |  |
| 10 <sup>0</sup> 10 <sup>1</sup> tD/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>6</sup>       | ł               |                                        |           |                                                | ,            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                 | -                                      |           |                                                |              |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test Sui         | mmary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                              |                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|------------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | investigat       | ion Test type:[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                              | CHi              |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laxer            | nar Test no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                              |                  |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KLX1             | 1A Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 060702 09:                                   |                  |  |
| Toot coation from to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 003 00        | ) m Doononsible for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                              |                  |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .00-903.00       | ) m Responsible for<br>test execution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                              | Stephan Rohs     |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0              | 076 Responsible for<br>test evaluation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Crist                                        | ian Enachescu    |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Recovery period                              |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Indata                                       |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KLX11A_803.00-903.00_060702_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Presion        | ° p <sub>0</sub> (kPa) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8351                |                                              |                  |  |
| 8600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KENTA_000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pabove 0.01      | <sup>s</sup> p <sub>i</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8354                |                                              |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01             | $p_p(kPa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8589                | p <sub>F</sub> (kPa ) =                      | 835              |  |
| 8400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $Q_p (m^3/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.67E-08            |                                              |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>t</b>         | to (a) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1800                | $t_F$ (s) =                                  | 720              |  |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $\int_{0}^{2} \int_{0}^{\infty} \int_{0$ | 1.00E-06            | S el S <sup>*</sup> (-)=                     | 1.00E-0          |  |
| E 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | EC <sub>w</sub> (mS/m)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | . ,                                          |                  |  |
| NO .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00             | Temp <sub>w</sub> (gr C)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.1                |                                              |                  |  |
| 7800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>.</b> . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 0.14              | Derivative fact.=                            | 0.0              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                              |                  |  |
| 7600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                              |                  |  |
| 7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00             | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Results                                      |                  |  |
| 0.00 0.50 1.00 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200 250 3.00 3.50<br>Elapsed Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.00 4.50        | $Q/s (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.8E-09             |                                              |                  |  |
| Log-Log plot incl. derivate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s- flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6E-09             |                                              |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | T <sub>M</sub> (m <sup>2</sup> /s)=<br>Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | transient           | Flow regime:                                 | transient        |  |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | osed time [h] 19, <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,1             | $dt_1 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                              | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ` ′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | ` '                                          | !                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | $dt_2 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | $dt_2 (min) =$                               | NA 0.05.0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STANSON OF THE STAN | 300              | $T(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | $T (m^2/s) =$                                | 2.9E-0           |  |
| 10 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Take Take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F10 <sup>2</sup> | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0E-06             |                                              | 1.0E-0           |  |
| 9,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                   | $K_s (m/s) =$                                | 2.9E-1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Action of the Control of the Contr |                  | $S_s (1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $S_s(1/m) =$                                 | 1.0E-0           |  |
| , v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30               | © (m³/Pa) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                  | $C (m^3/Pa) =$                               | 3.1E-1           |  |
| 10-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>1</sup>  | <sup>₹</sup> C <sub>D</sub> (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                  | $C_D(-) =$                                   | 3.4E-0           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ["               | ξ (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.8                | ξ (-) =                                      | 1.               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                              |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [3               | $T_{GRF}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8E-09             | $T_{GRF}(m^2/s) =$                           | NA               |  |
| 10 <sup>-2</sup> 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>0</sup> 10 <sup>1</sup> 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103              | $S_{GRF}(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0E-06             | S <sub>GRF</sub> (-) =                       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | $D_{GRF}$ (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7                 | D <sub>GRF</sub> (-) =                       | NA               |  |
| Log-Log plot incl. derivati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ves- recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Selected repre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sentative paran     | neters.                                      |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | $dt_1 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                  | $C (m^3/Pa) =$                               | 3.1E-1           |  |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $dt_2$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                  | $C_D(-) =$                                   | 3.4E-0           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000             | $T_T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.9E-09             |                                              | 1.               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0E-06             |                                              |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>3</sup>  | $K_s$ (m/s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5E-10             |                                              |                  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | $S_s(1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0E-08             |                                              |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J.UL-00             | I                                            |                  |  |
| d qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>`</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 <sup>2</sup>  | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d transmississis    | £2.0E.0 m2/~ 1                               | arivad fram 41 - |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10               | radial flow analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | f 2.9E-9 m2/s was d<br>ase, which shows the  |                  |  |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | radiai iio w anary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | range for the interva                        |                  |  |
| A Company of the Comp | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | 9 m2/s (this range in                        |                  |  |
| A Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | derived transmiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ivity of the CHi pl | hase). The static pre                        | ssure measured   |  |
| <i>37</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>1</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                              |                  |  |
| <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | om the CHir phase u<br>t to a value of 8,333 |                  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                  | umr                   | nary Sheet                      |               |                                        |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|---------------------------------|---------------|----------------------------------------|-----------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig                | gation                | Test type:[1]                   |               |                                        | Р               |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                     | emar                  | Test no:                        |               |                                        |                 |
| D I. I. ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/1                                     | V44A                  | T                               |               |                                        | 000700 44 4     |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                                      | X11A                  | Test start:                     |               |                                        | 060702 14:45    |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                       | Responsible for test execution: |               |                                        | Stephan Rohs    |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 0.076                 | Responsible for                 |               | Crist                                  | ian Enachescı   |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                       | test evaluation: Flow period    |               | Recovery period                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | Indata                          |               | Indata                                 |                 |
| 9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 0.005                 | p <sub>0</sub> (kPa) =          | 9027          |                                        |                 |
| 9400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KLX11A_876.00-976.00_060702_1_PI_Q_r    |                       | p <sub>i</sub> (kPa ) =         | 9042          |                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.004                 | $p_p(kPa) =$                    | 9253          | p <sub>F</sub> (kPa ) =                | 920             |
| 9200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                       |                       | $Q_p (m^3/s) =$                 | NA            | . , ,                                  |                 |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :                                       | 0.003 =               | tp (s) =                        | 10            | t <sub>F</sub> (s) =                   | 397             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | lojection Rate [Vmin] | S el S <sup>*</sup> (-)=        |               | S el S <sup>*</sup> (-)=               | 1.00E-0         |
| 5<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                       | ection Ra             | EC <sub>w</sub> (mS/m)=         |               | 0 61 0 (-)-                            |                 |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | - 0.002 ≦             | Temp <sub>w</sub> (gr C)=       | 21.2          |                                        |                 |
| :<br>8400 <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Psection                              |                       | Derivative fact.=               | NA            | Derivative fact.=                      | 0.0             |
| • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pabove Pbelow Q                         | - 0.001               | Bonvativo naot.                 | 1 1/2 1       | Donvativo laot.                        | 0.0             |
| 8200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I.i.                                    |                       |                                 |               |                                        |                 |
| 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.000                 | Results                         | <u> </u>      | Results                                |                 |
| 0.00 0.90 1.00<br>Elapsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.50 2.00<br>Time [h]                   |                       | Q/s $(m^2/s)=$                  | NA            | rtoounto                               |                 |
| Log-Log plot incl. derivates- f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | low period                              |                       | $T_M (m^2/s) =$                 | NA            |                                        |                 |
| Log-Log plot mei. denvates- i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | low period                              |                       | Flow regime:                    | transient     | Flow regime:                           | transient       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | dt <sub>1</sub> (min) =         | NA            | dt <sub>1</sub> (min) =                | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $dt_1 (min) =$ $dt_2 (min) =$   | NA            | $dt_1 (min) = $ $dt_2 (min) = $        | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | ` ,                             | NA            |                                        | 4.0E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $T (m^2/s) = S (-) =$           | Na            | $T (m^2/s) = S (-) =$                  | 1.0E-0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | 0 ( )                           | NA<br>NA      | 9()                                    |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | K <sub>s</sub> (m/s) =          | NA<br>NA      | $K_s (m/s) =$                          | 4.0E-1          |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nalysed                                 |                       | $S_s(1/m) =$                    |               | S <sub>s</sub> (1/m) =                 | 1.0E-0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $C (m^3/Pa) =$                  | NA            | $C (m^3/Pa) =$                         | 2.6E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $C_D(-) =$                      | NA            | $C_D(-) =$                             | 2.8E-0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | ξ (-) =                         | NA            | ξ (-) =                                | -1.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | 2                               | NI A          | 2                                      | 0.05.4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $T_{GRF}(m^2/s) =$              | NA            | $T_{GRF}(m^2/s) =$                     | 6.2E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $S_{GRF}(-) =$                  | NA            | $S_{GRF}(-) =$                         | 1.0E-0          |
| l     - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                       | D <sub>GRF</sub> (-) =          | NA            | D <sub>GRF</sub> (-) =                 | 1.3             |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                       | Selected represe                |               |                                        | 2.65.4          |
| 10 1 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 101                                   | 1                     | dt <sub>1</sub> (min) =         | NA            | C (m <sup>3</sup> /Pa) =               | 2.6E-1          |
| ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                       | $dt_2 (min) =$                  | NA<br>4.05.44 | $C_D(-) =$                             | 2.8E-0          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 10 <sup>1</sup>       | $T_T(m^2/s) =$                  | 4.0E-11       |                                        | -1.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | S (-) =                         | 1.0E-06       |                                        |                 |
| 10 <sup>-0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 3                     | $K_s (m/s) =$                   | 2.0E-12       |                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ns sa.                | $S_s (1/m) =$                   | 5.0E-08       |                                        |                 |
| a de la companya de l |                                         | 10° oluted pre        | Comments:                       |               | 24.0E 11 . 27                          | 1 . 10 .        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.74<br>7.44                            | Pecanvo               |                                 |               | 4.0E-11 m2/s was of The confidence ran |                 |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * * * * * * * * * * * * * * * * * * * * | 0.3                   | interval transmissiv            |               |                                        | ge ioi uie      |
| //:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 10 -1                 |                                 |               | pressure could not                     | be extrapolated |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 10                    | due to the very low             |               |                                        | -               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                       |                                 |               |                                        |                 |
| 10 <sup>-2</sup> 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>0</sup> 10 <sup>1</sup> 10      | 0.03                  |                                 |               |                                        |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Su                                                    | ımı                      | nary Sheet                       |                  |                               |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|----------------------------------|------------------|-------------------------------|---------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investiga                                  | ation                    | Test type:[1]                    |                  |                               | CHi           |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxe                                                       | emar                     | Test no:                         |                  |                               |               |  |
| D 1 1 1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 171.                                                       | /                        | T                                |                  | 000704.00                     |               |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX                                                        | (11A                     | Test start:                      |                  |                               | 060704 08:19  |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103.00-123.00 m                                            |                          | Responsible for test execution:  |                  |                               | Stephan Rohs  |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                          | .076                     | Responsible for test evaluation: |                  | Crist                         | ian Enachescu |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                          | Flow period                      |                  | Recovery period               |               |  |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                          | Indata                           |                  | Indata                        |               |  |
| 5400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | 5                        | p <sub>0</sub> (kPa) =           | 1091             |                               |               |  |
| KLX11A_103.00-123.00_060704_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Psection Pabove Pbelow                                     |                          | p <sub>i</sub> (kPa ) =          | 1093             |                               |               |  |
| 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0                                                         | 4                        | $p_p(kPa) =$                     | 1293             | p <sub>F</sub> (kPa ) =       | 1093          |  |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                          |                          | $Q_p (m^3/s) =$                  | 2.33E-05         | . , ,                         |               |  |
| 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                                                          |                          | tp(s) =                          |                  | t <sub>F</sub> (s) =          | 120           |  |
| Tidd a man and a |                                                            | te [Vmin]                |                                  |                  | S el S <sup>*</sup> (-)=      | 1.00E-0       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | ction Ra                 | S el S* (-)=                     | 1.00E-00         | S el S (-)=                   | 1.00E-0       |  |
| Downth de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            | 2 =                      | EC <sub>w</sub> (mS/m)=          |                  |                               |               |  |
| 1000 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **************************************                     |                          | Temp <sub>w</sub> (gr C)=        | 8.4              |                               |               |  |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            | 1                        | Derivative fact.=                | 0.05             | Derivative fact.=             | 0.0           |  |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                          |                          |                                  |                  |                               |               |  |
| 0.00 0.20 0.40 0.60 0.00 Elapsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            | 1.60                     | Results                          |                  | Results                       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                          | $Q/s (m^2/s) =$                  | 1.1E-06          |                               |               |  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w period                                                   |                          | $T_M (m^2/s) =$                  | 1.2E-06          |                               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                          |                          | Flow regime:                     | transient        | Flow regime:                  | transient     |  |
| 10 <sup>-4</sup> Elapsed time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nj<br>10, <sup>-2</sup> 10, <sup>-1</sup> 10, <sup>0</sup> | ì                        | dt <sub>1</sub> (min) =          |                  | $dt_1 (min) =$                | 0.6           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                          | $dt_1 (min) =$ $dt_2 (min) =$    |                  | $dt_1 (min) =$ $dt_2 (min) =$ | 6.7           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 3                        | , ,                              |                  | , ,                           | 4.9E-0        |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | 10 <sup>0</sup>          | $T (m^2/s) =$                    |                  | $T (m^2/s) =$                 |               |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S See econfo <sub>s</sub> erations (military)              | 10                       | S (-) =                          | 1.0E-06          |                               | 1.0E-0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | [                        | $K_s (m/s) =$                    |                  | $K_s (m/s) =$                 | 2.5E-0        |  |
| .(100).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            | 0.3                      | $S_s (1/m) =$                    |                  | $S_s (1/m) =$                 | 5.0E-0        |  |
| (14p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            | 1,0%                     | C (m³/Pa) =                      | NA               | C (m <sup>3</sup> /Pa) =      | 6.3E-1        |  |
| 10 <sup>o</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | 10 \$                    | $C_D(-) =$                       | NA               | $C_D(-) =$                    | 7.0E-0        |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            | ŀ                        | ξ (-) =                          | 4.7              | ξ(-) =                        | 19.           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                        | 0.03                     |                                  |                  |                               |               |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | F10 <sup>-2</sup>        | $T_{GRF}(m^2/s) =$               | NA               | $T_{GRF}(m^2/s) =$            | NA            |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | F                        | $S_{GRF}(-) =$                   | NA               | $S_{GRF}(-) =$                | NA            |  |
| 10 <sup>7</sup> 10 <sup>8</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 <sup>9</sup> 10 <sup>10</sup> 10 <sup>1</sup>           |                          | D <sub>GRF</sub> (-) =           | NA               | D <sub>GRF</sub> (-) =        | NA            |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                            |                          | Selected represe                 |                  |                               |               |  |
| Elapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | position position                                          |                          | $dt_1$ (min) =                   | 0.61             | C (m³/Pa) =                   | 6.3E-1        |  |
| 10,15 10,4 10,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,-2                                                      |                          | $dt_2 \text{ (min)} =$           |                  | $C_D(-) =$                    | 7.0E-0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                          |                                  |                  |                               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                                        | )                        | $T_T (m^2/s) =$                  | 4.9E-06          |                               | 19.           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                          | S (-) =                          | 1.0E-06          |                               |               |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <sup>-1</sup>                                           |                          | $K_s (m/s) =$                    | 2.5E-07          |                               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>"</i> .                                                 | _                        | $S_s (1/m) =$                    | 5.0E-08          |                               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                         | )) [kPa                  | Comments:                        |                  |                               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | _<br>p-p0, (p-p0)' [kPa] |                                  |                  | 4.9E-6 m2/s was de            |               |  |
| 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 10                                                       | p-b                      |                                  |                  | se, which was consi           |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A de la                |                          |                                  |                  | e for the interval tran       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                          |                          |                                  |                  | 2/s. The static pressu        |               |  |
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | İ                                                          |                          | transducer depth, w              |                  | -                             |               |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                         | 0                        | extrapolation in the             | Horner plot to a | value of 1,092.9 kl           | Pa.           |  |
| 10 <sup>0</sup> 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup>            |                          |                                  |                  |                               |               |  |

|                                                       | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sumr                           | nary Sheet                      |                   |                          |                                                  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|-------------------|--------------------------|--------------------------------------------------|
| Project:                                              | Oskarshamn site invest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tigation                       | Test type:[1]                   |                   |                          | CHi                                              |
| Area:                                                 | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | axemar                         | Test no:                        |                   |                          | •                                                |
| Borehole ID:                                          | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T X11A                         | Test start:                     |                   |                          | 060704 10:31                                     |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |                   |                          |                                                  |
| Test section from - to (m):                           | 123.00-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.00 m                         | Responsible for test execution: |                   |                          | Stephan Rohs                                     |
| Section diameter, 2·r <sub>w</sub> (m):               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                          | Responsible for                 |                   | Crist                    | ian Enachescu                                    |
| Linear plot Q and p                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | test evaluation: Flow period    |                   | Recovery period          |                                                  |
| Linear plot & and p                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Indata                          |                   | Indata                   |                                                  |
| 1600                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 10                           | p <sub>0</sub> (kPa) =          | 1279              |                          |                                                  |
| KLX11A_123.00-143.00_060704_1_CHir_Q_r                | • Ps<br>• Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ection<br>bove +9              | p <sub>i</sub> (kPa ) =         | 1275              |                          |                                                  |
| 1500 -                                                | • Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | elow                           | $p_p(kPa) =$                    |                   | p <sub>F</sub> (kPa ) =  | 127:                                             |
|                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                             |                                 | 6.50E-05          |                          | 127                                              |
| s400 -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                              | $Q_p (m^3/s) =$                 |                   |                          | 120                                              |
| (a)                                                   | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 July                         | tp (s) =                        |                   | t <sub>F</sub> (s) =     | 120                                              |
| 1300                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P G G Injection Rate [Vmin]    | S el S <sup>*</sup> (-)=        | 1.00E-06          | S el S <sup>*</sup> (-)= | 1.00E-0                                          |
| Sownhol Company                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nje ctik                       | EC <sub>w</sub> (mS/m)=         |                   |                          |                                                  |
| 1200                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                              | Temp <sub>w</sub> (gr C)=       | 8.7               |                          |                                                  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Derivative fact.=               | 0.13              | Derivative fact.=        | 0.0                                              |
| 1100                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ [                            |                                 |                   |                          |                                                  |
| 300                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |                   |                          |                                                  |
| 0.00 0.20 0.40 0.60 Elapsed Til                       | 0.80 1.00 1.20<br>me [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.40                           | Results                         |                   | Results                  |                                                  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | $Q/s (m^2/s) =$                 | 3.2E-06           |                          |                                                  |
| Log-Log plot incl. derivates- flo                     | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | $T_M (m^2/s) =$                 | 3.3E-06           |                          |                                                  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Flow regime:                    | transient         | Flow regime:             | transient                                        |
| Elapsed time   10. <sup>-5</sup>                      | [h] 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del> -                  | $dt_1$ (min) =                  | 0.32              | $dt_1$ (min) =           | 0.4                                              |
| 10                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10°                            | $dt_2$ (min) =                  | 1.16              | $dt_2$ (min) =           | 1.6                                              |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | $T (m^2/s) =$                   | 9.4E-06           | $T (m^2/s) =$            | 8.1E-0                                           |
| a deber                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                            | S (-) =                         | 1.0E-06           | , ,                      | 1.0E-0                                           |
| 10 1                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-1                           | $K_s (m/s) =$                   |                   | $K_s$ (m/s) =            | 4.1E-0                                           |
| · .                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                             | S <sub>s</sub> (1/m) =          |                   | S <sub>s</sub> (1/m) =   | 5.0E-0                                           |
| (항)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ), [min/f                      | . ,                             | NA                | - ,                      | 1.2E-0                                           |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03 (b/1)                     | O (III /I u)                    | NA                | $C (m^3/Pa) =$           |                                                  |
| 10 <sup>07</sup>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 -2                          | C <sub>D</sub> (-) =            |                   | C <sub>D</sub> (-) =     | 1.4E-0                                           |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | ξ (-) =                         | 10.2              | ξ (-) =                  | 7.9                                              |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                          |                                 |                   |                          |                                                  |
| 10 12 10 13 10 14                                     | 10 15 10 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 17                          | $T_{GRF}(m^2/s) =$              |                   | $T_{GRF}(m^2/s) =$       | 1.2E-0                                           |
| 10 <sup>12</sup> 10 <sup>13</sup> 10 <sup>14</sup> tD | 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IU                             | $S_{GRF}(-) =$                  | 1.0E-06           |                          | 1.0E-0                                           |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | $D_{GRF}$ (-) =                 |                   | D <sub>GRF</sub> (-) =   | 2.3                                              |
| Log-Log plot incl. derivatives-                       | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Selected represe                | intative paran    | neters.                  |                                                  |
| 4 3 Elapsed time                                      | ihl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | $dt_1$ (min) =                  | 0.47              | C (m <sup>3</sup> /Pa) = | 1.2E-0                                           |
| 10. <sup>-4</sup> 10. <sup>-3</sup> 10. <sup>-2</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103                            | $dt_2$ (min) =                  | 1.60              | C <sub>D</sub> (-) =     | 1.4E-0                                           |
|                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                             | $T_T (m^2/s) =$                 | 8.1E-06           | ξ (-) =                  | 7.9                                              |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                              | S (-) =                         | 1.0E-06           |                          | 1                                                |
| 101                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>                | $K_s (m/s) =$                   | 4.1E-07           |                          |                                                  |
| ·i                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                              | S <sub>s</sub> (1/m) =          | 5.0E-08           |                          | <del>                                     </del> |
|                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>R</u>                       | Comments:                       | 3.32 30           |                          | 1                                                |
| 100                                                   | t :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01<br>01<br>0-00, (0-00), [kPa |                                 | tranomicoivity a  | f 8.1E-6 m2/s was de     | arived from the                                  |
|                                                       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | p-b0. (                        |                                 |                   | se (inner zone), whi     |                                                  |
| 10-1                                                  | Manage of the same | $\dashv$                       | better data and deri            |                   |                          |                                                  |
| IU .                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>0</sup>                | transmissivity is est           |                   |                          |                                                  |
| į.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                              |                                 |                   | oth, was derived from    |                                                  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | pressure measured a             | at transducer dej | oni, was actived from    |                                                  |
| 10 <sup>1</sup> 10 <sup>2</sup> ID/CD                 | 10 <sup>3</sup> 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105                            |                                 |                   | on in the Horner plo     |                                                  |

|                                                 | Test Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ımn                         | nary Sheet                       |                  |                          |                                          |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|------------------|--------------------------|------------------------------------------|
| Project:                                        | Oskarshamn site investiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation                       | Test type:[1]                    |                  |                          | CHi                                      |
| Area:                                           | Laxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emar                        | Test no:                         |                  |                          |                                          |
| Darahala ID.                                    | IZI V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4 4 A                      | Test start:                      |                  |                          | 000704.40:40                             |
| Borehole ID:                                    | KLX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (11A                        | i est start:                     |                  |                          | 060704 12:49                             |
| Test section from - to (m):                     | 143.00-163.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | Responsible for test execution:  |                  |                          | Stephan Roh                              |
| Section diameter, 2·r <sub>w</sub> (m):         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | Responsible for test evaluation: |                  | Crist                    | ian Enachesc                             |
| Linear plot Q and p                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Flow period                      |                  | Recovery period          |                                          |
| · · ·                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Indata                           |                  | Indata                   | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |
| 1800                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                         | p <sub>0</sub> (kPa) =           | 1469             |                          |                                          |
|                                                 | 3.00-163.00_060704_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | p <sub>i</sub> (kPa ) =          | 1464             |                          |                                          |
| 1700                                            | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | $p_p(kPa) =$                     | 1671             | p <sub>F</sub> (kPa ) =  | 146                                      |
| 1600                                            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                         | $Q_p (m^3/s) =$                  | 6.67E-06         |                          |                                          |
| - 1900<br>                                      | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [u]                         | tp (s) =                         | 1200             | t <sub>F</sub> (s) =     | 180                                      |
| 2 1500                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rate [Vm]                   | S el S <sup>*</sup> (-)=         |                  | S el S <sup>*</sup> (-)= | 1.00E-0                                  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ੋ<br>injection Rate [l/min] | EC <sub>w</sub> (mS/m)=          | 1.00E 00         | S el S (-)-              | 1.00E 0                                  |
| 1400                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           | Temp <sub>w</sub> (gr C)=        | 8.9              |                          |                                          |
|                                                 | ¥.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                         |                                  |                  | De introduction          | 0.0                                      |
| 1300                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Derivative fact.=                | 0.02             | Derivative fact.=        | 0.0                                      |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                  |                  |                          |                                          |
| 0.00 0.20 0.40 0.60 0.80 Elapsed                | 1.00 1.20 1.40 1.50 1.8<br>Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                          | Results                          |                  | Results                  | •                                        |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Q/s $(m^2/s)=$                   | 3.2E-07          |                          |                                          |
| Log-Log plot incl. derivates- fl                | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | $T_{\rm M} (m^2/s) =$            | 3.3E-07          |                          | 1                                        |
|                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | Flow regime:                     | transient        | Flow regime:             | transient                                |
| 10, <sup>-4</sup> 10, <sup>-3</sup> Elapsed tim | e[h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | $dt_1 \text{ (min)} =$           | 2 41             | dt <sub>1</sub> (min) =  | 6.4                                      |
| 10                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | $dt_2 \text{ (min)} =$           |                  | $dt_2 (min) =$           | 27.4                                     |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                           | 3                                |                  | $T (m^2/s) =$            | 1.4E-0                                   |
| . 0.220                                         | , ·· · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                  |                  | . ,                      |                                          |
| 10 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>0</sup>             | 0 ( )                            | 1.0E-06          |                          | 1.0E-0                                   |
|                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | $K_s (m/s) =$                    |                  | $K_s$ (m/s) =            | 7.0E-0                                   |
| · ·                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                         | $S_s(1/m) =$                     |                  | $S_s(1/m) =$             | 5.0E-0                                   |
|                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1/0).1                     | C (m <sup>3</sup> /Pa) =         | NA               | C (m³/Pa) =              | 9.5E-1                                   |
| 10-1                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-1 %                      | $C_D(-) =$                       | NA               | C <sub>D</sub> (-) =     | 1.0E-0                                   |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | ξ (-) =                          | -3.5             | ξ (-) =                  | 1.                                       |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                        |                                  |                  |                          |                                          |
|                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-2                        | $T_{GRF}(m^2/s) =$               |                  | $T_{GRF}(m^2/s) =$       | NA                                       |
| 10 <sup>-1</sup> 10 <sup>0</sup> ti             | 10 <sup>1</sup> 10 <sup>2</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | $S_{GRF}(-) =$                   | 1.0E-06          | $S_{GRF}(-)$ =           | NA                                       |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | $D_{GRF}$ (-) =                  | 2.3              | $D_{GRF}$ (-) =          | NA                                       |
| Log-Log plot incl. derivatives-                 | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Selected represe                 | ntative paran    | ieters.                  |                                          |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | $dt_1$ (min) =                   | 6.49             | C (m³/Pa) =              | 9.5E-1                                   |
| 10 <sup>2</sup> 10,15 10,14 10,13               | 10,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                           | $dt_2$ (min) =                   | 27.49            | C <sub>D</sub> (-) =     | 1.0E-0                                   |
|                                                 | 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           | $T_T (m^2/s) =$                  | 1.4E-07          | ξ(-) =                   | 1.                                       |
|                                                 | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | S (-) =                          | 1.0E-06          |                          |                                          |
|                                                 | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J                           | $K_s$ (m/s) =                    | 7.0E-09          |                          |                                          |
| 10                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                           | $S_s(1/m) =$                     | 5.0E-08          |                          |                                          |
| 3                                               | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | [kPa]                       | Comments:                        | 3.02 00          |                          | <u> </u>                                 |
| a                                               | St. Astronometer 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , (p-p0)*                   |                                  | tranomicoivity a | 1.4E-7 m2/s was de       | arived from the                          |
| 10 10                                           | · po printer particular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-b0                        |                                  |                  | se (outer zone), whi     |                                          |
|                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                           | better data and deri             |                  |                          |                                          |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                  |                  | E-8 to 4.0E-7 m2/s.      |                                          |
|                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | pressure measured a              | at transducer de | oth, was derived from    | n the CHir                               |
| <u> </u>                                        | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | phase using straight             | line extrapolati | on in the Horner plo     | t to a value of                          |
| 10 <sup>0</sup> 10 <sup>1</sup>                 | 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | 1,443.8 kPa.                     |                  |                          |                                          |

|                                                       | Test Sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nmary Sheet                       |                  |                                            |               |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|--------------------------------------------|---------------|
| Project:                                              | Oskarshamn site investigati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on Test type:[1]                  |                  |                                            | CHi           |
| Area:                                                 | Laxem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ar Test no:                       |                  |                                            | •             |
| D 1 1 1D                                              | 10.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 = 4 4                          |                  |                                            | 000704450     |
| Borehole ID:                                          | KLX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1A Test start:                    |                  |                                            | 060704 15:05  |
| Test section from - to (m):                           | 163.00-183.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m Responsible for test execution: |                  |                                            | Stephan Roh   |
| Section diameter, 2·r <sub>w</sub> (m):               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76 Responsible for                |                  | Crist                                      | ian Enachescı |
| Linear plot Q and p                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | test evaluation: Flow period      |                  | Recovery period                            |               |
| т р т ц т                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                            |                  | Indata                                     |               |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p <sub>0</sub> (kPa) =            | 1656             |                                            |               |
| KLX11A_163.00-183.00_080704_1_CHir_Q_r                | P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p <sub>i</sub> (kPa ) =           | 1648             |                                            |               |
| 1950                                                  | ♣ P above<br>□ P below<br>• Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $p_p(kPa) =$                      | 1849             | p <sub>F</sub> (kPa ) =                    | 165           |
| 1900                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Q_p (m^3/s) =$                   | 4.17E-05         |                                            |               |
| 7750-                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tp(s) =                           | 1200             | t <sub>F</sub> (s) =                       | 120           |
| 7 (200 )                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                 |                  | S el S <sup>*</sup> (-)=                   | 1.00E-0       |
| Ted do annua 4 socyano do                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EC <sub>w</sub> (mS/m)=           | 1.00L-00         | S el S (-)=                                | 1.00L-0       |
| O 0 1000 -                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 0.2              |                                            |               |
| 1550                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp <sub>w</sub> (gr C)=         | 9.2              |                                            |               |
| 1500                                                  | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Derivative fact.=                 | 0.11             | Derivative fact.=                          | 0.0           |
| H50                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                  |                                            |               |
| 0.00 0.20 040 080 Bapsed                              | 0.80 1.00 1.20 1.40 Time [b]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Results                           |                  | Results                                    |               |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q/s $(m^2/s)=$                    | 2.0E-06          |                                            |               |
| Log-Log plot incl. derivates- fle                     | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T_{\rm M} (m^2/s) =$             | 2.1E-06          |                                            |               |
| gg p                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                      | transient        | Flow regime:                               | transient     |
| □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                 | [h] 10. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $dt_1 (min) =$                    |                  | dt <sub>1</sub> (min) =                    | 0.4           |
| 10 2                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` '                               |                  | $dt_1 (min) =$ $dt_2 (min) =$              | 9.6           |
|                                                       | 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J. 12 ( )                         | I .              |                                            |               |
|                                                       | 0.0.0.0.0000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $T (m^2/s) =$                     |                  | $T (m^2/s) =$                              | 7.2E-0        |
| 1                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S (-) =                           | 1.0E-06          |                                            | 1.0E-0        |
| 10 1                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s (m/s) =$                     |                  | $K_s (m/s) =$                              | 3.6E-0        |
| (ldb)                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S_s(1/m) =$                      | 5.0E-08          | $S_s(1/m) =$                               | 5.0E-0        |
| 1/4b(.)                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | © C (m <sup>3</sup> /Pa) =        | NA               | $C (m^3/Pa) =$                             | 6.6E-1        |
| 10 <sup>c</sup> l                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>D</sub> (-) =              | NA               | $C_D(-) =$                                 | 7.2E-0        |
| • •                                                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 ( )                             | 10.9             | ξ (-) =                                    | 14.           |
| ·                                                     | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | 3 ( )                             |                  |                                            |               |
|                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T_{GRF}(m^2/s) =$                | NA               | $T_{GRF}(m^2/s) =$                         | NA            |
| 10 <sup>12</sup> 10 <sup>13</sup> 10 <sup>14</sup> tD | 10 <sup>15</sup> 10 <sup>16</sup> 10 <sup>17</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S_{GRF}(-) =$                    | NA               | $S_{GRF}(-) =$                             | NA            |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>GRF</sub> (-) =            | NA               | D <sub>GRF</sub> (-) =                     | NA            |
| Log-Log plot incl. derivatives-                       | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected represe                  | entative paran   | neters.                                    |               |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1 (min) =$                    | 0.49             | $C (m^3/Pa) =$                             | 6.6E-10       |
| Elapsed time (h                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $dt_2 (min) =$                    | 16.72            | $C_D(-) =$                                 | 7.2E-0        |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_T (m^2/s) =$                   | 6.5E-06          |                                            | 10.           |
|                                                       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S (-) =                           | 1.0E-06          |                                            | 10.           |
| ***************************************               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s (m/s) =$                     |                  |                                            |               |
| 101                                                   | 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 3.3E-07          |                                            |               |
|                                                       | ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $S_s(1/m) =$                      | 5.0E-08          |                                            |               |
| iod od                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comments:                         |                  |                                            |               |
| .\                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                  | f 6.5E-6 m2/s was d                        |               |
| 100                                                   | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | radiai flow alialysis             |                  | se, because it shows                       |               |
|                                                       | · com and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                  | ence range for the in DE-6 to 1.0E-5 m2/s. |               |
| ·                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | awa w ve 4.l     | _ U W 1.UL-J IIIZ/S.                       | ine static    |
| · ·                                                   | [3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                  |                                            | m the CHir    |
| 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,               | 103 104 106 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pressure measured                 | at transducer de | oth, was derived from                      |               |

|                                         | Test Su                   | mn                             | nary Sheet                                        |              |                                |                  |
|-----------------------------------------|---------------------------|--------------------------------|---------------------------------------------------|--------------|--------------------------------|------------------|
| Project:                                | Oskarshamn site investiga |                                |                                                   |              |                                | CHir             |
| A 100                                   | Lava                      |                                | Taskmar                                           |              |                                |                  |
| Area:                                   | Laxer                     | mar                            | Test no:                                          |              |                                | 1                |
| Borehole ID:                            | KLX                       | 11A                            | Test start:                                       |              |                                | 060704 17:12     |
| Test section from - to (m):             | 183.00-203.00             |                                | Responsible for test execution:                   |              |                                | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m): | 0.0                       |                                | Responsible for                                   |              | Crist                          | ian Enachescu    |
|                                         |                           |                                | test evaluation:                                  |              | <u> </u>                       |                  |
| Linear plot Q and p                     |                           |                                | Flow period                                       |              | Recovery period                |                  |
| 2100                                    |                           | 10                             | Indata                                            | 1844         | Indata                         | I                |
| KLX11A_183.00-203.00_060704_1_CHir_Q_r  | • P section • P above     | 9                              | p <sub>0</sub> (kPa) =<br>p <sub>i</sub> (kPa ) = | NA           |                                |                  |
| 2000 -                                  | • P below<br>• Q          | 8                              | $p_i(kPa) = p_p(kPa) =$                           | NA<br>NA     | p <sub>F</sub> (kPa ) =        | NA               |
|                                         |                           | ,                              | •                                                 | NA<br>NA     | ρ <sub>F</sub> (κΡά ) =        | NA               |
| 1900                                    |                           | ,                              | $Q_p (m^3/s) =$                                   |              | 1 ( )                          | N. A.            |
| d d orise                               | :                         | te [Vmin]                      | tp (s) =                                          | NA           | t <sub>F</sub> (s) =           | NA               |
| fed unised approximate                  |                           | h n n<br>Injection Rate [Vmin] | S el S* (-)=                                      | NA           | S el S <sup>*</sup> (-)=       | NA               |
| 1700                                    |                           | 4 =                            | EC <sub>w</sub> (mS/m)=                           |              |                                |                  |
| 1700                                    |                           | 3                              | Temp <sub>w</sub> (gr C)=                         | 9.5          |                                |                  |
| 1600 -                                  |                           | 2                              | Derivative fact.=                                 | NA           | Derivative fact.=              | NA               |
|                                         |                           | 1                              |                                                   |              |                                |                  |
| 1500<br>0,00 0,20 0,40 0,6              | 0 0.80 1.00 1.20          | 0                              |                                                   |              |                                |                  |
| Elapsed 1                               | Time (h)                  |                                | Results                                           |              | Results                        |                  |
|                                         |                           |                                | Q/s $(m^2/s)=$                                    | NA           |                                |                  |
| Log-Log plot incl. derivates- fle       | ow period                 |                                | $T_M (m^2/s)=$                                    | NA           |                                |                  |
|                                         |                           |                                | Flow regime:                                      | transient    | Flow regime:                   | transient        |
|                                         |                           |                                | $dt_1$ (min) =                                    | NA           | $dt_1$ (min) =                 | NA               |
|                                         |                           |                                | dt <sub>2</sub> (min) =                           | NA           | $dt_2$ (min) =                 | NA               |
|                                         |                           |                                | $T (m^2/s) =$                                     | NA           | $T (m^2/s) =$                  | NA               |
|                                         |                           |                                | S (-) =                                           | NA           | S (-) =                        | NA               |
|                                         |                           |                                | $K_s (m/s) =$                                     | NA           | $K_s (m/s) =$                  | NA               |
|                                         |                           |                                | S <sub>s</sub> (1/m) =                            | NA           | $S_s(1/m) =$                   | NA               |
| Not Ar                                  | nalysed                   |                                | C (m <sup>3</sup> /Pa) =                          | NA           | $C (m^3/Pa) =$                 | NA               |
|                                         |                           |                                | $C_D(-) =$                                        | NA           | $C_D(-) =$                     | NA               |
|                                         |                           |                                | ξ(-) =                                            | NA           | ξ(-) =                         | NA               |
|                                         |                           |                                | 5()                                               | <del> </del> | 3()                            | 1                |
|                                         |                           |                                | $T_{GRF}(m^2/s) =$                                | NA           | $T_{GRF}(m^2/s) =$             | NA               |
|                                         |                           |                                | $S_{GRF}(-) =$                                    | NA           | $S_{GRF}(-) =$                 | NA               |
|                                         |                           |                                | D <sub>GRF</sub> (-) =                            | NA           | $D_{GRF}(-) =$                 | NA               |
| Log-Log plot incl. derivatives-         | recovery period           |                                | Selected represe                                  |              |                                |                  |
| . J = - 9 p                             |                           |                                | $dt_1 (min) =$                                    | NA           | C (m <sup>3</sup> /Pa) =       | NA               |
|                                         |                           |                                | $dt_1$ (min) =                                    | NA           | $C_D(-) =$                     | NA               |
|                                         |                           |                                | $T_T (m^2/s) =$                                   | NA           | ξ(-) =                         | NA               |
|                                         |                           |                                | S (-) =                                           | NA           | > (⁻) <b>-</b>                 |                  |
|                                         |                           |                                | $K_s (m/s) =$                                     | NA           |                                |                  |
|                                         |                           |                                | $S_s(11/s) =$ $S_s(1/m) =$                        | NA           |                                |                  |
|                                         |                           |                                | Comments:                                         |              | <u> </u>                       |                  |
| Not Ar                                  | narysed                   |                                |                                                   |              | ged packer complian<br>1 m2/s. | ce) the interval |
|                                         |                           |                                |                                                   |              |                                |                  |

|                                                | Test Sur                    | nmary Sheet                            |                 |                                                  |                  |
|------------------------------------------------|-----------------------------|----------------------------------------|-----------------|--------------------------------------------------|------------------|
| Project:                                       | Oskarshamn site investigati | on Test type:[1]                       |                 |                                                  | CHi              |
| Area:                                          | Lavam                       | nar Test no:                           |                 |                                                  |                  |
| Alea.                                          | Laxen                       | iai i est iio.                         |                 |                                                  | ļ                |
| Borehole ID:                                   | KLX1                        | 1A Test start:                         |                 |                                                  | 060704 18:50     |
| Test section from - to (m):                    | 203.00-223.00               | m Responsible for test execution:      |                 |                                                  | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m):        | 0.0                         | 76 Responsible for test evaluation:    |                 | Crist                                            | ian Enachescu    |
| Linear plot Q and p                            |                             | Flow period                            |                 | Recovery period                                  |                  |
|                                                |                             | Indata                                 |                 | Indata                                           |                  |
| 2300<br>KLX11A_203.00-223.00_060704_1_CHir_Q_r | • P section                 | p <sub>0</sub> (kPa) =                 | 2031            |                                                  |                  |
| 2250                                           | P above P bdow 9            | p <sub>i</sub> (kPa ) =                | NA              |                                                  |                  |
| 2200                                           |                             | $p_p(kPa) =$                           | NA              | p <sub>F</sub> (kPa ) =                          | NA               |
| 2150                                           | 7.                          | $Q_p (m^3/s) =$                        | NA              | - /                                              |                  |
| 2100                                           | 7                           |                                        | NA              | t <sub>F</sub> (s) =                             | NA               |
| 2 2050                                         | <u>;</u>                    | S el S* (-)=                           | NA              | S el S <sup>*</sup> (-)=                         | NA               |
| Ed. 2100-                                      | :                           | S el S (-)=<br>EC <sub>w</sub> (mS/m)= | 1.12.1          | ડઇાડ(-) <del>-</del>                             | - 14 1           |
| 1950                                           | 3                           | Temp <sub>w</sub> (gr C)=              | 9.8             |                                                  | 1                |
|                                                | T <sup>3</sup>              | Derivative fact.                       |                 | Derivative fact.=                                | NA               |
| 1900                                           | 2                           | Derivative fact.                       | - INA           | Derivative fact.=                                | NA               |
| 1850                                           | 1                           |                                        | +               |                                                  |                  |
| 1800 .00 0.10 0.20 0.30 0.40 0.50 Elapsed T    |                             | Darrita                                |                 | Danista                                          |                  |
| Ciapseu i                                      | and by                      | Results                                | In a            | Results                                          |                  |
| <del> </del>                                   |                             | Q/s $(m^2/s)=$                         | NA              |                                                  |                  |
| Log-Log plot incl. derivates- flo              | ow period                   | $T_M (m^2/s)=$                         | NA              |                                                  |                  |
|                                                |                             | Flow regime:                           | transient       | Flow regime:                                     | transient        |
|                                                |                             | $dt_1 (min) =$                         | NA              | $dt_1$ (min) =                                   | NA               |
|                                                |                             | $dt_2$ (min) =                         | NA              | $dt_2$ (min) =                                   | NA               |
|                                                |                             | $T (m^2/s) =$                          | NA              | $T (m^2/s) =$                                    | NA               |
|                                                |                             | S (-) =                                | NA              | S (-) =                                          | NA               |
|                                                |                             | $K_s (m/s) =$                          | NA              | $K_s (m/s) =$                                    | NA               |
| NIA4 A                                         | له مسام                     | $S_s (1/m) =$                          | NA              | $S_s (1/m) =$                                    | NA               |
| Not Ar                                         | iarysed                     | $C (m^3/Pa) =$                         | NA              | $C (m^3/Pa) =$                                   | NA               |
|                                                |                             | C <sub>D</sub> (-) =                   | NA              | C <sub>D</sub> (-) =                             | NA               |
|                                                |                             | ξ (-) =                                | NA              | ξ (-) =                                          | NA               |
|                                                |                             |                                        |                 |                                                  |                  |
|                                                |                             | $T_{GRF}(m^2/s) =$                     | NA              | $T_{GRF}(m^2/s) =$                               | NA               |
|                                                |                             | $S_{GRF}(-) =$                         | NA              | $S_{GRF}(-) =$                                   | NA               |
|                                                |                             | D <sub>GRF</sub> (-) =                 | NA              | D <sub>GRF</sub> (-) =                           | NA               |
| Log-Log plot incl. derivatives-                | recovery period             | Selected repres                        | sentative paran |                                                  |                  |
| <u> </u>                                       |                             | $dt_1 (min) =$                         | NA              | C (m <sup>3</sup> /Pa) =                         | NA               |
|                                                |                             | $dt_2 \text{ (min)} =$                 | NA              | $C_D(-) =$                                       | NA               |
|                                                |                             | $T_T (m^2/s) =$                        | NA              | ξ(-) =                                           | NA               |
|                                                |                             | S (-) =                                | NA              | ə() —                                            |                  |
|                                                |                             | $K_s (m/s) =$                          | NA              | <del>                                     </del> |                  |
|                                                |                             | $S_s (1/m) =$                          | NA              | <del>                                     </del> |                  |
|                                                |                             | Comments:                              | 1               | <u> </u>                                         | <u> </u>         |
| Not Ar                                         | larysed                     |                                        | recnonce (prolo | ged packer complian                              | ca) the interval |
|                                                |                             | transmissivity is le                   |                 |                                                  | ,                |

|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Oskarshamn site investiga                       | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test type:[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Р                  |
| Laxe                                            | maı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| KLX                                             | (11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 060705 08:38       |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stephan Roh        |
| 0                                               | .076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Responsible for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Crist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ian Enachesc       |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140404040404070404040404040404040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 | T 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2216                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| P section P above                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| * P below · Q                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | n- (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 225                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | p <sub>F</sub> (Ki a ) −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 223                |
| ***************************************         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | <b>t</b> (a) –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270                |
|                                                 | 3 [mim 5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270                |
|                                                 | tion Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00E-06                                             | S el S (-)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00E-0            |
| *                                               | 2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp <sub>w</sub> (gr C)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                   | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| 0.80 1.00 1.20 1.40                             | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Populto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | Doculto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| Timie (ii)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NΙΔ                                                  | Nesuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| ow period                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | transient          |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | $dt_2$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.4               |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                   | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3E-1             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                   | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0E-0             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                   | $K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6E-1             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_s(1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                   | S <sub>s</sub> (1/m) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0E-0             |
| nalysed                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.8E-1             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.4E-0             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.                 |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>≥</i> (⁻) −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0.1                                                | S (-) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.                 |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{opp}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                   | $T_{ops}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.5E-10            |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0E-0             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.79               |
| recovery period                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.8E-1             |
| [h]                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.4E-0             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4E-0.            |
|                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.                 |
|                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0E-08                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 | o patnic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|                                                 | 10 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| 8 3. 18 9 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| The same                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| •                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ia noi de extrapo                                    | iaica auc to the very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y 10 W             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | transmissivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> | 10 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | transmissivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| r                                               | Laxe KLX 223.00-243.0  0  **Factors** - Factors** - Fa | Laxemal KLX11A  223.00-243.00 m  0.076  1 formula and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a s | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Laxemar Test no:  KLX11A Test start:  223.00-243.00 m Responsible for test execution:  0.076 Responsible for test evaluation:  Flow period  Indata $p_0$ (kPa) = 2216 $p_1$ (kPa) = 2233 $p_0$ (kPa) = 2458 $Q_0$ (m <sup>3</sup> /s)= NA $p_0$ (kPa) = 1.00E-06  Sel S (-)= 1.00E-06  EC <sub>w</sub> (mS/m)= Temp <sub>w</sub> (gr C)= 10.0  Derivative fact = NA  Results $Q/s$ (m <sup>2</sup> /s)= NA  Flow regime: transient dt <sub>1</sub> (min) = NA  dt <sub>2</sub> (min) = NA $T$ (m <sup>2</sup> /s) = NA $T$ (m <sup>2</sup> /s) = NA $T$ (m <sup>3</sup> /s) | Laxemar   Test no: |

|                                               | Test Sur                                          | <u>mma</u>        | <u>ry Sh</u>                      | <u>eet</u>       |               |                                              |                  |
|-----------------------------------------------|---------------------------------------------------|-------------------|-----------------------------------|------------------|---------------|----------------------------------------------|------------------|
| Project:                                      | Oskarshamn site investiga                         | tion <u>Te</u>    | est type:                         | [1]              |               |                                              | CHi              |
| Area:                                         | Laxer                                             | mar Te            | est no:                           |                  |               |                                              |                  |
| Borehole ID:                                  | KLX                                               | 11A Te            | est start:                        |                  |               |                                              | 060705 10:48     |
| Test section from - to (m):                   | 243.00-263.00                                     |                   | esponsik<br>st execu              |                  | Stephan Rol   |                                              |                  |
| Section diameter, 2·r <sub>w</sub> (m):       | 0.0                                               | 076 Re            | esponsik                          | ole for          |               | Crist                                        | ian Enachescu    |
|                                               |                                                   |                   | st evalua                         |                  |               |                                              |                  |
| Linear plot Q and p                           |                                                   |                   | ow peri                           | od               |               | Recovery period                              |                  |
| 2700                                          |                                                   |                   | data                              |                  |               | Indata                                       |                  |
|                                               | KLX11A_243.00-263.00_060705_1_CHir_Q_r            |                   | (kPa) =                           |                  | 2406          |                                              |                  |
| 2650                                          | P above 0.1 P below                               | p <sub>i</sub>    | (kPa ) =                          |                  | 2403          |                                              |                  |
| 2600                                          | 0.1                                               | 16 <b>p</b> p     | (kPa) =                           | 1                | 2616          | p <sub>F</sub> (kPa ) =                      | 240              |
| 2550                                          | 0.1                                               | 14 Q <sub>p</sub> | <sub>p</sub> (m <sup>3</sup> /s)= | =                | 6.67E-07      |                                              |                  |
| <u>6</u> 2500                                 | 0.1                                               | 12 g tp           | (s) =                             |                  | 1200          | t <sub>F</sub> (s) =                         | 120              |
| 2450                                          | -0.1                                              | tp                | el S <sup>*</sup> (-)=            | =                | 1.00E-06      | S el S <sup>*</sup> (-)=                     | 1.00E-0          |
| 900                                           |                                                   | 2                 | C <sub>w</sub> (mS/ı              |                  |               | ```                                          |                  |
| 2350                                          |                                                   | ₀ Te              | emp <sub>w</sub> (gr              | C)=              | 10.4          |                                              |                  |
| 2300                                          |                                                   | De                | erivative                         |                  | 0.08          | Derivative fact.=                            | 0.0              |
|                                               |                                                   |                   |                                   |                  |               |                                              |                  |
| 2250                                          | - 0.0                                             | 02                |                                   |                  |               |                                              |                  |
| 0.00 0.20 0.40 0.60 0.<br>Elapsed             |                                                   | Re                | esults                            |                  |               | Results                                      |                  |
|                                               |                                                   | 0/                | /s (m²/s                          | \ <u>-</u>       | 3.1E-08       |                                              |                  |
| Log-Log plot incl. derivates- f               | low period                                        |                   | <sub>M</sub> (m <sup>2</sup> /s)= |                  | 3.2E-08       |                                              |                  |
| - cg - cg p.o dod.cc .                        | ion policu                                        |                   | ow regin                          |                  | transient     | Flow regime:                                 | transient        |
|                                               |                                                   |                   | 1 (min)                           | =                |               | $dt_1 \text{ (min)} =$                       | NA               |
| 10 1                                          |                                                   |                   | 2 (min)                           | <del>-</del>     |               | $dt_1 (min) =$ $dt_2 (min) =$                | NA               |
|                                               | 10 <sup>2</sup>                                   |                   |                                   |                  |               | ` ,                                          |                  |
|                                               |                                                   |                   | ( /0)                             | =                |               | $T (m^2/s) =$                                | 3.7E-0           |
| 10                                            | 30                                                |                   | ( )                               | =                | 1.0E-06       | ` '                                          | 1.0E-0           |
|                                               | 10                                                | 1                 | , ()                              | =                |               | $K_s (m/s) =$                                | 1.8E-0           |
| 3 (1/dp)                                      | •                                                 | Ξ.                | (1/m)                             |                  |               | $S_s(1/m) =$                                 | 5.0E-0           |
| ,                                             | 3                                                 | ō                 | (m <sup>3</sup> /Pa)              |                  | NA            | $C (m^3/Pa) =$                               | 5.9E-1           |
| 10                                            |                                                   |                   | <sub>D</sub> (-)                  | =                | NA            | $C_D(-) =$                                   | 6.4E-0           |
|                                               | 100                                               | ΅ ξ(              | (-)                               | =                | 6.5           | ξ (-) =                                      | 4.8              |
|                                               | 0.3                                               | To                | GRF(m²/s                          | ) =              | NA            | $T_{GRF}(m^2/s) =$                           | NA               |
| 10 <sup>8</sup> 10 <sup>9</sup> tD            | 10 10 10 11 10 12                                 |                   | GRF(-)                            | =                | NA            | $S_{GRF}(-) =$                               | NA               |
|                                               |                                                   | _                 | GRF (-)                           | =                | NA            | D <sub>GRF</sub> (-) =                       | NA               |
| Log-Log plot incl. derivatives                | recovery period                                   |                   |                                   | represe          | ntative paran |                                              |                  |
| gg p                                          | , , , , , , , , , , , , , , , , , , , ,           |                   | 1 (min)                           | 934.600.000<br>= | NA            | C (m <sup>3</sup> /Pa) =                     | 5.9E-1           |
| 10. <sup>4</sup> 10. <sup>3</sup> Elapsed tin | ne [h]                                            |                   | <sub>2</sub> (min)                | =                | NA            | $C_D(-) =$                                   | 6.4E-0           |
| 102                                           |                                                   |                   | (m <sup>2</sup> /s)               |                  | 3.7E-08       |                                              | 4.8              |
|                                               | 11                                                | o³ I <sub>T</sub> |                                   | =                | 1.0E-06       |                                              | 7.               |
| 10 <sup>13</sup>                              |                                                   |                   |                                   | =                | 1.9E-09       |                                              |                  |
|                                               |                                                   |                   | (M/s)                             |                  |               |                                              |                  |
|                                               | ["                                                | _                 | <sub>s</sub> (1/m)                | =                | 5.0E-08       |                                              |                  |
| nd 10 0                                       |                                                   | ò                 | omment                            |                  |               |                                              |                  |
|                                               |                                                   | 1 0 11            |                                   |                  |               | f 3.7E-8 m2/s was d                          |                  |
|                                               | , m. ···································          |                   |                                   |                  |               | se, which shows the<br>range for the interva |                  |
| 10-1                                          |                                                   |                   |                                   |                  |               | m2/s (this range end                         |                  |
|                                               | [11                                               |                   |                                   |                  |               | ne static pressure m                         |                  |
| ı L                                           | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup>   |                   |                                   |                  |               | the CHir phase usin                          | ng straight line |
| 10 <sup>1</sup> 10 <sup>1</sup>               | . 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> |                   |                                   |                  |               | a value of 2,401.2 k                         |                  |

|                                                                    | Test Sumr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nary Sheet                         |           |                                           |                  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|-------------------------------------------|------------------|
| Project:                                                           | Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test type:[1]                      |           |                                           | CHi              |
| Area:                                                              | Laxemar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test no:                           |           |                                           | •                |
| Borehole ID:                                                       | KLX11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test start:                        |           |                                           | 060705 13:18     |
| Test section from - to (m):                                        | 263.00-283.00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           |                                           | Stephan Roh      |
| Section diameter, 2·r <sub>w</sub> (m):                            | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | test execution:<br>Responsible for |           | Crist                                     | ian Enachesc     |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | test evaluation:                   |           |                                           |                  |
| Linear plot Q and p                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow period                        |           | Recovery period                           |                  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                             |           | Indata                                    |                  |
| 3000                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p <sub>0</sub> (kPa) =             | 2594      |                                           |                  |
| KLX11A_263.00-263.00_060705_1_CHir_Q_r                             | ●P section<br>▲ P above 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p <sub>i</sub> (kPa ) =            | 2588      |                                           |                  |
| 2900                                                               | • Q P below • 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_p(kPa) =$                       | 2789      | p <sub>F</sub> (kPa ) =                   | 259              |
| 2800                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $Q_p (m^3/s) =$                    | 1.65E-04  |                                           |                  |
| Ed.                                                                | 12 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tp (s) =                           | 1200      | t <sub>F</sub> (s) =                      | 120              |
| TACI 2000                                                          | to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th | S el S <sup>*</sup> (-)=           |           | S el S <sup>*</sup> (-)=                  | 1.00E-0          |
| 200                                                                | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EC <sub>w</sub> (mS/m)=            |           | 3 61 3 (-)-                               |                  |
| 2500                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temp <sub>w</sub> (gr C)=          | 10.8      |                                           |                  |
| 2500                                                               | 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Derivative fact.=                  |           | Derivative fact.=                         | 0.0              |
| 240                                                                | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Derivative fact.                   | 0.02      | Derivative lact.                          | 0.0              |
| 2300                                                               | 0 1.00 1.20 1.40 Thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |           |                                           |                  |
| ,                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                            |           | Results                                   |                  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Q/s (m^2/s) =$                    | 8.1E-06   |                                           |                  |
| Log-Log plot incl. derivates- flo                                  | w period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $T_{\rm M} (m^2/s) =$              | 8.4E-06   |                                           |                  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                       | transient | Flow regime:                              | transient        |
| Bapsed time [h]                                                    | 10-110.010.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dt <sub>1</sub> (min) =            | 1.28      | $dt_1$ (min) =                            | 0.5              |
| 102                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2 (min) =$                     |           | $dt_2 \text{ (min)} =$                    | 5.0              |
| 1                                                                  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T (m^2/s) =$                      |           | $T (m^2/s) =$                             | 3.6E-0           |
|                                                                    | - 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S (-) =                            | 1.0E-06   | /                                         | 1.0E-0           |
| 1012                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s(m/s) =$                       |           | $K_s(m/s) =$                              | 1.8E-0           |
|                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - ' '                              |           |                                           |                  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_s (1/m) =$                      |           | S <sub>s</sub> (1/m) =                    | 5.0E-0           |
| <u> </u>                                                           | 10 <sup>-2</sup> (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C (m^3/Pa) =$                     | NA        | $C (m^3/Pa) =$                            | 3.2E-0           |
| 10                                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $C_D(-) =$                         | NA        | $C_D(-) =$                                | 3.5E-0           |
|                                                                    | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ξ (-) =                            | 10.2      | ξ (-) =                                   | 19.              |
| · · · · · · · · · · · · · · · · · · ·                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{GRF}(m^2/s) =$                 | NA        | $T_{GRF}(m^2/s) =$                        | NA               |
| 10 <sup>13</sup> 10 <sup>14</sup> 10 <sup>15</sup>                 | 10 <sup>16</sup> 10 <sup>17</sup> 10 <sup>18</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S_{GRF}(-) =$                     | NA        | $S_{GRF}(-) =$                            | NA               |
| E.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $D_{GRF}(-) =$                     | NA        | D <sub>GRF</sub> (-) =                    | NA               |
| Log-Log plot incl. derivatives- r                                  | ecovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Selected represe                   |           |                                           |                  |
| Log-Log plot ilici. delivatives- i                                 | ecovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dt <sub>1</sub> (min) =            |           |                                           | 3.2E-0           |
| 10 <sup>2</sup> 10 <sup>-4</sup> 10 <sup>-3</sup> 10 <sup>-2</sup> | 10,-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           | $C (m^3/Pa) =$                            | 3.2E-0<br>3.5E-0 |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2 (min) =$                     |           | $C_D(-) =$                                |                  |
| . 0.9                                                              | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_T (m^2/s) =$                    | 3.6E-05   |                                           | 19.              |
|                                                                    | -<br>- 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S (-) =                            | 1.0E-06   |                                           |                  |
| 101                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s$ (m/s) =                      | 1.8E-06   |                                           |                  |
| . \                                                                | 30 <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_s (1/m) =$                      | 5.0E-08   |                                           |                  |
|                                                                    | p-p0)' R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments:                          |           |                                           |                  |
| \.                                                                 | 101 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |           | f 3.6E-5 m2/s was de                      |                  |
| 10"                                                                | min to the same and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |           | se, which shows the                       |                  |
|                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |           | range for the interval                    |                  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           | m2/s. The static preson the CHir phase us |                  |
| 10 10 10                                                           | 10 <sup>3</sup> 10 <sup>4</sup> 10 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |           | t to a value of 2,589                     |                  |
| 10 10 tD/CD                                                        | 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | apointion ii                       | pio       |                                           | ***              |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ī                                  |           |                                           |                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Su                               | ımı                     | nary Sheet                              |                    |                                          |                                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|-----------------------------------------|--------------------|------------------------------------------|------------------------------------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oskarshamn site investig              | ation                   | Test type:[1]                           |                    |                                          | Р                                        |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laxe                                  | emar                    | Test no:                                |                    |                                          |                                          |  |
| , ii ca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                         |                                         |                    |                                          |                                          |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KL>                                   | <11A                    | Test start:                             |                    | 060705 15:29                             |                                          |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 283.00-303.0                          | 00 m                    | Responsible for test execution:         | Stephan Roh        |                                          |                                          |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C                                     | 0.076                   | Responsible for                         |                    | Crist                                    | ian Enachescu                            |  |
| Linear what O and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                         | test evaluation:                        |                    |                                          | q(+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0 |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                         | Flow period                             |                    | Recovery period<br>Indata                |                                          |  |
| 3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 5                       | Indata<br>p <sub>0</sub> (kPa) =        | 2781               |                                          |                                          |  |
| KLX11A_283.00-303.00_060705_1_Pi_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P section P below                     |                         | $p_0 (RPa) =$<br>$p_i (RPa) =$          | 2797               |                                          |                                          |  |
| 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · Q                                   | - 4                     | $p_p(kPa) =$                            |                    | p <sub>F</sub> (kPa ) =                  | 295                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | •                                       | NA                 | p <sub>F</sub> (Ki a ) −                 | 293                                      |  |
| 2900 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                         | $Q_{p} (m^{3}/s) = $ $tp (s) =$         |                    | t <sub>F</sub> (s) =                     | 270                                      |  |
| e de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · · | Injection Rate [/min]   |                                         |                    |                                          | 1.00E-0                                  |  |
| 2800 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :                                     | ection Re               | S el S <sup>*</sup> (-)=                | 1.00E-00           | S el S <sup>*</sup> (-)=                 | 1.00E-0                                  |  |
| 2700 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | - <sub>2</sub> <u>=</u> | EC <sub>w</sub> (mS/m)=                 | 11.1               |                                          |                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | Temp <sub>w</sub> (gr C)=               | 11.1               |                                          | 0.0                                      |  |
| 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | - 1                     | Derivative fact.=                       | NA                 | Derivative fact.=                        | 0.0                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         |                                         |                    |                                          |                                          |  |
| 2500 0.20 0.40 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.80 1.00 1.20 1.40 sed Time [h]      |                         | Results                                 |                    | Results                                  |                                          |  |
| Eispe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | zea rime (n)                          |                         | Q/s $(m^2/s)=$                          | NA                 | results                                  |                                          |  |
| Log-Log plot incl. derivates-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | flow period                           |                         | $T_M (m^2/s) =$                         | NA                 |                                          |                                          |  |
| Log Log plot mon denvates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | now period                            |                         | Flow regime:                            | transient          | Flow regime:                             | transient                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | dt <sub>1</sub> (min) =                 | NA                 | dt <sub>1</sub> (min) =                  | NA                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | $dt_1 (min) =$ $dt_2 (min) =$           | NA                 | $dt_1 (min) =$ $dt_2 (min) =$            | NA                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | $T (m^2/s) =$                           | NA                 |                                          | 2.2E-1                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | S (-) =                                 | NA                 | $T (m^2/s) = S(-) =$                     | 1.0E-0                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         |                                         | NA                 | $S(-) = K_s(m/s) =$                      | 1.0E-0                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | $K_s (m/s) =$ $S_s (1/m) =$             | NA                 | $S_s(1/m) =$                             | 5.0E-0                                   |  |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | analysed                              |                         | - ,                                     |                    | - ,                                      |                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | $C (m^3/Pa) =$                          | NA                 | $C (m^3/Pa) =$                           | 5.6E-1                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | $C_D(-) =$                              | NA                 | $C_D(-) =$                               | 6.2E-0                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | ξ (-) =                                 | NA                 | ξ (-) =                                  | -0.                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | _ , 2, ,                                | NA                 | _ , 2, ,                                 | 1.0E-1                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | $T_{GRF}(m^2/s) =$                      |                    | $T_{GRF}(m^2/s) =$                       |                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         | $S_{GRF}(-) = D_{GRF}(-) =$             | NA<br>NA           | $S_{GRF}(-) =$                           | 1.0E-0                                   |  |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | received notice                       |                         | D <sub>GRF</sub> (-) = Selected represe |                    | D <sub>GRF</sub> (-) =                   | 1.4                                      |  |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - recovery period                     |                         |                                         |                    | <u> </u>                                 | F 6E 1                                   |  |
| 10, <sup>-3</sup> Elapsed ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | me [h] 10,0 10,1 10,1                 |                         | $dt_1 (min) = dt_2 (min) =$             | NA<br>NA           | $C (m^3/Pa) =$                           | 5.6E-1<br>6.2E-0                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                         |                                         |                    | $C_D(-) =$                               |                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 3                       | $T_T (m^2/s) = S(-) = $                 | 2.2E-11<br>1.0E-06 |                                          | -0.                                      |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                         | 0 ( )                                   |                    |                                          |                                          |  |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-                                | 10 <sup>0</sup>         | $K_s (m/s) =$                           | 1.1E-12            |                                          |                                          |  |
| a Chillipp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | pressur                 | S <sub>s</sub> (1/m) =                  | 5.0E-08            |                                          |                                          |  |
| a constant of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |                                       | 0.3 panjovu             | Comments:                               | 4                  | CO OF 11 O/                              | 1 16 4                                   |  |
| 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     | 10 <sup>-1</sup>        | The recommended                         | transmissivity of  | f 2.2E-11 m2/s was<br>The confidence ran | aerived trom th                          |  |
| ·. ·· "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                         | interval transmissiv                    |                    |                                          | igo for the                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ                                     | 0.03                    |                                         |                    | pressure could not                       | be extrapolated                          |  |
| †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                         | due to the very low                     |                    |                                          | -                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I I                                   |                         | ,                                       | ,                  |                                          |                                          |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Su                                                                                                        | mm               | ary Sheet                                            |                   |                                               |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------|-------------------|-----------------------------------------------|---------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investiga                                                                                      | tion             | Test type:[1]                                        |                   |                                               | CHi           |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxe                                                                                                           | mar              | Test no:                                             |                   |                                               |               |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX                                                                                                            | 11A              | Test start:                                          |                   |                                               | 060705 17:25  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 303.00-323.0                                                                                                   | 0 m F            | Responsible for                                      |                   |                                               | Stephan Rohs  |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | t                | test execution:                                      |                   |                                               | -             |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.                                                                                                             |                  | Responsible for test evaluation:                     |                   | Crist                                         | ian Enachescı |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |                  | Flow period                                          |                   | Recovery period                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Ī                | Indata                                               |                   | Indata                                        |               |
| 3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | 5 F              | o <sub>0</sub> (kPa) =                               | 2967              |                                               |               |
| KLX11A_303.00-323.00_060705_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section P above P below                                                                                      |                  | o <sub>i</sub> (kPa ) =                              | 2963              |                                               | 1             |
| 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0                                                                                                             | _                | o <sub>p</sub> (kPa) =                               |                   | p <sub>F</sub> (kPa ) =                       | 296           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>.</del>                                                                                                   |                  | $Q_p (m^3/s) =$                                      | 6.50E-05          | pr ( a )                                      |               |
| 3100<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                  | tp(s) =                                              |                   | t <sub>F</sub> (s) =                          | 120           |
| Assure (P.p.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ;                                                                                                              | ě.               |                                                      |                   | S el S <sup>*</sup> (-)=                      | 1.00E-0       |
| <u>2</u> 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                | ection R         | S el S* (-)=                                         | 1.00E-00          | S el S (-)=                                   | 1.00E-0       |
| 2900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                  | EC <sub>w</sub> (mS/m)=<br>Temp <sub>w</sub> (gr C)= | 11.5              |                                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                              |                  | ,                                                    | 11.5              | D : " ( )                                     | 0.4           |
| 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                              | *1 <b> </b>      | Derivative fact.=                                    | 0.02              | Derivative fact.=                             | 0.1           |
| 2700 0.00 0.20 0.40 0.60 Elapsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.80 1.00 1.20 1.40                                                                                            |                  | Results                                              |                   | Results                                       |               |
| Etapse d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ime [n]                                                                                                        | L                |                                                      | 2.8E-06           |                                               |               |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow paried                                                                                                      |                  | $Q/s (m^2/s) =$                                      | 3.0E-06           |                                               |               |
| Log-Log plot mer. derivates- n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ow period                                                                                                      |                  | T <sub>M</sub> (m <sup>2</sup> /s)=<br>Flow regime:  |                   |                                               | transiant     |
| .3 .2 ⊟apşed time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [h] <sub>0</sub> <sub>1</sub>                                                                                  |                  |                                                      | transient         | Flow regime:                                  | transient     |
| 10.2 10. 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                  | dt <sub>1</sub> (min) =                              |                   | dt <sub>1</sub> (min) =                       | 0.3           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                              |                  | dt <sub>2</sub> (min) =                              |                   | $dt_2 (min) =$                                | 7.9           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                  | $T (m^2/s) =$                                        |                   | $T (m^2/s) =$                                 | 5.8E-0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - C                                                                                                            |                  | S (-) =                                              | 1.0E-06           |                                               | 1.0E-0        |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | 10-1             | $K_s (m/s) =$                                        |                   | $K_s (m/s) =$                                 | 2.9E-0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | lin/li           | $S_s(1/m) =$                                         | 5.0E-08           | $S_s(1/m) =$                                  | 5.0E-0        |
| or of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |                                                                                                                | 0.03             | C (m <sup>3</sup> /Pa) =                             | NA                | C (m <sup>3</sup> /Pa) =                      | 4.8E-1        |
| 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                              |                  | C <sub>D</sub> (-) =                                 | NA                | $C_D(-) =$                                    | 5.3E-0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 10 <sup>-2</sup> | Ę (-) =                                              | 5.8               | ξ (-) =                                       | 14.           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • .                                                                                                            |                  |                                                      |                   |                                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 0.003            | $T_{GRF}(m^2/s) =$                                   | 9.7E-07           | $T_{GRF}(m^2/s) =$                            | NA            |
| 10 <sup>f0'</sup> 10 <sup>f1'</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 <sup>12</sup> 10 <sup>13</sup> 10 <sup>14</sup>                                                             |                  | S <sub>GRF</sub> (-) =                               | 1.0E-06           |                                               | NA            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | _                | D <sub>GRF</sub> (-) =                               |                   | D <sub>GRF</sub> (-) =                        | NA            |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                                                                |                  | Selected represe                                     |                   |                                               |               |
| Elapsed time [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |                  | dt <sub>1</sub> (min) =                              |                   | C (m <sup>3</sup> /Pa) =                      | 4.8E-1        |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,                                                                                                            |                  | $dt_2 \text{ (min)} =$                               |                   | $C_D(-) =$                                    | 5.3E-0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                  | 2                                                    | 5.8E-06           |                                               | 14.           |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300                                                                                                            |                  | $T_{T} (m^2/s) = $ $S (-) = $                        | 1.0E-06           |                                               | 14.           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                  | $K_s (m/s) =$                                        | 2.9E-07           |                                               |               |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 <sup>2</sup>                                                                                               |                  |                                                      |                   |                                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [<br> <br> 30                                                                                                  | ([kPa]           | S <sub>s</sub> (1/m) =                               | 5.0E-08           |                                               |               |
| and and and and and and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                             | 0 <del>.</del>   | Comments:                                            | ,                 | 25.00.6.24                                    | . 10 -        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is since the second second second second second second second second second second second second second second |                  |                                                      |                   | 5.8E-6 m2/s was de                            |               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A. C.                                                                      | 1                |                                                      |                   | se (outer zone), whi<br>he confidence range   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                              |                  |                                                      |                   | E-6 to 9.0E-6 m2/s.                           |               |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                                                                              |                  |                                                      |                   |                                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 1                | pressure measured                                    | at transducer der | oth, was derived froi                         | n the Chir    |
| 10 <sup>1</sup> 10 <sup>2</sup> tD/CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 <sup>3</sup> 10 <sup>4</sup> 10 <sup>5</sup> 10°                                                            | ŗ                |                                                      | -                 | oth, was derived from<br>on in the Horner plo |               |

|                                               | Test Sur                                        | nmary Sheet                                   |             |                                                 |                |  |
|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------|-------------------------------------------------|----------------|--|
| Project:                                      | Oskarshamn site investigat                      | on Test type:[1]                              |             |                                                 | CHi            |  |
| Area:                                         | Laxen                                           | nar Test no:                                  |             |                                                 |                |  |
| Darahala ID.                                  | IZI VA                                          | 4 0 T t - t t                                 |             |                                                 | 000705 40:0    |  |
| Borehole ID:                                  | KLX1                                            | 1A Test start:                                | 060705 19:2 |                                                 |                |  |
| Test section from - to (m):                   | 323.00-343.00                                   | m Responsible for test execution:             |             | Stephan Roh                                     |                |  |
| Section diameter, 2·r <sub>w</sub> (m):       | 0.0                                             | 76 Responsible for test evaluation:           |             | Crist                                           | tian Enachesci |  |
| Linear plot Q and p                           |                                                 | Flow period                                   |             | Recovery period                                 | j              |  |
|                                               |                                                 | Indata                                        |             | Indata                                          |                |  |
| 3500                                          | 0.005                                           | p <sub>0</sub> (kPa) =                        | 3155        |                                                 |                |  |
| KLX11A_323.00-343.00_060705_1_0               | Hir_Q_r                                         | p <sub>i</sub> (kPa ) =                       | 3159        |                                                 |                |  |
| 3400                                          | • Q                                             | $p_p(kPa) =$                                  |             | p <sub>F</sub> (kPa ) =                         | 315            |  |
| :                                             |                                                 | $Q_p (m^3/s) =$                               | 3.33E-09    |                                                 | 1              |  |
| 3300-                                         |                                                 |                                               |             | t <sub>F</sub> (s) =                            | 1440           |  |
| 2 2200                                        | 0.003                                           | tb (0)                                        |             | S el S <sup>*</sup> (-)=                        | 1.00E-0        |  |
| 2 3200<br>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.003                                           | $S \text{ el } S^* (-) = \\ EC_w (mS/m) = \\$ | 1.00L-00    | S el S (-)=                                     | 1.00L-0        |  |
| 3100                                          | 0.002                                           | Temp <sub>w</sub> (gr C)=                     | 11.8        |                                                 |                |  |
| 3100                                          |                                                 |                                               |             |                                                 | 0.0            |  |
| 3000                                          | 0.001                                           | Derivative fact.=                             | 0.23        | Derivative fact.=                               | 0.0            |  |
|                                               |                                                 |                                               |             |                                                 |                |  |
| 2900                                          |                                                 |                                               |             |                                                 |                |  |
| 0.00 1.00 2.00 Elapsed Ti                     | 3.00 4.00 5.00 me [h]                           | Results                                       |             | Results                                         | _              |  |
|                                               |                                                 | Q/s $(m^2/s)=$                                | 1.5E-10     |                                                 |                |  |
| Log-Log plot incl. derivates- fl              | ow period                                       | $T_M (m^2/s)=$                                | 1.6E-10     |                                                 |                |  |
|                                               |                                                 | Flow regime:                                  | transient   | Flow regime:                                    | transient      |  |
| Elapsed time [h                               | 101                                             | $dt_1 (min) =$                                | NA          | $dt_1$ (min) =                                  | NA             |  |
| 10                                            | 104                                             | $dt_2$ (min) =                                | NA          | $dt_2$ (min) =                                  | NA             |  |
|                                               |                                                 | $T (m^2/s) =$                                 | 9.2E-11     | $T (m^2/s) =$                                   | 5.5E-1         |  |
|                                               | 3000                                            | S (-) =                                       | 1.0E-06     | S (-) =                                         | 1.0E-0         |  |
| 10                                            | 103                                             | $K_s (m/s) =$                                 | 4.6E-12     | $K_s (m/s) =$                                   | 2.7E-1         |  |
|                                               | •                                               | _ S <sub>s</sub> (1/m) =                      | 5.0E-08     | $S_s(1/m) =$                                    | 5.0E-0         |  |
|                                               | 300                                             | C (m <sup>3</sup> /Pa) =                      | NA          | $C (m^3/Pa) =$                                  | 1.2E-1         |  |
| *                                             | •                                               | C <sub>D</sub> (-) =                          | NA          | $C_D(-) =$                                      | 1.3E-0         |  |
| 10-1                                          | 10 <sup>2</sup>                                 | ξ (-) =                                       | -0.4        | ξ(-) =                                          | 1.0            |  |
|                                               |                                                 | 3()                                           |             | 3()                                             | <del>†</del>   |  |
| 1                                             | 30                                              | $T_{GRF}(m^2/s) =$                            | NA          | $T_{GRF}(m^2/s) =$                              | NA             |  |
| 10 <sup>-1</sup> 10 <sup>0</sup> tD           | 10 <sup>2</sup> 10 <sup>3</sup>                 | $S_{GRF}(-) =$                                | NA          | $S_{GRF}(-) =$                                  | NA             |  |
|                                               |                                                 | $D_{GRF}(-) =$                                | NA          | $D_{GRF}(-) =$                                  | NA             |  |
| Log-Log plot incl. derivatives-               | recovery period                                 | Selected represe                              |             |                                                 |                |  |
| 5 5 F. 9 C 111 O.11 4011 1411 1403-           |                                                 | dt <sub>1</sub> (min) =                       | NA          | C (m <sup>3</sup> /Pa) =                        | 1.2E-1         |  |
|                                               | h]<br>10, <sup>1</sup>                          | $dt_2 (min) =$                                | NA          | $C (m /Pa) = C_D (-) =$                         | 1.3E-0         |  |
| 10                                            | F <sub>10</sub> <sup>3</sup>                    |                                               | 5.5E-11     |                                                 | 1.3E-0         |  |
|                                               |                                                 | $T_T (m^2/s) = S(-1) = -1$                    | 1.0E-06     |                                                 | 1.             |  |
|                                               | 300                                             | 0 ( )                                         |             |                                                 | <u> </u>       |  |
| 10°                                           |                                                 | $K_s (m/s) =$                                 | 2.8E-12     |                                                 |                |  |
|                                               | 102                                             | S <sub>s</sub> (1/m) =                        | 5.0E-08     |                                                 |                |  |
|                                               |                                                 | Comments:                                     |             | 0.5.55                                          |                |  |
|                                               | 30                                              |                                               |             | f 5.5E-11 m2/s was                              |                |  |
| 10"                                           |                                                 |                                               |             | ase, which shows the<br>range for the interva   |                |  |
|                                               | 101                                             |                                               |             | range for the interval<br>11 m2/s. The static p |                |  |
| 1                                             |                                                 |                                               |             | derived from the CH                             |                |  |
|                                               | 3                                               |                                               |             | rner plot to a value                            |                |  |
| 10 <sup>0</sup> 10 <sup>1</sup>               | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> | · · · · · · · · · · · · · · · · · ·           |             |                                                 |                |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mary Sheet                        |                   |                          |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|--------------------------|--------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test type:[1]                     |                   |                          | CHi          |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r Test no:                        |                   |                          |              |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KI V11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test start:                       |                   |                          | 060706 08:48 |
| Borenole ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLXTIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test start.                       |                   |                          | 000700 08.40 |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 343.00-363.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Responsible for test execution:   |                   |                          | Stephan Rohs |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsible for                   | Cristian Enaches  |                          |              |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | test evaluation: Flow period      |                   | Recovery period          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                            |                   | Indata                   |              |
| 3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p <sub>0</sub> (kPa) =            | 3339              |                          |              |
| KLX11A_343.00-363.00_060706_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section P above P bdow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p <sub>i</sub> (kPa ) =           | 3356              |                          |              |
| 3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $p_p(kPa) =$                      | 3551              | p <sub>F</sub> (kPa ) =  | 344          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Q_p (m^3/s) =$                   | 1.50E-07          | , , ,                    |              |
| 3490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\operatorname{tp}(s) =$          |                   | t <sub>F</sub> (s) =     | 120          |
| G 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                   | S el S <sup>*</sup> (-)= | 1.00E-0      |
| 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00 (alum) 0.00 pp. 10 | S el S* (-)=                      | 1.00E-00          | S el S (-)=              | 1.00E-0      |
| 2 3300 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ਚ<br>0.04 드                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EC <sub>w</sub> (mS/m)=           | 10.1              |                          |              |
| 3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp <sub>w</sub> (gr C)=         | 12.1              |                          |              |
| 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Derivative fact.=                 | 0.02              | Derivative fact.=        | 0.0          |
| 3150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                   |                          |              |
| 3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results                           |                   | Results                  |              |
| 0.00 0.20 0.40 0.60 0.80 Elapsed Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00 1.20 1.40 1.60 1.80 [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 7.5E-09           |                          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q/s $(m^2/s)=$                    |                   |                          |              |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $T_{\rm M} ({\rm m}^2/{\rm s}) =$ | 7.9E-09           |                          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                      | transient         | Flow regime:             | transient    |
| Elapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1$ (min) =                    | NA                | $dt_1 (min) =$           | NA           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $dt_2 (min) =$                    | NA                | $dt_2 (min) =$           | NA           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T (m^2/s) =$                     | 3.9E-09           | $T (m^2/s) =$            | 4.3E-0       |
| مبر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S (-) =                           | 1.0E-06           | S (-) =                  | 1.0E-0       |
| ارد.<br>بخونین د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $K_s (m/s) =$                     | 1.9E-10           | $K_s (m/s) =$            | 2.1E-1       |
| 2:3:7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S <sub>s</sub> (1/m) =            |                   | S <sub>s</sub> (1/m) =   | 5.0E-0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [[h/w], [h/w], [h/w]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C (m^3/Pa) =$                    | NA                | $C (m^3/Pa) =$           | 2.5E-1       |
| og · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/4, (1/q),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_D(-) =$                        | NA                | $C_D(-) =$               | 2.7E-0       |
| 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                   |                          | -3.          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ξ (-) =                           | -2.9              | ξ (-) =                  | -3.          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>-</del> , 2, )               | 4 0E 00           | T ( 2( )                 | 4.3E-0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{GRF}(m^2/s) =$                |                   | $T_{GRF}(m^2/s) =$       |              |
| 10 <sup>-1</sup> 10 <sup>0</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_{GRF}(-) =$                    | 1.0E-06           |                          | 1.0E-0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>GRF</sub> (-) =            |                   | D <sub>GRF</sub> (-) =   | 1.0          |
| Log-Log plot incl. derivatives- r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Selected represe                  |                   |                          |              |
| 10. <sup>-2</sup> Elapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $dt_1$ (min) =                    | NA                | $C (m^3/Pa) =$           | 2.5E-1       |
| 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2$ (min) =                    | NA                | $C_D(-) =$               | 2.7E-0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_T (m^2/s) =$                   | 4.3E-09           | ξ (-) =                  | -3.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S (-) =                           | 1.0E-06           |                          |              |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $K_s (m/s) =$                     | 2.2E-10           |                          |              |
| " desired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_s(1/m) =$                      | 5.0E-08           |                          |              |
| and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | kPal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments:                         |                   |                          |              |
| المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستنب المستد                                                                 | [6-20], [6-20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The recommended                   | transmissivity of | f 4.3•10-9 m2/s was      | derived from |
| 10-1 32-3-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                   | phase (inner zone),      |              |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the better data and               | derivative qualit | y. The confidence ra     | ange for the |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | interval transmissiv              | ity is estimated  | to be 1.0•10-9 to 8.0    | )•10-9 m2/s. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Due to the low trans              | smissivity no fre | esh water head was o     | calculated.  |
| 10 <sup>d</sup> 10 <sup>f</sup> tD/CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                   |                          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                   |                          |              |

|                                                    | 1 est Si                                | umr                  | nary Sheet                      |                |                          |                 |
|----------------------------------------------------|-----------------------------------------|----------------------|---------------------------------|----------------|--------------------------|-----------------|
| Project:                                           | Oskarshamn site investig                | ation                | Test type:[1]                   |                |                          | Р               |
| Area:                                              | Lax                                     | emar                 | Test no:                        |                |                          |                 |
| Borehole ID:                                       | KI.:                                    | X11Δ                 | Test start:                     |                |                          | 060706 11:03    |
| Borchole IB.                                       |                                         |                      |                                 |                |                          |                 |
| Test section from - to (m):                        | 363.00-383.                             | 00 m                 | Responsible for test execution: |                |                          | Stephan Rohs    |
| Section diameter, 2·r <sub>w</sub> (m):            | (                                       | 0.076                | Responsible for                 |                | Crist                    | ian Enachescu   |
| Linear plot Q and p                                |                                         |                      | test evaluation: Flow period    |                | Recovery period          |                 |
|                                                    |                                         |                      | Indata                          |                | Indata                   |                 |
| 3900 -                                             |                                         | 0.002                | p <sub>0</sub> (kPa) =          | 3530           |                          |                 |
| KLX11A_363.00-3                                    | 883.00_060706_1_PI_Q_r                  |                      | p <sub>i</sub> (kPa ) =         | 3536           |                          |                 |
| 3800 -                                             |                                         |                      | $p_p(kPa) =$                    | 3753           | p <sub>F</sub> (kPa ) =  | 369             |
|                                                    | *************************************** |                      | $Q_p (m^3/s) =$                 | NA             | , , ,                    |                 |
| 3700 ·                                             | •                                       | 2                    | tp(s) =                         | 0              | t <sub>F</sub> (s) =     | 396             |
| - 1000                                             | :                                       | Rate [Vmin]          | S el S <sup>*</sup> (-)=        |                | S el S <sup>*</sup> (-)= | 1.00E-0         |
| 2 3500                                             |                                         | Injection R 100.0    | EC <sub>w</sub> (mS/m)=         | 1.00L-00       | S el S (-)=              | 1.00L-0         |
|                                                    | :                                       | Ē                    | ` ,                             | 12.2           |                          |                 |
| 3500-                                              |                                         |                      | Temp <sub>w</sub> (gr C)=       | 12.3           |                          |                 |
| 3400                                               |                                         |                      | Derivative fact.=               | NA             | Derivative fact.=        | 0.0             |
|                                                    | <u> </u>                                |                      |                                 |                |                          |                 |
| 3300 0.00 0.20 0.40 0.60 0.80 1.0                  |                                         | 0.000                | Results                         |                | Results                  |                 |
| Elapsed                                            | Time [h]                                |                      | Q/s $(m^2/s)=$                  | NA             | resuits                  |                 |
| Log-Log plot incl. derivates- f                    | low pariod                              |                      |                                 | NA             |                          |                 |
| Log-Log plot ilici. derivates- i                   | low period                              |                      | $T_M (m^2/s) =$                 |                | Flavora sima s           | tropologi       |
|                                                    |                                         |                      | Flow regime:                    | transient      | Flow regime:             | transient       |
|                                                    |                                         |                      | $dt_1 (min) =$                  | NA             | $dt_1 (min) =$           | 15.6            |
|                                                    |                                         |                      | $dt_2$ (min) =                  | NA             | $dt_2$ (min) =           | 60.8            |
|                                                    |                                         |                      | $T (m^2/s) =$                   | NA             | $T (m^2/s) =$            | 1.1E-1          |
|                                                    |                                         |                      | S (-) =                         | NA             | S (-) =                  | 1.0E-0          |
|                                                    |                                         |                      | $K_s (m/s) =$                   | NA             | $K_s (m/s) =$            | 5.3E-1          |
| 27                                                 |                                         |                      | $S_s(1/m) =$                    | NA             | $S_s(1/m) =$             | 5.0E-0          |
| Not A                                              | nalysed                                 |                      | $C (m^3/Pa) =$                  | NA             | C (m³/Pa) =              | 3.6E-1          |
|                                                    |                                         |                      | $C_D(-) =$                      | NA             | $C_D(-) =$               | 4.0E-0          |
|                                                    |                                         |                      | ξ(-) =                          | NA             | ξ(-) =                   | 0.              |
|                                                    |                                         |                      | 2()                             |                | 5()                      |                 |
|                                                    |                                         |                      | $T_{GRF}(m^2/s) =$              | NA             | $T_{GRF}(m^2/s) =$       | 3.2E-1          |
|                                                    |                                         |                      | $S_{GRF}(-) =$                  | NA             | $S_{GRF}(-) =$           | 1.0E-0          |
|                                                    |                                         |                      | $D_{GRF}(\cdot) =$              | NA             | D <sub>GRF</sub> (-) =   | 1.7             |
| Log-Log plot incl. derivatives-                    | recovery period                         |                      | Selected represe                |                |                          |                 |
| Elenand tim                                        | 2 (2)                                   |                      | dt <sub>1</sub> (min) =         | 15.64          |                          | 3.6E-1          |
| 10. <sup>3</sup> 10. <sup>2</sup> 10. <sup>1</sup> | 10,0 10,1                               |                      |                                 |                | 0 (III /I u)             |                 |
| 1                                                  |                                         | 10 <sup>1</sup>      | $dt_2 \text{ (min)} =$          |                | C <sub>D</sub> (-) =     | 4.0E-0          |
| 1                                                  |                                         |                      | $T_T (m^2/s) =$                 | 1.1E-11        |                          | 0.              |
|                                                    |                                         | 3                    | S (-) =                         | 1.0E-06        |                          |                 |
| 10 0                                               |                                         | - 0                  | $K_s (m/s) =$                   | 5.5E-13        |                          |                 |
| a property of the second                           | Literature.                             | 10 <sup>0</sup> Jngs | $S_s (1/m) =$                   | 5.0E-08        |                          |                 |
| i i i i i i i i i i i i i i i i i i i              | T.F.                                    | ited pre             | Comments:                       |                |                          |                 |
|                                                    |                                         | 0.3 No.              |                                 |                | f 1.1E-11 m2/s was       |                 |
| 10-1                                               |                                         | Ďě.                  |                                 |                | The confidence ran       | ge for the      |
|                                                    |                                         | 10 <sup>-1</sup>     | interval transmissiv            |                |                          | ,               |
| * *                                                |                                         |                      |                                 |                | pressure could not       | be extrapolated |
| †                                                  |                                         | 0.03                 | due to the very low             | uansmissivity. |                          |                 |
|                                                    |                                         |                      |                                 |                |                          |                 |

|                                                | Test                                 | Sum             | mary Sheet                       |                   |                          |                  |
|------------------------------------------------|--------------------------------------|-----------------|----------------------------------|-------------------|--------------------------|------------------|
| Project:                                       | Oskarshamn site invest               | igation         | Test type:[1]                    |                   |                          | CHi              |
| Area:                                          | l la                                 | exema           | Test no:                         |                   |                          |                  |
| , ii oa.                                       |                                      |                 |                                  |                   |                          |                  |
| Borehole ID:                                   | К                                    | LX11/           | Test start:                      | 060706 13:0       |                          |                  |
| Test section from - to (m):                    | 383.00-40                            | 3.00 m          | Responsible for test execution:  |                   |                          | Stephan Roh      |
| Section diameter, 2·r <sub>w</sub> (m):        |                                      | 0.076           | Responsible for test evaluation: |                   | Crist                    | ian Enachesc     |
| Linear plot Q and p                            |                                      |                 | Flow period                      |                   | Recovery period          |                  |
|                                                |                                      |                 | Indata                           |                   | Indata                   |                  |
| 4200<br>KLX11A_383.00-403.00_060706_1_CHir_Q_r |                                      | 0.020           | p <sub>0</sub> (kPa) =           | 3717              |                          |                  |
|                                                | P section P above P below            |                 | p <sub>i</sub> (kPa ) =          | 3715              |                          |                  |
| 4000                                           |                                      |                 | $p_p(kPa) =$                     | 3959              | p <sub>F</sub> (kPa ) =  | 371              |
| .\                                             |                                      | 0.015           | $Q_p (m^3/s) =$                  | 8.33E-08          |                          |                  |
| 3800                                           |                                      | -               | tp (s) =                         | 1200              | t <sub>F</sub> (s) =     | 120              |
| 8 3 300 -                                      | . \                                  | . Rate [l/min]  | S el S* (-)=                     |                   | S el S <sup>*</sup> (-)= | 1.00E-0          |
| G along                                        | ·                                    | Injection I     | EC <sub>w</sub> (mS/m)=          |                   | 0 01 0 (-)-              |                  |
| 3400                                           | :                                    | 1               | Temp <sub>w</sub> (gr C)=        | 12.6              |                          |                  |
| ·                                              |                                      | 0.005           | Derivative fact.=                | 1.7               | Derivative fact.=        | 0.0              |
| 3200                                           | Angertal for the                     |                 | Donative lact.                   | 0.13              | Domairo last.            | 0.0              |
|                                                |                                      |                 |                                  |                   |                          |                  |
| 3000 0.00 0.40 0.60 0.80 Elapsed               | 1.00 1.20 1.40 1.60 1.80<br>Time [h] | 0.000           | Results                          | -                 | Results                  |                  |
|                                                |                                      |                 | Q/s $(m^2/s)=$                   | 3.4E-09           |                          |                  |
| Log-Log plot incl. derivates- f                | low period                           |                 | $T_{\rm M} (m^2/s) =$            | 3.5E-09           |                          |                  |
| 10. <sup>3</sup> Elapsed time                  | [h] 0 1                              |                 | Flow regime:                     | transient         | Flow regime:             | transient        |
| 10 2 10. 10.                                   |                                      | 3000            | $dt_1$ (min) =                   | 0.97              | $dt_1$ (min) =           | NA               |
|                                                | ž.                                   | 1               | $dt_2$ (min) =                   | 15.82             | $dt_2$ (min) =           | NA               |
|                                                |                                      | 10 <sup>3</sup> | $T (m^2/s) =$                    | 2.8E-09           | $T (m^2/s) =$            | 3.3E-0           |
|                                                |                                      |                 | S (-) =                          | 1.0E-06           | . ,                      | 1.0E-0           |
| 10 1                                           | Cap 144                              | 300             | $K_s (m/s) =$                    | 1.4E-10           | $K_s (m/s) =$            | 1.6E-1           |
| 91 90 100 100 100 100 100 100 100 100 10       | ૡૺૢ૿ૡ૽૽ૺૢૼૡ૿ૺ                        |                 | $S_s(1/m) =$                     | 5.0E-08           | $S_s(1/m) =$             | 5.0E-0           |
| 8                                              |                                      | 10 <sup>2</sup> | C (m <sup>3</sup> /Pa) =         | NA                | C (m <sup>3</sup> /Pa) = | 6.1E-1           |
|                                                |                                      | 2               | $C_D(-) =$                       | NA                | $C_D(-) =$               | 6.8E-0           |
| 10"                                            | <b>1</b>                             | 30              | ξ(-) =                           | 1.8               | ξ (-) =                  | 2.               |
|                                                |                                      | 1               | 3 ( )                            | †                 | 3 ( )                    |                  |
| •                                              | •                                    | 101             | $T_{GRF}(m^2/s) =$               | NA                | $T_{GRF}(m^2/s) =$       | NA               |
| * * *                                          |                                      | ,               | $S_{GRF}(-) =$                   | NA                | $S_{GRF}(-) =$           | NA               |
| 10 <sup>3</sup> 10 <sup>4</sup> tD             | 10 <sup>5</sup> 10 <sup>6</sup> 1    | J               | D <sub>GRF</sub> (-) =           | NA                | D <sub>GRF</sub> (-) =   | NA               |
| Log-Log plot incl. derivatives-                | recovery period                      |                 | Selected repres                  |                   |                          |                  |
| Hapsed time [                                  |                                      |                 | $dt_1$ (min) =                   | NA                | $C (m^3/Pa) =$           | 6.1E-1           |
| 102                                            |                                      | 3000            | $dt_2 (min) =$                   | NA                | $C_D(-) =$               | 6.8E-0           |
|                                                |                                      | 1               | $T_T (m^2/s) =$                  | 3.3E-09           |                          | 2.               |
|                                                |                                      | 10 <sup>3</sup> | S (-) =                          | 1.0E-06           |                          |                  |
| , d                                            |                                      | -               | $K_s (m/s) =$                    | 1.7E-10           |                          | 1                |
| 10 '                                           |                                      | 300             | $S_s(1/m) =$                     | 5.0E-08           |                          |                  |
|                                                | •                                    | - E             | Comments:                        | 1.02.00           |                          |                  |
|                                                |                                      | 10 <sup>2</sup> |                                  | transmissivity o  | f 3.3E-09 m2/s was       | derived from th  |
| 10 10                                          |                                      | 1 8             |                                  |                   | ise, which shows the     |                  |
| A. S.      |                                      | 30              | derivative quality.              | The confidence    | ange for the interva     | l transmissivity |
| , p. p. p. p. p. p. p. p. p. p. p. p. p.       |                                      | 1               |                                  |                   | 09 m2/s. The static p    |                  |
| <b>y</b>                                       |                                      | 10 <sup>1</sup> | measured at transd               | ucer depth, was   | derived from the CH      |                  |
| , , ,                                          |                                      | -               |                                  | olation in the Uo | rner plot to a value     | of 3 600 0 LDa   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lest S                                  | ıımı                  | mary Sheet                                    |                  |                                               |              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------------|------------------|-----------------------------------------------|--------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig                | gation                | Test type:[1]                                 |                  |                                               | Р            |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                     | cemai                 | Test no:                                      |                  |                                               |              |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KI                                      | X11Δ                  | Test start:                                   |                  |                                               | 060706 15:54 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       |                                               |                  |                                               |              |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 403.00-423                              | .00 m                 | Responsible for test execution:               |                  |                                               | Stephan Rohs |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 0.076                 | Responsible for                               |                  | Cristian Enacheso                             |              |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                       | test evaluation: Flow period                  |                  | Recovery period                               |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | Indata                                        |                  | Indata                                        |              |  |
| *  KLX11A_403.00-423.00_060706_1_PI_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 0.002                 | p <sub>0</sub> (kPa) =                        | 3903             |                                               |              |  |
| 4150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P section     P above                   |                       | p <sub>i</sub> (kPa ) =                       | 3908             |                                               |              |  |
| 4100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P below<br>Q                            |                       | $p_p(kPa) =$                                  |                  | p <sub>F</sub> (kPa ) =                       | 406          |  |
| 4050 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *************************************** |                       | $Q_p (m^3/s) =$                               | NA               | F1 ( 5. )                                     |              |  |
| £ 4000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                       | =                     | $\frac{Q_p (\Pi / S) -}{tp (s)} =$            |                  | t <sub>F</sub> (s) =                          | 245          |  |
| © 4000 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 600 • 60  |                                         | Rate [l/m             |                                               |                  | S el S <sup>*</sup> (-)=                      | 1.00E-0      |  |
| of of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Injection Rate [Vmin] | S el S $^*$ (-)=<br>EC $_w$ (mS/m)=           | 1.00E-00         | S el S (-)=                                   | 1.00E-0      |  |
| 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                       | -                     |                                               | 12.0             |                                               |              |  |
| 3850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                       | Temp <sub>w</sub> (gr C)=                     | 12.9             | D. 1. 11. 11. 11. 1                           | 0.0          |  |
| 3800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                       | Derivative fact.=                             | NA               | Derivative fact.=                             | 0.0          |  |
| 3750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                       |                       |                                               |                  |                                               |              |  |
| 3700 0.00 0.20 0.40 0.60 Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.80 1.00 1.20 1.40 Time [h]            | 0.000                 | Results                                       |                  | Results                                       |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | Q/s $(m^2/s)=$                                | NA               |                                               |              |  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                               |                       | $T_{\rm M} (m^2/s) =$                         | NA               |                                               |              |  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p                                       |                       | Flow regime:                                  | transient        | Flow regime:                                  | transient    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | dt <sub>1</sub> (min) =                       | NA               | dt <sub>1</sub> (min) =                       | NA           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA               | $dt_1 (min) =$ $dt_2 (min) =$                 | NA           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | ` ′                                           | NA               | , ,                                           | 2.9E-1       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $T (m^2/s) =$                                 |                  | $T (m^2/s) = S (-) =$                         |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | S (-) =                                       | NA               | 0 ( )                                         | 1.0E-0       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $K_s (m/s) =$                                 | NA               | $K_s (m/s) =$                                 | 1.5E-1       |  |
| Not Aı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nalysed                                 |                       | S <sub>s</sub> (1/m) =                        | NA               | S <sub>s</sub> (1/m) =                        | 5.0E-0       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                       |                       | $C (m^3/Pa) =$                                | NA               | $C (m^3/Pa) =$                                | 6.8E-1       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $C_D(-) =$                                    | NA               | $C_D(-) =$                                    | 7.5E-0       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | ξ (-) =                                       | NA               | ξ (-) =                                       | -1.          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $T_{GRF}(m^2/s) =$                            | NA               | $T_{GRF}(m^2/s) =$                            | 1.8E-1       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $S_{GRF}(-) =$                                | NA               | $S_{GRF}(-) =$                                | 1.0E-0       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | $D_{GRF}(-) =$                                | NA               | D <sub>GRF</sub> (-) =                        | 1.4          |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                         |                       | Selected repres                               |                  |                                               |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       |                                               | NA               | <u></u>                                       | 6.8E-1       |  |
| 10 1 Elapsed time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10, <sup>0</sup> 10, <sup>1</sup> 10    | ). <sup>2</sup>       | $dt_1 (min) = dt_2 (min) =$                   | NA<br>NA         | $C (m^3/Pa) = C_D (-) =$                      | 7.5E-0       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       |                                               |                  |                                               |              |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 3                     | $T_T (m^2/s) =$                               | 2.9E-11          |                                               | -1.          |  |
| †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                       | S (-) =                                       | 1.0E-06          |                                               |              |  |
| 10 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       | 10 <sup>0</sup>       | $K_s (m/s) =$                                 | 1.5E-12          |                                               |              |  |
| 2.1. 1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                     | Ji S                  | $S_s (1/m) =$                                 | 5.0E-08          |                                               |              |  |
| and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | 17.                                     | 0.3 Pg                | Comments:                                     |                  |                                               |              |  |
| · Joseph · Joseph · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | onvolut               |                                               |                  | f 2.9E-11 m2/s was                            |              |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 10-1                  |                                               |                  | The confidence ran<br>to be 9.0E-12 to 8.0    |              |  |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                       |                                               |                  | to be 9.0E-12 to 8.0<br>lated due to the very |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.03                  | transmissivity.                               | a not be extrapo | and and to the very                           | , 10 11      |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                       |                                               |                  |                                               |              |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                       |                                               |                  |                                               |              |  |

|                                                                 | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sum             | mary Sheet                      |                   |                                 |                   |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|-------------------|---------------------------------|-------------------|
| Project:                                                        | Oskarshamn site investi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gatio           | Test type:[1]                   |                   |                                 | CHir              |
| Area:                                                           | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | xema            | r Test no:                      |                   |                                 | 1                 |
| Borehole ID:                                                    | VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V11/            | A Test start:                   |                   |                                 | 060706 17:56      |
| borenole ID.                                                    | NI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | a rest start.                   |                   |                                 |                   |
| Test section from - to (m):                                     | 423.00-443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.00 n          | Responsible for test execution: |                   |                                 | Stephan Rohs      |
| Section diameter, 2·r <sub>w</sub> (m):                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07            | Responsible for                 |                   | Crist                           | ian Enachescu     |
| Linear plot Q and p                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | test evaluation:                |                   | Recovery period                 |                   |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Indata                          |                   | Indata                          |                   |
| 4500                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20            | p <sub>0</sub> (kPa) =          | 4090              |                                 |                   |
| KLX11A_423.00-443.00_060706_1_CHir_Q_r                          | P section     P above     P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | p <sub>i</sub> (kPa ) =         | 4088              |                                 |                   |
|                                                                 | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | $p_p(kPa) =$                    | 4290              | p <sub>F</sub> (kPa ) =         | 4087              |
| 4300                                                            | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15            | $Q_p (m^3/s) =$                 | 1.00E-06          |                                 |                   |
| <u> </u>                                                        | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ē               | tp (s) =                        | 1200              | t <sub>F</sub> (s) =            | 1200              |
| 60 4200                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rate [I/min]    | S el S <sup>*</sup> (-)=        | 1.00E-06          | S el S <sup>*</sup> (-)=        | 1.00E-06          |
| e 4100                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Injection       | EC <sub>w</sub> (mS/m)=         |                   | , ,                             |                   |
| ă                                                               | A Secretary and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |                 | Temp <sub>w</sub> (gr C)=       | 13.2              |                                 |                   |
| 4000                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.05          | Derivative fact.=               | 0.19              | Derivative fact.=               | 0.02              |
| 3900                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                 |                   |                                 |                   |
| 3800                                                            | <del>.                                    </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00            | Results                         |                   | Results                         |                   |
| 0.00 0.20 0.40 0.60 Elapsed                                     | 0.80 1.00 1.20 1.40 ime [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                 | 4.9E-08           |                                 |                   |
| Log-Log plot incl. derivates- fl                                | aw pariad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Q/s $(m^2/s)=$                  | 4.9E-08           |                                 |                   |
| Log-Log plot incl. derivates- fi                                | ow perioa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | $T_M (m^2/s) =$ Flow regime:    |                   |                                 | transiant         |
| Elapsed time 10, <sup>2</sup> 10, <sup>2</sup> 10, <sup>2</sup> | h]10; <sup>-1</sup> 10; <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1300            |                                 | transient<br>NA   | Flow regime:                    | transient<br>1.40 |
| 10                                                              | <b>t</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300             | , ,                             | NA<br>NA          | $dt_1 (min) =$                  | 6.06              |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup> | J. 12 ( )                       |                   | $dt_2 (min) =$                  | 2.0E-07           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | $T (m^2/s) = S (-) =$           | 1.0E-06           | $T (m^2/s) =$                   | 1.0E-06           |
| 101                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30              | 0 ( )                           |                   | $K_s(m/s) =$                    | 1.0E-08           |
|                                                                 | A S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               | $K_s (m/s) = S_s (1/m) =$       |                   |                                 |                   |
| راهان                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>1</sup> | C (m <sup>3</sup> /Pa) =        | NA                | $S_s(1/m) =$                    | 5.0E-08<br>4.6E-1 |
| • • • • •                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | - ' /                           | NA<br>NA          | $C (m^3/Pa) = C_D (-) =$        | 5.1E-03           |
| 10 0                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3               | -5()                            |                   | - 5 ( )                         | 5. TE-03          |
|                                                                 | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -               | ξ (-) =                         | 0.3               | ξ (-) =                         | 21.               |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 °            | T (2(-)                         | NA                | T (2/-)                         | NA                |
|                                                                 | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | $T_{GRF}(m^2/s) = S_{GRF}(-) =$ | NA                | $T_{GRF}(m^2/s) = S_{GRF}(-) =$ | NA                |
| 10 <sup>2</sup> 10 <sup>3</sup> tD                              | 10 <sup>4</sup> 10 <sup>5</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) <sup>6</sup>  | $D_{GRF}(-)$ =                  | NA                | $D_{GRF}(-)$ =                  | NA                |
| Log-Log plot incl. derivatives-                                 | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Selected repres                 |                   |                                 |                   |
| Elapsed time                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | $dt_1 (min) =$                  | 1.40              |                                 | 4.6E-1            |
| 10 <sup>2</sup> 10, <sup>3</sup>                                | 10,"4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10"             | $dt_2 \text{ (min)} =$          |                   | $C_D(-) =$                      | 5.1E-03           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | $T_T (m^2/s) =$                 | 2.0E-07           |                                 | 21.1              |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300             | S (-) =                         | 1.0E-06           |                                 |                   |
| 6.0.00                                                          | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 <sup>2</sup> | $K_s (m/s) =$                   | 1.0E-08           |                                 |                   |
| 101                                                             | ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100             | $S_s(1/m) =$                    | 5.0E-08           |                                 |                   |
| <u>//.</u> ·                                                    | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30              | Comments:                       | J.UL 00           |                                 |                   |
| ad 'ad                                                          | *\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | Ė                               | transmissivity o  | f 2.0E-7 m2/s was d             | erived from the   |
|                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>1</sup> |                                 |                   | se, which shows the             |                   |
| 10"                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | derivative quality.             | The confidence    | ange for the interva            | l transmissivity  |
|                                                                 | , #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3               |                                 |                   | m2/s. The static pre            |                   |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                                 |                   | om the CHir phase u             |                   |
|                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10°             | ine extrapolation               | ıı ine riomer plo | t to a value of 4,086           | .s kra.           |
| 10 <sup>0</sup> 10 tD/CI                                        | 10 <sup>2</sup> 10 <sup>3</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04              |                                 |                   |                                 |                   |

| estigation<br>Laxemar<br>KLX11A<br>463.00 m | Test type:[1] Test no: Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | CHi                                                  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--|
| KLX11A<br>463.00 m                          | Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| 463.00 m                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| 463.00 m                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 060707 08:3                                           |                                                      |  |
|                                             | D 11. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 060707 08:32                                         |  |
| 0.076                                       | Responsible for test execution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | Stephan Roh                                          |  |
|                                             | Responsible for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Crist                                                 | ian Enachescı                                        |  |
|                                             | test evaluation: Flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recovery period                                       |                                                      |  |
|                                             | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indata                                                |                                                      |  |
| 0.05                                        | p <sub>0</sub> (kPa) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                      |  |
| Pabove                                      | p <sub>i</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                      |  |
| 0.04                                        | $p_p(kPa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p <sub>F</sub> (kPa ) =                               | 426                                                  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                     |                                                      |  |
| + 0.03 E                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t₋ (s) =                                              | 120                                                  |  |
| ate [/mi                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 1.00E-0                                              |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00L-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S el S (-)=                                           | 1.00L-0                                              |  |
| + 0.02 ⊆                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                      |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 0.0                                                  |  |
| - 0.01                                      | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Derivative lact                                       | 0.0                                                  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| 0.00                                        | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results                                               |                                                      |  |
|                                             | $Q/s (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                      |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                      |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | transient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flow regime:                                          | transient                                            |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | NA                                                   |  |
|                                             | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | NA                                                   |  |
| 10 <sup>2</sup>                             | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , ,                                                   | 1.2E-0                                               |  |
|                                             | ` ′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ` '                                                   | 1.0E-0                                               |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 5.9E-0                                               |  |
| 101                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| min l                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . ,                                                   | 5.0E-0                                               |  |
| [/a]                                        | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 5.0E-1                                               |  |
| 10° ₽                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 5.6E-0                                               |  |
|                                             | ξ(-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ξ(-) =                                                | 32.                                                  |  |
| 10-1                                        | T (==2/=)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NΔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T (2/-)                                               | NA                                                   |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | NA                                                   |  |
| 10 <sup>10'</sup>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | NA                                                   |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 5 OE 1                                               |  |
| <u>,°</u>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 5.0E-1                                               |  |
| -                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 5.6E-0                                               |  |
| 300                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 5.                                                   |  |
| 102                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| 10                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| -                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                      |  |
| · 生                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| ف ا                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| " <u>g</u>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| 3                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                      |  |
| 100                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                     |                                                      |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                     |                                                      |  |
|                                             | 0.000 liquid 100 liqui | $\begin{array}{c} p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\ p_{0}(kPa) = \\$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |

|                                         | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mary Sheet                      |                    |                                        |                               |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|----------------------------------------|-------------------------------|
| Project:                                | Oskarshamn site investi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test type:[1]                   |                    |                                        | Р                             |
| Area:                                   | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r Test no:                      |                    |                                        |                               |
| , ii oa.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                    |                                        | '                             |
| Borehole ID:                            | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .X11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test start:                     | 060707 10:3        |                                        |                               |
| Test section from - to (m):             | 463.00-483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Responsible for test execution: |                    |                                        | Stephan Rohs                  |
| Section diameter, 2·r <sub>w</sub> (m): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Responsible for                 |                    | Crist                                  | ian Enachescu                 |
| 11                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | test evaluation:                |                    |                                        | 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |
| Linear plot Q and p                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow period                     |                    | Recovery period<br>Indata              |                               |
| 4800                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Indata $p_0 (kPa) =$            | 4461               | indata                                 | 1                             |
| KLX11A_463.00-483.0                     | 00_060707_1_PI_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_0 (kPa) =$                   | 4485               |                                        |                               |
| 4700                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_i(kPa) =$ $p_p(kPa) =$       |                    | p <sub>F</sub> (kPa ) =                | 4572                          |
|                                         | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | 4698<br>NA         | ρ <sub>F</sub> (κΡα ) =                | 437.                          |
|                                         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Q_p (m^3/s) =$                 |                    | ( ( )                                  | 145                           |
| egd annes                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [/win]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tp (s) =                        |                    | t <sub>F</sub> (s) =                   | 4473                          |
| \$\frac{2}{6} \cdot \frac{4500}{6}      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | injection Rate [[/min]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S el S* (-)=                    | 1.00E-06           | S el S <sup>*</sup> (-)=               | 1.00E-0                       |
| Do wah                                  | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | injec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EC <sub>w</sub> (mS/m)=         |                    |                                        |                               |
| 4400                                    | P section P above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp <sub>w</sub> (gr C)=       | 13.8               |                                        |                               |
|                                         | ■ P below<br>• Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Derivative fact.=               | NA                 | Derivative fact.=                      | 0.0                           |
| 4300                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                    |                                        |                               |
| 4200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                    |                                        |                               |
| 0.00 0.50 1.00 Elapsed T                | 1.50 2.00 ime [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Results                         | In a               | Results                                |                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q/s $(m^2/s)=$                  | NA                 |                                        |                               |
| Log-Log plot incl. derivates- fl        | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_{\rm M} (m^2/s) =$           | NA                 |                                        |                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow regime:                    | transient          | Flow regime:                           | transient                     |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $dt_1$ (min) =                  | NA                 | $dt_1$ (min) =                         | 9.0                           |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $dt_2$ (min) =                  | NA                 | $dt_2$ (min) =                         | 32.9                          |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T (m^2/s) =$                   | NA                 | $T (m^2/s) =$                          | 5.7E-1                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S (-) =                         | NA                 | S (-) =                                | 1.0E-0                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $K_s (m/s) =$                   | NA                 | $K_s (m/s) =$                          | 2.8E-1                        |
| 374                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_s (1/m) =$                   | NA                 | $S_s (1/m) =$                          | 5.0E-0                        |
| Not Ar                                  | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C (m^3/Pa) =$                  | NA                 | C (m³/Pa) =                            | 6.3E-1                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_D(-) =$                      | NA                 | $C_D(-) =$                             | 6.9E-0                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ξ(-) =                          | NA                 | ξ(-) =                                 | -0.3                          |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 ( )                           |                    | 5 ( )                                  |                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_{GRF}(m^2/s) =$              | NA                 | $T_{GRF}(m^2/s) =$                     | 1.6E-1                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_{GRF}(-) =$                  | NA                 | $S_{GRF}(-) =$                         | 1.0E-0                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D <sub>GRF</sub> (-) =          | NA                 | D <sub>GRF</sub> (-) =                 | 1.                            |
| Log-Log plot incl. derivatives-         | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Selected represe                |                    |                                        |                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $dt_1$ (min) =                  | 9.04               | C (m³/Pa) =                            | 6.3E-1                        |
| 10 10 Elapsed time                      | 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $dt_2 (min) =$                  |                    | $C_D(-) =$                             | 6.9E-0                        |
| 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 5.7E-11            |                                        | -0.3                          |
| †                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_{T}(m^{2}/s) = S(-) =$       | 1.0E-06            |                                        | -0                            |
| ]                                       | Service Control of the  10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S(-) = K_s(m/s) =$             |                    |                                        |                               |
| 100                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_s (1/m) =$                   | 2.9E-12<br>5.0E-08 |                                        |                               |
| هد معتقون ا                             | the the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments:                       | 3.0⊑-06            |                                        |                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della Della |                                 |                    | 25 TE 11 2/                            | 1 1 10 3                      |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                    | 5.7E-11 m2/s was of The confidence ran |                               |
| 10-1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | interval transmissiv            |                    |                                        | ge ioi uic                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                    | pressure could not                     | be extrapolated               |
| •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | due to the very low             |                    |                                        | p                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                    |                                        |                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                    |                                        |                               |

|                                                                    | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sumr                | nary Sheet                       |                    |                                               |                 |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|--------------------|-----------------------------------------------|-----------------|--|
| Project:                                                           | Oskarshamn site inve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stigation           | Test type:[1]                    |                    |                                               | CHi             |  |
| Area:                                                              | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _axemar             | Test no:                         | 1                  |                                               |                 |  |
| Borehole ID:                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KLX11A              | Test start:                      |                    | 060707 13:1                                   |                 |  |
| Test section from - to (m):                                        | 483 00-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03 00 m             | Responsible for                  |                    | Stephan Roh                                   |                 |  |
| , ,                                                                | +00.00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | test execution:                  |                    |                                               | · .             |  |
| Section diameter, 2·r <sub>w</sub> (m):                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076               | Responsible for test evaluation: |                    | Crist                                         | ian Enachesc    |  |
| Linear plot Q and p                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Flow period                      |                    | Recovery period                               |                 |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Indata                           |                    | Indata                                        |                 |  |
| KLX11A_483.00-503.00_060707_1_CHir_Q_r                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05<br>Psection    | p <sub>0</sub> (kPa) =           | 4650               |                                               |                 |  |
|                                                                    | * F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P above<br>P below  | p <sub>i</sub> (kPa ) =          | 4649               |                                               |                 |  |
| 5000                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 0.04              | $p_p(kPa) =$                     | 4899               | p <sub>F</sub> (kPa ) =                       | 464             |  |
| 4800                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $Q_p (m^3/s) =$                  | 1.17E-07           |                                               |                 |  |
| · · · · · · · · · · · · · · · · · · ·                              | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.03 =            | tp (s) =                         | 1200               | $t_F$ (s) =                                   | 120             |  |
| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sate [l/m]          | S el S <sup>*</sup> (-)=         | 1.00E-06           | S el S <sup>*</sup> (-)=                      | 1.00E-0         |  |
|                                                                    | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 mjection Rate     | EC <sub>w</sub> (mS/m)=          |                    | 0 0.0 ( )                                     |                 |  |
| 4400                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.02 =            | Temp <sub>w</sub> (gr C)=        | 14.0               |                                               |                 |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Derivative fact.=                |                    | Derivative fact.=                             | 0.0             |  |
| 4200                                                               | Mary and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + 0.01              | Domairo laoi.                    | 0.1                | Donivativo laot.                              | 0.0             |  |
|                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                  |                    |                                               |                 |  |
| 4000 0.00 0.20 0.40 0.00 0.80 1.00 1.20 1.40 1.80 Elapsed Time [h] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Results                          |                    | Results                                       |                 |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $Q/s (m^2/s)=$                   | 4.6E-09            |                                               |                 |  |
| Log-Log plot incl. derivates- flo                                  | w period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | $T_{\rm M} (m^2/s) =$            | 4.8E-09            |                                               |                 |  |
| 10. <sup>-4</sup> Eapsed time [h]                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Flow regime:                     | transient          | Flow regime:                                  | transient       |  |
| 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>3</sup>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\neg$              | $dt_1$ (min) =                   | 0.40               | $dt_1$ (min) =                                | NA              |  |
|                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103                 | $dt_2 (min) =$                   | 11.17              | $dt_2 (min) =$                                | NA              |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                  | $T (m^2/s) =$                    | 4.3E-09            | $T (m^2/s) =$                                 | 2.5E-0          |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ė                   | S (-) =                          | 1.0E-06            | . , ,                                         | 1.0E-0          |  |
| 10 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                 | $K_s (m/s) =$                    |                    | $K_s (m/s) =$                                 | 1.3E-1          |  |
| ٠                                                                  | C. Marie Control of the Control of t | 10 <sup>2</sup>     | $S_s (1/m) =$                    |                    | $S_s(1/m) =$                                  | 5.0E-0          |  |
|                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 Frim             | $C (m^3/Pa) =$                   | NA                 | . , ,                                         | 6.0E-1          |  |
| ·                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g,(1/q)             | C (m³/Pa) =                      |                    | $C (m^3/Pa) =$                                |                 |  |
| 10 0                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 ₹                | $C_D(-) =$                       | NA                 | $C_D(-) =$                                    | 6.6E-0          |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101                 | ξ (-) =                          | 1.8                | ξ (-) =                                       | 0.              |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $T_{GRF}(m^2/s) =$               | NA                 | $T_{GRF}(m^2/s) =$                            | NA              |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                   | $S_{GRF}(III/S) =$               | NA                 | $S_{GRF}(III/S) =$                            | NA              |  |
| 10 <sup>2</sup> 10 <sup>3</sup> tD                                 | 10 <sup>4</sup> 10 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                  |                                  | NA                 |                                               | NA              |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | - GRF ( )                        |                    | - OKI ( )                                     | INA             |  |
| Log-Log plot incl. derivatives- I                                  | hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Selected represe                 |                    |                                               | T 0.0F.4        |  |
| 101                                                                | 10,010,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,2                | $dt_1 (min) =$                   | NA                 | $C (m^3/Pa) =$                                | 6.0E-1          |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $dt_2 (min) =$                   | NA                 | $C_D(-) =$                                    | 6.6E-0          |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $T_T (m^2/s) =$                  | 2.5E-09            |                                               | 0.              |  |
| 10°                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>     | S (-) =                          | 1.0E-06            |                                               |                 |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | İ                   | $K_s$ (m/s) =                    | 1.3E-10            |                                               |                 |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $S_s(1/m) =$                     | 5.0E-08            |                                               |                 |  |
| 2 10 <sup>-1</sup>                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>1</sup> KPa | Comments:                        |                    |                                               |                 |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>(p            |                                  |                    | f 2.5E-9 m2/s was d                           |                 |  |
| -                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 7 2               | radial flow analysis             | of the CHir pha    | se (inner zone), whi                          | ch shows the    |  |
| 10 <sup>-2</sup>                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 °                |                                  |                    | he confidence range                           |                 |  |
| 1                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                  |                    | E-10 to 5.0E-09 m <sup>2</sup>                |                 |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                  |                    | oth, was derived from<br>on in the Horner plo |                 |  |
| 10 10                                                              | 10 <sup>2</sup> 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-1                | 4,645.5 kPa.                     | i inic cattapoiati | on in the Horner pic                          | n to a value of |  |
| tD/CD                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0                  | .,0 .0.0 111 4.                  |                    |                                               |                 |  |

|                                         | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umi                        | nary Sheet                          |           |                                           |               |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|-----------|-------------------------------------------|---------------|--|
| Project:                                | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gation                     | Test type:[1]                       |           |                                           | CHi           |  |
| Area:                                   | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cemai                      | Test no:                            |           |                                           | 1             |  |
| Daniela ID.                             | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V44A                       | T 4 - 4 4.                          |           |                                           | 000707 45:46  |  |
| Borehole ID:                            | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X11A                       | Test start:                         |           | 060707 15:12                              |               |  |
| Test section from - to (m):             | 503.00-523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 m                      | Responsible for test execution:     |           |                                           | Stephan Rohs  |  |
| Section diameter, 2·r <sub>w</sub> (m): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                      | Responsible for                     |           | Crist                                     | ian Enachescu |  |
| Linear plot Q and p                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | test evaluation: Flow period        |           | Recovery period                           |               |  |
| Emodi piot & una p                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Indata                              |           | Indata                                    |               |  |
| 5100                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                          | p <sub>0</sub> (kPa) =              | 4838      |                                           |               |  |
| KLX11A_503.00-523.00_060707_1_CHir_Q_r  | Patow<br>Patow<br>Podow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e                          | p <sub>i</sub> (kPa ) =             | 4837      |                                           |               |  |
| 5000 -                                  | · q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 5                        | $p_p(kPa) =$                        |           | p <sub>F</sub> (kPa ) =                   | 483           |  |
|                                         | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | $Q_p (m^3/s) =$                     | 5.83E-05  |                                           | .03           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                          | $\frac{Q_p (\Pi / s)^2}{tp (s)} =$  |           | t <sub>F</sub> (s) =                      | 120           |  |
| 4400 · · ·                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | د<br>اnjection Rate [Vmin] |                                     |           | S el S <sup>*</sup> (-)=                  | 1.00E-0       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | action R <sub>2</sub>      | S el S $^*$ (-)=<br>EC $_w$ (mS/m)= | 1.00L-00  | S el S (-)=                               | 1.00E-0       |  |
| \$ 4800 ·                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ē                          | Temp <sub>w</sub> (gr C)=           | 14.4      |                                           |               |  |
| ;                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          |                                     | •         |                                           | 0.0           |  |
| 4700                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                        | Derivative fact.=                   | 0.04      | Derivative fact.=                         | 0.0           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                     |           |                                           |               |  |
| 4600                                    | 0.80 1.00 1.20 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.60                       | Results                             |           | Results                                   |               |  |
|                                         | psed time (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | Q/s $(m^2/s)=$                      | 2.9E-06   |                                           |               |  |
| Log-Log plot incl. derivates            | flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | $T_{\rm M} (m^2/s) =$               | 3.0E-06   |                                           |               |  |
| Hanse                                   | time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Flow regime:                        | transient | Flow regime:                              | transient     |  |
| 10 <sup>2</sup>                         | 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                          | $dt_1 \text{ (min)} =$              |           | $dt_1 \text{ (min)} =$                    | 0.9           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>0</sup>            | $dt_2 \text{ (min)} =$              |           | $dt_1$ (min) =                            | 14.0          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ľ                          | $T (m^2/s) =$                       |           | $T (m^2/s) =$                             | 4.1E-0        |  |
|                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                        | S (-) =                             | 1.0E-06   |                                           | 1.0E-0        |  |
| 10 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                        | $K_s(m/s) =$                        |           | $K_s(m/s) =$                              | 2.1E-0        |  |
|                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>-1</sup>           | $S_s(11/s) = S_s(1/m) = S_s(1/m)$   |           |                                           | 5.0E-0        |  |
| (1/d)                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [min/l]                    | . ,                                 | 3.0E-06   | $S_s(1/m) =$                              |               |  |
| 1/4D                                    | ė                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03 \$                    | $C (m^3/Pa) =$                      |           | $C (m^3/Pa) =$                            | 1.2E-0        |  |
| 10 0                                    | . 4. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                          | $C_D(-) =$                          | NA        | $C_D(-) =$                                | 1.3E-0        |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-2</sup>           | ξ(-) =                              | 5.0       | ξ (-) =                                   | 1.            |  |
| • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 2                                   | N. A      | 2                                         | TA LA         |  |
|                                         | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.003                      | $T_{GRF}(m^2/s) =$                  | NA        | $T_{GRF}(m^2/s) =$                        | NA            |  |
| 10 <sup>9</sup> 10 <sup>10</sup>        | 10 <sup>11</sup> 10 <sup>12</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                         | S <sub>GRF</sub> (-) =              | NA        | S <sub>GRF</sub> (-) =                    | NA            |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | D <sub>GRF</sub> (-) =              | NA        | D <sub>GRF</sub> (-) =                    | NA            |  |
| Log-Log plot incl. derivative           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Selected represe                    |           |                                           |               |  |
| 10. <sup>-4</sup> Elapsed t             | me [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | $dt_1 (min) =$                      | 0.92      | $C (m^3/Pa) =$                            | 1.2E-0        |  |
| 10 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | $dt_2$ (min) =                      |           | $C_D(-) =$                                | 1.3E-0        |  |
|                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>3</sup>            | $T_T (m^2/s) =$                     | 4.1E-06   |                                           | 1.0           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | S (-) =                             | 1.0E-06   |                                           |               |  |
| 10 1                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300                        | $K_s (m/s) =$                       | 2.1E-07   |                                           |               |  |
| 3,2,2,490                               | 20 W 000 00 000 000 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | $S_s (1/m) =$                       | 5.0E-08   |                                           |               |  |
| ad o                                    | . [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (p-p0), [KPa]              | Comments:                           |           |                                           |               |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o o                        |                                     |           | f 4.1E-6 m2/s was de                      |               |  |
| 10 4                                    | Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 🚡                       |                                     |           | se, which shows the                       |               |  |
|                                         | A Committee of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t | 1                          |                                     |           | range for the interval                    |               |  |
|                                         | Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Santa Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101                        |                                     |           | m2/s. The static preson the CHir phase us |               |  |
|                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                     |           | t to a value of 4,830                     |               |  |
| 10 <sup>d</sup> 10 <sup>t</sup>         | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                          |                                     | pio       |                                           |               |  |
| 10 10 tf                                | /CD 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                     |           |                                           |               |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sun                                           | ımary Sheet                             |           |                                             |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|-----------|---------------------------------------------|---------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investigation                      | on Test type:[1]                        |           |                                             | CHi           |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxem                                              | ar Test no:                             |           |                                             | 1             |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VI V1                                              | A Test start:                           |           |                                             | 060707 17:07  |  |
| borenole ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLAT                                               | iA rest start.                          |           |                                             |               |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 523.00-543.00                                      | m Responsible for<br>test execution:    |           |                                             | Stephan Rohs  |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                | 76 Responsible for                      |           | Crist                                       | ian Enachescu |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | test evaluation: Flow period            |           | Recovery period                             |               |  |
| Emedi plot & and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | Indata                                  |           | Indata                                      |               |  |
| KLX11A_523.00-543.00_060707_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 0.30                                             | p <sub>0</sub> (kPa) =                  | 5025      |                                             |               |  |
| KEATIN_323.00*343.00_000707CHII_Q_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P section P above P below                          | p <sub>i</sub> (kPa ) =                 | 5024      |                                             |               |  |
| 5300 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                               | $p_p(kPa) =$                            | 5228      | p <sub>F</sub> (kPa ) =                     | 5023          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | $Q_p (m^3/s) =$                         | 1.33E-06  |                                             |               |  |
| \$200 -<br>\$\overline{e}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20                                               | 4 (-)                                   |           | t <sub>F</sub> (s) =                        | 1200          |  |
| X 100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2100 - 2 | 0.15                                               |                                         |           | S el S <sup>*</sup> (-)=                    | 1.00E-06      |  |
| 2 5100 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15                                               | S el S* (-)=<br>EC <sub>w</sub> (mS/m)= | 1.00E-00  | S el S (-)=                                 | 1.00E-00      |  |
| 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                               |                                         | 14.6      |                                             |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                               | Temp <sub>w</sub> (gr C)=               |           |                                             | 0.00          |  |
| 4900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05                                               | Derivative fact.=                       | 0.1       | Derivative fact.=                           | 0.02          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                  |                                         |           |                                             |               |  |
| 4800 V 0.00 0.20 0.40 0.60 Elaos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 0.00 1.20 1.40 od Time [h]                    | Results                                 |           | Results                                     |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | Q/s $(m^2/s)=$                          | 6.4E-08   |                                             |               |  |
| Log-Log plot incl. derivates-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flow period                                        | $T_{\rm M} ({\rm m}^2/{\rm s}) =$       | 6.7E-08   |                                             |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                  | Flow regime:                            | transient | Flow regime:                                | transient     |  |
| 10 <sup>-4</sup> 10 <sup>-3</sup> Hapsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 <sup>-2</sup> 10 <sup>-1</sup> 10 <sup>0</sup>  | $dt_1 (min) =$                          | 2.05      | $dt_1 \text{ (min)} =$                      | 2.4           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110-                                               | $dt_2 (min) =$                          | I .       | $dt_2 \text{ (min)} =$                      | 9.23          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | $T (m^2/s) =$                           |           | $T (m^2/s) =$                               | 2.2E-0        |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                  | S (-) =                                 | 1.0E-06   | . ,                                         | 1.0E-06       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>:                                             | $K_s (m/s) =$                           |           | $K_s(m/s) =$                                | 1.1E-08       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                  |                                         |           | $S_s(11/s) = S_s(1/m) = S_s(1/m)$           | 1             |  |
| 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | $S_s(1/m) =$                            |           | ,                                           | 5.0E-08       |  |
| 14D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | $C (m^3/Pa) =$                          | NA        | $C (m^3/Pa) =$                              | 8.5E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | <sup>g</sup> C <sub>D</sub> (-) =       | NA        | C <sub>D</sub> (-) =                        | 9.4E-03       |  |
| 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>-1</sup>                                   | ξ (-) =                                 | 3.6       | ξ (-) =                                     | 15.0          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | $T_{GRF}(m^2/s) =$                      | NA        | $T_{GRF}(m^2/s) =$                          | NA            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | $S_{GRF}(1175) =$                       | NA        | $S_{GRF}(III / S) =$                        | NA            |  |
| 10 <sup>5</sup> 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tD 10 <sup>7</sup> 10 <sup>8</sup> 10 <sup>8</sup> | $D_{GRF}(-) =$                          | NA        | $D_{GRF}(-)$ =                              | NA            |  |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rocovery period                                    | Selected represe                        |           |                                             |               |  |
| Log-Log plot mer. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nelii                                              |                                         |           |                                             | I 05E 1       |  |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,-2                                              | dt <sub>1</sub> (min) =                 | 2.40      | 0 (III /I u)                                | 8.5E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĺ                                                  | $dt_2 (min) =$                          |           | $C_D(-) =$                                  | 9.4E-03       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                                | $T_T (m^2/s) =$                         | 2.2E-07   |                                             | 15.0          |  |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | S (-) =                                 | 1.0E-06   |                                             |               |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • 10 <sup>2</sup>                                  | $K_s (m/s) =$                           | 1.1E-08   |                                             |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i,                                                 | $S_s(1/m) =$                            | 5.0E-08   |                                             |               |  |
| Ad 'Od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                 | Comments:                               |           |                                             |               |  |
| Ī /·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ****                                               |                                         |           | f 2.2•E-7 m2/s was o                        |               |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101                                                |                                         |           | ise, which shows the                        |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Market Market Links                              |                                         |           | range for the interva                       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                  |                                         |           | m2/s. The static pre<br>om the CHir phase u |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                  |                                         |           | t to a value of 5,023                       |               |  |
| 10 0 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>2</sup>    |                                         |           |                                             | ***           |  |
| tD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CD                                                 |                                         |           |                                             |               |  |

|                                         | Test S                                  | umi                    | mary Sheet                                    |                |                             |                 |  |
|-----------------------------------------|-----------------------------------------|------------------------|-----------------------------------------------|----------------|-----------------------------|-----------------|--|
| Project:                                | Oskarshamn site investig                | gation                 | Test type:[1]                                 |                |                             | Р               |  |
| Area:                                   | Lax                                     | emar                   | Test no:                                      |                |                             |                 |  |
| Borehole ID:                            | KI                                      | <b>Χ11</b> Δ           | Test start:                                   |                |                             | 060707 19:07    |  |
| Borchoic IB.                            |                                         |                        |                                               |                |                             |                 |  |
| Test section from - to (m):             | 543.00-563.                             | .00 m                  | Responsible for test execution:               |                |                             | Stephan Rohs    |  |
| Section diameter, 2·r <sub>w</sub> (m): | ,                                       | 0.076                  | Responsible for                               |                | Crist                       | ian Enachescı   |  |
| Linear plot Q and p                     |                                         |                        | test evaluation: Flow period                  |                | Recovery period             |                 |  |
| Linear plot & and p                     |                                         |                        | Indata                                        |                | Indata                      |                 |  |
|                                         |                                         |                        | p <sub>0</sub> (kPa) =                        | 5211           |                             |                 |  |
| KLX11A_543.00-563.00_060707_1_Pi_Q_r    | ● P section  ♣ P above                  | 0103                   | p <sub>i</sub> (kPa ) =                       | 5219           |                             |                 |  |
| 540                                     | © P below<br>- Q                        |                        | $p_p(kPa) =$                                  |                | p <sub>F</sub> (kPa ) =     | 534             |  |
| 520 -                                   | •••••••••••••••••••                     |                        | $Q_p (m^3/s) =$                               | NA             | pr (iii a )                 | 331             |  |
|                                         |                                         | 0.002                  | $\frac{Q_p \text{ (m /s)=}}{\text{tp (s)}} =$ |                | t <sub>F</sub> (s) =        | 4536            |  |
| 2 000<br>5 1 000<br>6 100<br>6 100      | •                                       | ato (i/min)            |                                               |                |                             |                 |  |
| \$ 550                                  | • • • • • • • • • • • • • • • • • • • • | Injection Rate (I/min) | S el S* (-)=                                  | 1.00E-06       | S el S <sup>*</sup> (-)=    | 1.00E-0         |  |
| \$ 5200                                 |                                         | 全 0.001                | EC <sub>w</sub> (mS/m)=                       |                |                             |                 |  |
| 5150                                    |                                         |                        | Temp <sub>w</sub> (gr C)=                     | 15.0           |                             |                 |  |
| 5100                                    |                                         |                        | Derivative fact.=                             | NA             | Derivative fact.=           | 0.0             |  |
| 550                                     |                                         |                        |                                               |                |                             |                 |  |
| 0.00 2.00 4.00 6.00                     | 8.00 10.00 12.00 ·                      | 0.000                  |                                               |                |                             |                 |  |
| Сарана                                  | rum (v)                                 |                        | Results                                       |                | Results                     |                 |  |
|                                         |                                         |                        | Q/s $(m^2/s)=$                                | NA             |                             |                 |  |
| Log-Log plot incl. derivates- f         | low period                              |                        | $T_{\rm M}  ({\rm m}^2/{\rm s}) =$            | NA             |                             |                 |  |
| <u> </u>                                | •                                       |                        | Flow regime:                                  | transient      | Flow regime:                | transient       |  |
|                                         |                                         |                        | dt <sub>1</sub> (min) =                       | NA             | $dt_1 \text{ (min)} =$      | NA              |  |
|                                         |                                         |                        | $dt_2 \text{ (min)} =$                        | NA             | $dt_2 \text{ (min)} =$      | NA              |  |
|                                         |                                         |                        |                                               | NA             |                             | 1.2E-1          |  |
|                                         |                                         |                        | $T (m^2/s) =$                                 |                | $T (m^2/s) =$               |                 |  |
|                                         |                                         |                        | S (-) =                                       | NA             | S (-) =                     | 1.0E-0          |  |
|                                         |                                         |                        | $K_s (m/s) =$                                 | NA             | $K_s (m/s) =$               | 6.1E-1          |  |
| Not A                                   | nalysed                                 |                        | $S_s (1/m) =$                                 | NA             | $S_s(1/m) =$                | 5.0E-0          |  |
| 11011                                   | narysea                                 |                        | $C (m^3/Pa) =$                                | NA             | $C (m^3/Pa) =$              | 1.1E-1          |  |
|                                         |                                         |                        | $C_D(-) =$                                    | NA             | $C_D(-) =$                  | 1.2E-0          |  |
|                                         |                                         |                        | ξ (-) =                                       | NA             | ξ (-) =                     | -0.             |  |
|                                         |                                         |                        |                                               |                |                             |                 |  |
|                                         |                                         |                        | $T_{GRF}(m^2/s) =$                            | NA             | $T_{GRF}(m^2/s) =$          | 1.7E-1          |  |
|                                         |                                         |                        | $S_{GRF}(-) =$                                | NA             | S <sub>GRF</sub> (-) =      | 1.0E-0          |  |
|                                         |                                         |                        | D <sub>GRF</sub> (-) =                        | NA             | D <sub>GRF</sub> (-) =      | 1.              |  |
| Log-Log plot incl. derivatives-         | recovery period                         |                        | Selected represe                              | entative paran |                             |                 |  |
|                                         |                                         |                        | $dt_1$ (min) =                                | NA             | C (m <sup>3</sup> /Pa) =    | 1.1E-1          |  |
| 10. <sup>-3</sup> Elapsed tim           |                                         | 730                    | $dt_2 \text{ (min)} =$                        | NA             | $C_D(-) =$                  | 1.2E-0          |  |
|                                         |                                         |                        | 3                                             | 1.2E-12        |                             | -0.4            |  |
|                                         | 1                                       | 101                    | $T_T (m^2/s) = S (-) =$                       | 1.0E-06        |                             | -0.             |  |
|                                         |                                         | ŧ                      |                                               |                |                             |                 |  |
| 10 0                                    | Jiffi -                                 | 3                      | $K_s$ (m/s) =                                 | 6.0E-14        |                             |                 |  |
|                                         |                                         | essur                  | $S_s(1/m) =$                                  | 5.0E-08        |                             |                 |  |
| od od                                   | ·/·                                     | 10° ph                 | Comments:                                     |                |                             |                 |  |
| 0.000                                   |                                         | Sonvol                 |                                               |                | f 1.2E-12 m2/s was          |                 |  |
| 10-1                                    |                                         | 0.3                    |                                               |                | The confidence ran          | ige for the     |  |
| • /                                     |                                         |                        | interval transmissiv                          |                | to be<br>pressure could not | he extranolated |  |
|                                         |                                         | 10-1                   | due to the very low                           |                | pressure could not          | ос сли арогатес |  |
| .                                       |                                         | [                      |                                               |                |                             |                 |  |
| ·                                       |                                         | ł                      |                                               |                |                             |                 |  |

|                                                          | Test Su                                            | ımn                 | nary Sheet                                |                                   |                                                                     |                                 |
|----------------------------------------------------------|----------------------------------------------------|---------------------|-------------------------------------------|-----------------------------------|---------------------------------------------------------------------|---------------------------------|
| Project:                                                 | Oskarshamn site investiga                          | ation               | Test type:[1]                             |                                   |                                                                     | CHi                             |
| Area:                                                    | Laxe                                               | emar                | Test no:                                  |                                   |                                                                     |                                 |
| Develop ID:                                              | IZI V                                              | (4 4 A              | Took otomb                                |                                   |                                                                     | 000700 00.50                    |
| Borehole ID:                                             | KLX                                                | (11A                | Test start:                               |                                   |                                                                     | 060708 08:58                    |
| Test section from - to (m):                              | 563.00-583.0                                       |                     | Responsible for test execution:           |                                   |                                                                     | Stephan Roh                     |
| Section diameter, 2·r <sub>w</sub> (m):                  | 0                                                  |                     | Responsible for                           |                                   | Crist                                                               | ian Enachescı                   |
| Linear plot Q and p                                      |                                                    |                     | test evaluation: Flow period              |                                   | Recovery period                                                     |                                 |
|                                                          |                                                    |                     | Indata                                    |                                   | Indata                                                              |                                 |
| 5700<br>KLX11A_563.00-583.00_060708_1_CHir_Q_r           |                                                    | ]                   | p <sub>0</sub> (kPa) =                    | 5395                              |                                                                     |                                 |
| 5600                                                     | P section P above P bdow                           | 7 14                | p <sub>i</sub> (kPa ) =                   | 5392                              |                                                                     |                                 |
| •                                                        | ·                                                  | 12                  | $p_p(kPa) =$                              | 5590                              | p <sub>F</sub> (kPa ) =                                             | 539                             |
| 5500 -                                                   | •                                                  |                     | $Q_{p} (m^{3}/s) =$                       | 1.47E-04                          |                                                                     |                                 |
| <u> </u>                                                 |                                                    | 10                  | tp (s) =                                  |                                   | t <sub>F</sub> (s) =                                                | 120                             |
| 5400                                                     | -                                                  | Rate [Vm]           | S el S <sup>*</sup> (-)=                  |                                   | S el S <sup>*</sup> (-)=                                            | 1.00E-0                         |
| a.<br>9<br>€ 5300 -                                      | •                                                  | njection Rate [Vmin | EC <sub>w</sub> (mS/m)=                   | 1.002 00                          | 3 61 3 (-)-                                                         | 1.002 0                         |
|                                                          |                                                    | 6 =                 | Temp <sub>w</sub> (gr C)=                 | 15.1                              |                                                                     |                                 |
| 5200                                                     |                                                    | 4                   | Derivative fact.=                         |                                   | Derivative fact.=                                                   | 0.                              |
| 5100                                                     |                                                    | - 2                 | Derivative lact.                          | 0.03                              | Derivative lact.                                                    | 0.                              |
| 3.                                                       |                                                    |                     |                                           |                                   |                                                                     |                                 |
| 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Elapsed Time [h] |                                                    |                     | Results                                   | Results                           |                                                                     |                                 |
|                                                          |                                                    |                     | $Q/s (m^2/s) =$                           | 7.3E-06                           |                                                                     |                                 |
| Log-Log plot incl. derivates- flo                        | ow period                                          |                     | $T_{\rm M} (m^2/s) =$                     | 7.6E-06                           |                                                                     |                                 |
| 10 <sup>-5</sup> Elapsed time [h                         | 1 0                                                |                     | Flow regime:                              | transient                         | Flow regime:                                                        | transient                       |
| 10 10 10 10 10 10                                        | 10,-2                                              |                     | $dt_1 (min) =$                            | 0.86                              | $dt_1$ (min) =                                                      | 0.4                             |
|                                                          | 0.3                                                | 3                   | $dt_2 (min) =$                            | 18.55                             | $dt_2 (min) =$                                                      | 17.9                            |
|                                                          |                                                    |                     | $T (m^2/s) =$                             | 2.0E-05                           | $T (m^2/s) =$                                                       | 2.7E-0                          |
| 6 0 0 00 00 00 00 00 00 00 00 00 00 00 0                 | 10                                                 | ) <sup>-1</sup>     | S (-) =                                   | 1.0E-06                           |                                                                     | 1.0E-0                          |
| 10                                                       |                                                    |                     | $K_s (m/s) =$                             |                                   | $K_s (m/s) =$                                                       | 1.4E-0                          |
|                                                          | 0.0                                                | 03 _                | S <sub>s</sub> (1/m) =                    |                                   | $S_s(1/m) =$                                                        | 5.0E-0                          |
| , (14p                                                   | +                                                  | )" [min/f           | C (m <sup>3</sup> /Pa) =                  | NA                                | C (m <sup>3</sup> /Pa) =                                            | 1.6E-0                          |
| 1/04                                                     | 10                                                 | , <sub>2</sub> p,   | $C_D(-) =$                                | NA                                | $C_D(-) =$                                                          | 1.8E-0                          |
| 10 0                                                     |                                                    | -                   |                                           |                                   | ξ(-) =                                                              | 13.                             |
| •                                                        | 0.0                                                | 003                 | ξ (-) =                                   | 0.7                               | ς (-) –                                                             | 13.                             |
|                                                          |                                                    |                     | $T_{GRF}(m^2/s) =$                        | 7.0F-06                           | $T_{GRF}(m^2/s) =$                                                  | 8.2E-0                          |
|                                                          | 10                                                 | )-3                 | $S_{GRF}(III / S) =$                      | 1.0E-06                           |                                                                     | 1.0E-0                          |
| 10 <sup>11</sup> 10 <sup>12</sup> 10 <sup>13</sup> tD    | 10 <sup>14</sup> 10 <sup>15</sup> 10 <sup>18</sup> |                     | D <sub>GRF</sub> (-) =                    |                                   | $D_{GRF}(\cdot) =$                                                  | 2.                              |
| Log-Log plot incl. derivatives-                          | recovery period                                    |                     | Selected represe                          |                                   |                                                                     | <br>                            |
|                                                          | 1                                                  |                     | $dt_1 (min) =$                            | 0.45                              |                                                                     | 1.6E-0                          |
| 10, <sup>4</sup> 10, <sup>3</sup> Elapsed time (b)       | 10,"1                                              |                     | $dt_1 (min) =$ $dt_2 (min) =$             |                                   | $C (m^3/Pa) = C_D (-) =$                                            | 1.8E-0                          |
|                                                          |                                                    |                     |                                           | 2.7E-05                           |                                                                     | 1.6E-0                          |
|                                                          | 300                                                | 0                   | $T_T(m^2/s) = S(-) =$                     | 1.0E-06                           |                                                                     | 13.                             |
| 2 0 00 00 00 00 00 00 00 00 00 00 00 00                  |                                                    |                     | 9 ( )                                     |                                   |                                                                     |                                 |
| 101                                                      | 10                                                 | -                   | $K_s (m/s) =$                             | 1.4E-06                           |                                                                     |                                 |
|                                                          |                                                    | a a                 | S <sub>s</sub> (1/m) =                    | 5.0E-08                           |                                                                     |                                 |
| , od ,                                                   | 30                                                 | .p0)' [kPa]         | Comments:                                 |                                   | 00.7F.5 0/ :                                                        | . 10 -                          |
|                                                          | 110                                                | o, (p               |                                           |                                   | f 2.7E-5 m2/s was do se, which shows the                            |                                 |
| <u>`</u>                                                 | t <sub>40</sub>                                    | . 4                 |                                           |                                   |                                                                     |                                 |
| 105                                                      | ["                                                 |                     | derivative quality '                      | The confidence                    | ange for the interval                                               |                                 |
|                                                          | · · · · · · · · · · · · · · · · · · ·              |                     | derivative quality. 'is estimated to be 9 |                                   |                                                                     |                                 |
|                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              |                     | is estimated to be 9                      | 0.0E-6 to 5.0E-5                  | range for the interval<br>m2/s. The static preson the CHir phase us | ssure measured                  |
|                                                          | 3                                                  |                     | is estimated to be 9 at transducer depth  | 0.0E-6 to 5.0E-5, was derived fro | m2/s. The static pres                                               | ssure measured<br>sing straight |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                            | umr                    | nary Sheet                       |           |                          |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------|----------------------------------|-----------|--------------------------|-----------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig                          | ation                  | Test type:[1]                    |           |                          | CHi       |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                               | emar                   | Test no:                         |           |                          |           |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                                                | X11A                   | Test start:                      |           | 060708 10:53             |           |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 583 00-603                                        | 00 m                   | Responsible for                  |           | Stephan Roh              |           |  |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                        | test execution:                  |           |                          |           |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   | 0.076                  | Responsible for test evaluation: |           | Cristian Enachesco       |           |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                        | Flow period                      |           | Recovery period          |           |  |
| 5900 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   | <b>T</b> 1.0           | Indata                           |           | Indata                   |           |  |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KLX11A_583.00-603.00_060708_1_CHir_Q_r            |                        | p <sub>0</sub> (kPa) =           | 5583      |                          |           |  |
| 5800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u></u>                                           |                        | p <sub>i</sub> (kPa ) =          | 5585      |                          |           |  |
| : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 0.8                    | $p_p(kPa) =$                     |           | p <sub>F</sub> (kPa ) =  | 559       |  |
| 5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P section P above P below                         |                        | $Q_p (m^3/s) =$                  | 4.33E-06  |                          |           |  |
| Read durings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • 0                                               | 0.6 🖺                  | tp (s) =                         |           | $t_F$ (s) =              | 1200      |  |
| 8 seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   | Injection Rate [Ilmin] | S el S <sup>*</sup> (-)=         | 1.00E-06  | S el S <sup>*</sup> (-)= | 1.00E-0   |  |
| W Those                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                 | injection .            | EC <sub>w</sub> (mS/m)=          |           | ` ,                      |           |  |
| š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                        | Temp <sub>w</sub> (gr C)=        | 15.6      |                          |           |  |
| . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                        | Derivative fact.=                | 0.1       | Derivative fact.=        | 0.0       |  |
| 5400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***************************************           | 0.2                    |                                  |           |                          |           |  |
| 5300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |                        |                                  |           |                          |           |  |
| 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Elapsed Time (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                        | Results                          |           | Results                  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                        | $Q/s (m^2/s) =$                  | 2.1E-07   |                          |           |  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                                         |                        | $T_{\rm M} (m^2/s) =$            | 2.2E-07   |                          |           |  |
| Elapsed time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [h]                                               |                        | Flow regime:                     | transient | Flow regime:             | transient |  |
| 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   | }                      | $dt_1$ (min) =                   | 1.01      | dt <sub>1</sub> (min) =  | NA        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                        | $dt_2 \text{ (min)} =$           |           | $dt_2 \text{ (min)} =$   | NA        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 10 <sup>1</sup>        | $T (m^2/s) =$                    |           | $T (m^2/s) =$            | 7.9E-0    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                        | S (-) =                          | 1.0E-06   |                          | 1.0E-0    |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | 3                      |                                  |           | $K_s(m/s) =$             |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                        | $K_s (m/s) =$                    |           | . ,                      | 4.0E-0    |  |
| 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 10°                    | $S_s (1/m) =$                    |           | $S_s(1/m) =$             | 5.0E-0    |  |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   | (1/a) [r               | C (m <sup>3</sup> /Pa) =         | NA        | C (m³/Pa) =              | 1.6E-1    |  |
| 10 <sup>-0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ; <b>::</b>                                       | 0.3                    | $C_D(-) =$                       | NA        | $C_D(-) =$               | 1.8E-0    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************************************            |                        | ξ (-) =                          | 8.4       | ξ (-) =                  | 14.       |  |
| . :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | And a                                             | 10 -1                  |                                  |           |                          |           |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : ·                                               |                        | $T_{GRF}(m^2/s) =$               | 5.4E-07   | $T_{GRF}(m^2/s) =$       | 7.9E-0    |  |
| 10 10 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 <sup>12</sup> 10 <sup>13</sup> 10 <sup>1</sup> | 0.03                   | S <sub>GRF</sub> (-) =           | 1.0E-06   |                          | 1.0E-0    |  |
| 10 <sup>10'</sup> 10 <sup>11'</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 <sup>12</sup> 10 <sup>13</sup> 10 <sup>1</sup> |                        | D <sub>GRF</sub> (-) =           |           | D <sub>GRF</sub> (-) =   | 1.9       |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                   |                        | Selected represe                 |           |                          |           |  |
| Flansed time [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                        | $dt_1$ (min) =                   | NA        | C (m³/Pa) =              | 1.6E-1    |  |
| 102 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h]10,-1                                           |                        | $dt_2 \text{ (min)} =$           | NA        | $C_D(-) =$               | 1.8E-0    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                        |                                  | 7.9E-07   |                          | 1.02-0    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 800                    | $T_T (m^2/s) =$                  |           |                          | 14.       |  |
| - Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp |                                                   |                        | S (-) =                          | 1.0E-06   |                          |           |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | 102                    | $K_s$ (m/s) =                    | 4.0E-08   |                          |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | _                      | $S_s (1/m) =$                    | 5.0E-08   |                          |           |  |
| ng de de de de de de de de de de de de de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   | 8<br>(p-p0) [kPa]      | Comments:                        |           |                          |           |  |
| ā   //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .::                                               | l, (p-p0               |                                  |           | f 7.9E-7 m2/s was d      |           |  |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   | 101 6                  |                                  |           | se (inner zone), whi     |           |  |
| The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                                   |                        |                                  |           | he confidence range      |           |  |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                        |                                  |           | E-7 to 1.0E-6 m2/s.      |           |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1+                                                |                        |                                  |           | 1 1 1 1 C                | di CIII   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                 | 5                      | pressure measured                |           |                          |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>3</sup> 10 <sup>4</sup> 10 <sup>5</sup>   | o <sup>0</sup>         |                                  |           | on in the Horner plo     |           |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umr                       | nary Sheet                         |                |                                         |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|----------------|-----------------------------------------|---------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gation                    | Test type:[1]                      |                |                                         | Р             |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emar                      | Test no:                           |                |                                         |               |  |
| D I. I. ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V/4.4.A                   | T - 1 - 1 - 1                      |                |                                         | 000700 40 4   |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X11A                      | Test start:                        |                | 060708 13:1                             |               |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 603.00-623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 m                     | Responsible for test execution:    |                | Stephan Roh                             |               |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                     | Responsible for test evaluation:   |                | Cristian Enachesc                       |               |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Flow period                        |                | Recovery period                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Indata                             |                | Indata                                  |               |  |
| 6100 KLX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11A_603.00-623.00_060708_1_PI_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003                     | p <sub>0</sub> (kPa) =             | 5772           |                                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | p <sub>i</sub> (kPa ) =            | 5778           |                                         |               |  |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $p_p(kPa) =$                       | 6021           | p <sub>F</sub> (kPa ) =                 | 593           |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $Q_p (m^3/s) =$                    | NA             |                                         |               |  |
| 5900 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                     | tp (s) =                           | 10             | t <sub>F</sub> (s) =                    | 246           |  |
| To all an analysis of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate [Vm in                | S el S <sup>*</sup> (-)=           |                | S el S <sup>*</sup> (-)=                | 1.00E-0       |  |
| \$ 5500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | injection Rate [Vmin]     | EC <sub>w</sub> (mS/m)=            |                | 3 61 3 (-)-                             |               |  |
| O Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                         | Temp <sub>w</sub> (gr C)=          | 15.9           |                                         |               |  |
| 5700-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P section P above P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001                     | Derivative fact.=                  | NA             | Derivative fact.=                       | 0.0           |  |
| 6600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • P below<br>• Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | Derivative lact                    | IVA            | Derivative fact.                        | 0.0           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                    |                |                                         |               |  |
| 0.00 0.20 0.40 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                                    |                |                                         |               |  |
| Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | me [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | Q/s $(m^2/s)=$                     | NA             |                                         |               |  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | $T_{\rm M}  ({\rm m}^2/{\rm s}) =$ | NA             |                                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Flow regime:                       | transient      | Flow regime:                            | transient     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $dt_1 (min) =$                     | NA             | dt <sub>1</sub> (min) =                 | 2.9           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $dt_2 \text{ (min)} =$             | NA             | $dt_2 (min) =$                          | 35.2          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $T (m^2/s) =$                      | NA             | $T (m^2/s) =$                           | 4.4E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | S (-) =                            | NA             | S (-) =                                 | 1.0E-0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $K_s (m/s) =$                      | NA             | $K_s (m/s) =$                           | 2.2E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $S_s(1/m) =$                       | NA             | S <sub>s</sub> (1/m) =                  | 5.0E-0        |  |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | C (m <sup>3</sup> /Pa) =           | NA             | C (m <sup>3</sup> /Pa) =                | 5.5E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $C_D(-) =$                         | NA             | $C_D(-) =$                              | 6.1E-0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                    | NA             |                                         | -0.           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ξ (-) =                            | INA            | ξ (-) =                                 | -0.           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $T_{GRF}(m^2/s) =$                 | NA             | $T_{GRF}(m^2/s) =$                      | 1.0E-0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | $S_{GRF}(-) =$                     | NA             | $S_{GRF}(-) =$                          | 1.0E+0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | D <sub>GRF</sub> (-) =             | NA             | D <sub>GRF</sub> (-) =                  | 1.            |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Selected represe                   | entative paran |                                         |               |  |
| 10, <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>1</sup>           | $dt_1$ (min) =                     | 2.90           | <u> </u>                                | 5.5E-1        |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                         | $dt_2 \text{ (min)} =$             | 35.22          | o (iii /i u)                            | 6.1E-0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | $T_T (m^2/s) =$                    | 4.4E-11        |                                         | -0.           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | S (-) =                            | 1.0E-06        |                                         | 0.            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10°                       | $K_s (m/s) =$                      | 2.2E-12        |                                         |               |  |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | etc. etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                         | $S_s(1/m) =$                       | 5.0E-08        |                                         |               |  |
| نين بين بين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | 0.3                       | Comments:                          | 3.0L-00        |                                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inted                     |                                    |                | C 4 4 10 11 2/                          | 1 : 16        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-1</sup> lovuooa0 |                                    |                | f 4.4•10-11 m2/s wa ase. The confidence |               |  |
| 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "                         | interval transmissiv               |                |                                         | range for the |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                      |                                    |                | tatic pressure could                    | not be        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | extrapolated due to                |                |                                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 -2                     |                                    |                |                                         |               |  |
| 10-1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 <sup>7</sup> 10 <sup>2</sup> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103                       |                                    |                |                                         |               |  |

|                                              | Test S                                 | umi                  | mary Sheet                                    |                 |                                             |                |  |
|----------------------------------------------|----------------------------------------|----------------------|-----------------------------------------------|-----------------|---------------------------------------------|----------------|--|
| Project:                                     | Oskarshamn site investi                | gation               | Test type:[1]                                 |                 |                                             | Р              |  |
| Area:                                        | Lax                                    | kemar                | Test no:                                      |                 |                                             | •              |  |
|                                              |                                        |                      |                                               |                 |                                             |                |  |
| Borehole ID:                                 | KL                                     | .X11A                | Test start:                                   |                 | 060708 15:1.                                |                |  |
| Test section from - to (m):                  | 623.00-643                             | .00 m                | Responsible for test execution:               | 1               | Stephan Roh                                 |                |  |
| Section diameter, 2·r <sub>w</sub> (m):      |                                        | 0.076                | Responsible for                               |                 | Crist                                       | ian Enachescı  |  |
| Linear plot Q and p                          |                                        |                      | test evaluation:<br>Flow period               |                 | Recovery period                             |                |  |
| Emour prot & una p                           |                                        |                      | Indata                                        |                 | Indata                                      |                |  |
| 6300<br>KLX11A_623.00-643.00_060708_1_PI_Q_r |                                        | 0.003                | p <sub>0</sub> (kPa) =                        | 5957            |                                             |                |  |
|                                              |                                        |                      | p <sub>i</sub> (kPa ) =                       | 5963            |                                             |                |  |
| 6200                                         |                                        |                      | $p_p(kPa) =$                                  | 6183            | p <sub>F</sub> (kPa ) =                     | 617            |  |
|                                              |                                        |                      | $Q_p (m^3/s) =$                               | NA              | ,                                           |                |  |
| 6100 ·                                       | :                                      | 0.002                | $\frac{Q_p (\Pi / s)^2}{tp (s)} =$            |                 | t <sub>F</sub> (s) =                        | 246            |  |
| Fg)                                          | :                                      | at e [Vmir           | S el S <sup>*</sup> (-)=                      |                 | S el S <sup>*</sup> (-)=                    | 1.00E-0        |  |
| 8 000 -                                      |                                        | njection Rate [Vmin] | EC <sub>w</sub> (mS/m)=                       | 1.00E 00        | S el S (-)=                                 | 1.00L 0        |  |
| \$00 t                                       |                                        | 0.001                | Temp <sub>w</sub> (gr C)=                     | 16.2            |                                             |                |  |
|                                              | • P section                            | 0.001                | Derivative fact.=                             | NA              | Derivative fact.=                           | 0.2            |  |
| 5800                                         | P above P below Q                      |                      | Derivative fact.=                             | INA             | Derivative fact.=                           | 0.2            |  |
|                                              |                                        |                      |                                               |                 |                                             |                |  |
| 5700                                         | 0.80 1.00 1.20 1.40                    | 0.000                | Results                                       |                 | Results                                     |                |  |
| Elapsed                                      | Time [h]                               |                      | $Q/s (m^2/s)=$                                | NA              |                                             |                |  |
| Log-Log plot incl. derivates- f              | low period                             |                      | $T_{\rm M} (m^2/s) =$                         | NA              |                                             |                |  |
| log log plot mon domatoc .                   |                                        |                      | Flow regime:                                  | transient       | Flow regime:                                | transient      |  |
|                                              |                                        |                      | dt <sub>1</sub> (min) =                       | NA              | dt <sub>1</sub> (min) =                     | NA             |  |
|                                              |                                        |                      | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA              | $dt_1 (min) =$ $dt_2 (min) =$               | NA             |  |
|                                              |                                        |                      |                                               | NA              |                                             | 1.3E-1         |  |
|                                              |                                        |                      | $T (m^2/s) = S (-) = $                        | NA              | $T (m^2/s) = S (-) =$                       | 1.0E-0         |  |
|                                              |                                        |                      | • ( )                                         |                 | 0 ( )                                       |                |  |
|                                              |                                        |                      | $K_s (m/s) =$                                 | NA              | $K_s(m/s) =$                                | 6.6E-1         |  |
| Not A                                        | nalysed                                |                      | $S_s(1/m) =$                                  | NA              | $S_s(1/m) =$                                | 5.0E-0         |  |
|                                              | ,                                      |                      | $C (m^3/Pa) =$                                | NA              | $C (m^3/Pa) =$                              | 6.0E-1         |  |
|                                              |                                        |                      | $C_D(-) =$                                    | NA              | $C_D(-) =$                                  | 6.6E-0         |  |
|                                              |                                        |                      | ξ (-) =                                       | NA              | ξ (-) =                                     | -1.            |  |
|                                              |                                        |                      | 2                                             | NIA             | 2                                           | NI A           |  |
|                                              |                                        |                      | $T_{GRF}(m^2/s) =$                            | NA              | $T_{GRF}(m^2/s) =$                          | NA             |  |
|                                              |                                        |                      | S <sub>GRF</sub> (-) =                        | NA              | $S_{GRF}(-) =$                              | NA             |  |
|                                              |                                        |                      | D <sub>GRF</sub> (-) =                        | NA              | D <sub>GRF</sub> (-) =                      | NA             |  |
| Log-Log plot incl. derivatives               |                                        |                      | Selected represe                              |                 |                                             | 0.05.4         |  |
| Elapsed tim                                  | e [n]19, <sup>0</sup> 19, <sup>1</sup> | ٦                    | dt <sub>1</sub> (min) =                       | NA              | $C (m^3/Pa) =$                              | 6.0E-1         |  |
|                                              |                                        | F10 <sup>1</sup>     | $dt_2 \text{ (min)} =$                        | NA              | $C_D(-) =$                                  | 6.6E-0         |  |
|                                              |                                        | -                    | $T_T (m^2/s) =$                               | 1.3E-11         |                                             | -1.            |  |
|                                              | partition .                            | 3                    | S (-) =                                       | 1.0E-06         |                                             |                |  |
| 10°                                          |                                        | -                    | $K_s$ (m/s) =                                 | 6.5E-13         |                                             |                |  |
|                                              |                                        | 10° 8                | $S_s(1/m) =$                                  | 5.0E-08         |                                             |                |  |
|                                              |                                        | ted pre              | Comments:                                     |                 |                                             |                |  |
|                                              |                                        | 0.3                  |                                               |                 | f 1.3E-11 m2/s was                          |                |  |
| 10 <sup>-1</sup>                             |                                        | l ă                  |                                               |                 | (inner zone). The co                        |                |  |
|                                              |                                        | 10-1                 |                                               |                 | imated to be 9.0E-12<br>be extrapolated due |                |  |
|                                              |                                        | -                    | transmissivity.                               | osare could not | oo extrapolated due                         | w mic very iow |  |
| <b>:</b>                                     |                                        | 0.03                 |                                               |                 |                                             |                |  |
|                                              |                                        |                      |                                               |                 |                                             |                |  |

| Oskarshamn site investig  Lax  KL  643.00-663 | gation<br>xemar<br>-X11A<br>3.00 m          | Test type:[1] Test no: Test start: Responsible for test execution: |                                                          |                                                       | P 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| KL<br>643.00-663                              | X11A<br>3.00 m                              | Test start: Responsible for                                        |                                                          |                                                       | 060709 17:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| KL<br>643.00-663                              | X11A<br>3.00 m                              | Test start: Responsible for                                        |                                                          |                                                       | 060709 17:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 643.00-663                                    | 3.00 m                                      | Responsible for                                                    |                                                          |                                                       | 060700 17:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                               |                                             |                                                                    |                                                          | 060708 17:1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               | 0.076                                       | test execution.                                                    |                                                          |                                                       | Stephan Rohs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                               | 0.076 F<br>to                               |                                                                    |                                                          | Crist                                                 | ian Enachescu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                               |                                             | test evaluation: Flow period                                       |                                                          | Recovery period                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                             | Indata                                                             |                                                          | Indata                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               | 0.003                                       | p <sub>0</sub> (kPa) =                                             | 6144                                                     |                                                       | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| P section P above P below                     |                                             | $p_0 (kPa) =$<br>$p_i (kPa) =$                                     | 6153                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| · q                                           |                                             |                                                                    |                                                          |                                                       | 612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                               |                                             | •                                                                  |                                                          | ρ <sub>F</sub> (κΡα ) =                               | 613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                               | 0.002                                       |                                                                    |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| . :                                           | [Vmin]                                      |                                                                    |                                                          |                                                       | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ·                                             | tion Rate                                   |                                                                    | 1.00E-06                                                 | S el S (-)=                                           | 1.00E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ;                                             | Inject                                      | ` '                                                                |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| •                                             | 0.001                                       | Temp <sub>w</sub> (gr C)=                                          | 16.5                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                             | Derivative fact.=                                                  | NA                                                       | Derivative fact.=                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                               |                                             |                                                                    |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                             |                                                                    |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1.00 1.20 1.40                                | 0.000                                       | Results                                                            |                                                          | Results                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                             | Q/s $(m^2/s)=$                                                     | NA                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| v period                                      |                                             | $T_{\rm M} (m^2/s) =$                                              | NA                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                             | Flow regime:                                                       | transient                                                | Flow regime:                                          | transient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                               |                                             | $dt_1 (min) =$                                                     | NA                                                       | $dt_1 (min) =$                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                               |                                             |                                                                    | NA                                                       |                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                               |                                             | ` '                                                                |                                                          | . ,                                                   | 2.1E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               |                                             | . ,                                                                |                                                          | , ,                                                   | 1.0E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               |                                             |                                                                    |                                                          |                                                       | 1.1E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               |                                             |                                                                    |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| lysed                                         |                                             |                                                                    |                                                          |                                                       | 5.0E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               |                                             | . ,                                                                |                                                          | , ,                                                   | 3.1E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               |                                             |                                                                    |                                                          |                                                       | 3.4E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               |                                             | ξ (-) =                                                            | NA                                                       | ξ (-) =                                               | -1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                               |                                             | T (2)                                                              | NΙΛ                                                      | T (21)                                                | 5.3E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               |                                             |                                                                    |                                                          |                                                       | 1.0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                               |                                             |                                                                    |                                                          |                                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                               |                                             | 1 1                                                                |                                                          |                                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ecovery perioa                                |                                             |                                                                    |                                                          | <u> </u>                                              | 7 45 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| .10 <sup>-1</sup>                             | <u>'</u>                                    |                                                                    |                                                          |                                                       | 3.1E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               | 20                                          |                                                                    |                                                          |                                                       | 3.4E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                               | 30                                          |                                                                    |                                                          |                                                       | -1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                               | 101                                         |                                                                    |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               |                                             | $K_s$ (m/s) =                                                      |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               | ınş                                         | $S_s(1/m) =$                                                       | 5.0E-08                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               | adpres                                      | Comments:                                                          |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Significant of the second                     | 10° out                                     |                                                                    |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               | Deox                                        |                                                                    |                                                          |                                                       | ige for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                               | 0.2                                         |                                                                    |                                                          |                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                               | 0.3                                         |                                                                    |                                                          | pressure could not                                    | be extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                               | 10-1                                        | ude to the very 10W                                                | u ansiinssivity.                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 10 <sup>-1</sup> 10 <sup>0</sup> 10           | <del> </del>                                |                                                                    |                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ,                                             | v period  lysed  covery period  10° 10° 10° | v period  lysed  100  100  100  100  100  100  100  1              | $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} p_{p}(\text{kPa}) = \\ Q_{p} \ (\text{m}^{3}/\text{s}) = \\ P_{p}(\text{kPa}) = \\ Q_{p} \ (\text{m}^{3}/\text{s}) = \\ P_{p}(\text{kPa}) = \\ Q_{p} \ (\text{m}^{3}/\text{s}) = \\ P_{p}(\text{kPa}) = \\ P_{p}(kP$ |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test St                                         | um                    | mary Sheet                                |                                       |                                              |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-------------------------------------------|---------------------------------------|----------------------------------------------|---------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig                        | ation                 | Test type:[1]                             |                                       |                                              | CHi           |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                             | ema                   | r Test no:                                |                                       |                                              |               |  |
| Danahala ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IZI.                                            |                       | T44-                                      |                                       |                                              | 000700 40-00  |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL)                                             | X11 <i>F</i>          | Test start:                               |                                       |                                              | 060708 19:06  |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 663.00-683.                                     | 00 n                  | Responsible for test execution:           |                                       | Stephan Rohs                                 |               |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (                                               | 0.076                 | Responsible for test evaluation:          |                                       | Cristian Enachesc                            |               |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                       | Flow period                               |                                       | Recovery period                              |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                       | Indata                                    | •   •   •   •   •   •   •   •   •   • | Indata                                       |               |  |
| 6700 KLX11A_663.00-683.00_060708_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Psection                                        | 0.005                 | p <sub>0</sub> (kPa) =                    | 6332                                  |                                              |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pabove<br>Phelow<br>Q                           |                       | p <sub>i</sub> (kPa ) =                   | 6327                                  |                                              |               |  |
| 6600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                               | 0.004                 | $p_p(kPa) =$                              | 6583                                  | p <sub>F</sub> (kPa ) =                      | 641           |  |
| 6500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                       | $Q_p (m^3/s) =$                           | 1.67E-08                              |                                              |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                               | 0.003 ਵ               | tp (s) =                                  | 1200                                  | t <sub>F</sub> (s) =                         | 120           |  |
| 8 6400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \ \                                             | Injection Rate [/min] | S el S* (-)=                              |                                       | S el S* (-)=                                 | 1.00E-0       |  |
| and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | <u> </u>                                        | injection             | EC <sub>w</sub> (mS/m)=                   |                                       | 00.0()                                       |               |  |
| 6300 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | 0.002 -               | Temp <sub>w</sub> (gr C)=                 | 16.8                                  |                                              |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                       | Derivative fact.=                         |                                       | Derivative fact.=                            | 0.0           |  |
| 6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>1</del> •                                  | 0.001                 |                                           | ,,,,,                                 |                                              |               |  |
| 6100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.000                 |                                           |                                       |                                              |               |  |
| 0.00 2.00 4.00 6.00<br>Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | .00                   | Results                                   |                                       | Results                                      |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                       | Q/s $(m^2/s)=$                            | 6.4E-10                               |                                              |               |  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                                       |                       | $T_{\rm M} (m^2/s) =$                     | 6.7E-10                               |                                              |               |  |
| Elapsed time [h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 ,                                             |                       | Flow regime:                              | transient                             | Flow regime:                                 | transient     |  |
| 10 <sup>-3</sup> Elapsed time [h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,-110,0                                       |                       | $dt_1$ (min) =                            | 2.68                                  | $dt_1$ (min) =                               | NA            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                              | 4                     | $dt_2$ (min) =                            | 15.04                                 | dt <sub>2</sub> (min) =                      | NA            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                       | $T (m^2/s) =$                             | 2.0E-10                               | $T (m^2/s) =$                                | 6.3E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                             | 00                    | S (-) =                                   | 1.0E-06                               | S (-) =                                      | 1.0E-0        |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                       | $K_s (m/s) =$                             |                                       | $K_s (m/s) =$                                | 3.2E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                              | 3                     | $S_s(1/m) =$                              |                                       | S <sub>s</sub> (1/m) =                       | 5.0E-0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | l)ciw]                | $C (m^3/Pa) =$                            | NA                                    | $C (m^3/Pa) =$                               | 4.6E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                             | 0 3                   | $C_D(-) =$                                | NA                                    | $C_D(-) =$                                   | 5.1E-0        |  |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · . · · ·                                       |                       | ξ(-) =                                    | 1                                     | ξ(-) =                                       | -2.           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                              | 2                     | ς (-) –                                   | -1.0                                  | ς (-) –                                      | -2.           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                               |                       | $T_{GRF}(m^2/s) =$                        | NA                                    | $T_{GRF}(m^2/s) =$                           | NA            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                              |                       | $S_{GRF}(m/s) =$ $S_{GRF}(-) =$           | NA                                    | $S_{GRF}(III/S) =$ $S_{GRF}(-) =$            | NA            |  |
| 10 <sup>-1</sup> 10 <sup>0</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> |                       |                                           | NA                                    |                                              | NA            |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | receivems period                                |                       | D <sub>GRF</sub> (-) = Selected represe   |                                       | - OI(I ( )                                   | INA           |  |
| Classed Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                       |                                           |                                       | <u></u>                                      | 1054          |  |
| 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,1                                            |                       | dt <sub>1</sub> (min) =                   | 2.68                                  | ο (III /I α)                                 | 4.6E-1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                       | $dt_2 (min) =$                            |                                       | C <sub>D</sub> (-) =                         | 5.1E-0        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 300                   | $T_T (m^2/s) =$                           | 2.0E-10                               |                                              | -1.           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                       | S (-) =                                   | 1.0E-06                               |                                              |               |  |
| 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | 10 <sup>2</sup>       | $K_s (m/s) =$                             | 1.0E-11                               |                                              |               |  |
| and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |                                                 | _                     | $S_s (1/m) =$                             | 5.0E-08                               |                                              |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 30                    | Comments:                                 |                                       |                                              |               |  |
| a distribution of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |                                                 | ,                     |                                           |                                       | f 2.0E-10 m2/s was                           |               |  |
| 10 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ę                                               | 101                   |                                           |                                       | se (outer zone), which                       |               |  |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                       |                                           |                                       | he confidence range                          |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                              | 3                     |                                           |                                       | E-11 to 7.0E-10 m2 from the inner zone       |               |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                       |                                           |                                       |                                              |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                       | the CHi phase) Th                         | e static pressure                     | measured at transdu                          | cer denin was |  |
| 10-1 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 <sup>2</sup> 10 <sup>3</sup>                 | 10 <sup>0</sup>       | the CHi phase). The<br>derived from the C |                                       | measured at transdu<br>straight line extrapo |               |  |

|                                         | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umi                   | mary Sheet                           |                    |                                 |                 |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|--------------------|---------------------------------|-----------------|--|
| Project:                                | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gation                | Test type:[1]                        |                    |                                 | Р               |  |
| Area:                                   | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emai                  | Test no:                             | 1                  |                                 |                 |  |
| Danahala ID:                            | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V44A                  | T                                    |                    |                                 | 060709 09:11    |  |
| Borehole ID:                            | KL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X11A                  | Test start:                          |                    | 000709 09.1                     |                 |  |
| Test section from - to (m):             | 683.00-703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .00 m                 | Responsible for test execution:      |                    |                                 | Stephan Rohs    |  |
| Section diameter, 2·r <sub>w</sub> (m): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                 | Responsible for                      |                    | Crist                           | ian Enachescı   |  |
| Linear plot Q and p                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | test evaluation: Flow period         |                    | Recovery period                 |                 |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Indata                               |                    | Indata                          |                 |  |
| KLX11A_683.00-703.00_060709_1_Pi_Q_r    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                 | p <sub>0</sub> (kPa) =               | 6513               |                                 |                 |  |
| 6750                                    | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | p <sub>i</sub> (kPa ) =              | 6516               |                                 |                 |  |
| 6700                                    | <b>:</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | $p_p(kPa) =$                         | 6740               | p <sub>F</sub> (kPa ) =         | 655             |  |
|                                         | • P section • P above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002                 | $Q_p (m^3/s) =$                      | NA                 | , , ,                           |                 |  |
| <u>E</u> 6000                           | P below<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | tp (s) =                             | 10                 | t <sub>F</sub> (s) =            | 252             |  |
| 0550 ·                                  | **************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | njection Rate [Vmin]  | S el S <sup>*</sup> (-)=             |                    | S el S <sup>*</sup> (-)=        | 1.00E-0         |  |
| 9 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jection !             | $EC_w (mS/m) =$                      |                    | 00.0()                          |                 |  |
| O 0500 -                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001                 | Temp <sub>w</sub> (gr C)=            | 17.1               |                                 |                 |  |
| 6450 -                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Derivative fact.=                    | NA                 | Derivative fact.=               | 0.0             |  |
| 6400                                    | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                      |                    |                                 |                 |  |
| 6390 -                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                      |                    |                                 |                 |  |
| 6300                                    | 0.80 1.00 120 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                 | Results                              |                    | Results                         |                 |  |
|                                         | Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | $Q/s (m^2/s)=$                       | NA                 |                                 |                 |  |
| Log-Log plot incl. derivates-           | low period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | $T_{\rm M} (m^2/s) =$                | NA                 |                                 |                 |  |
| gg p.o                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Flow regime:                         | transient          | Flow regime:                    | transient       |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | dt <sub>1</sub> (min) =              | NA                 | dt <sub>1</sub> (min) =         | NA              |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $dt_2 \text{ (min)} =$               | NA                 | $dt_2 \text{ (min)} =$          | NA              |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $T (m^2/s) =$                        | NA                 | $T (m^2/s) =$                   | 1.5E-1          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | S (-) =                              | NA                 | S (-) =                         | 1.0E-0          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $K_s (m/s) =$                        | NA                 | $K_s (m/s) =$                   | 7.5E-1          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $S_s(1/m) =$                         | NA                 | $S_s(1/m) =$                    | 5.0E-0          |  |
| Not A                                   | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | $C (m^3/Pa) =$                       | NA                 | C (m <sup>3</sup> /Pa) =        | 5.3E-1          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $C_D(-) =$                           | NA                 | $C (m /Pa) =$ $C_D (-) =$       | 5.9E-0          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ξ (-) =                              | NA                 |                                 | -0.             |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ζ(-) –                               | INA                | ξ (-) =                         | -0.             |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | <b>T</b> (2)                         | NA                 | T (2/)                          | 2.6E-1          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $T_{GRF}(m^2/s) = S_{GRF}(-) =$      | NA                 | $T_{GRF}(m^2/s) = S_{GRF}(-) =$ | 1.0E-0          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $D_{GRF}(-) =$                       | NA                 | $D_{GRF}(-) =$                  | 1.8             |  |
| Log-Log plot incl. derivatives          | - recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Selected represe                     |                    |                                 |                 |  |
| Flansed tin                             | ne [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | dt <sub>1</sub> (min) =              | NA                 | <u></u>                         | 5.3E-1          |  |
| 102 1013                                | .10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                     | $dt_1 (min) =$ $dt_2 (min) =$        | NA                 | $C (m^3/Pa) = C_D (-) =$        | 5.9E-0          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |                                      | 1.5E-10            |                                 | -0.             |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                     | $T_{T} (m^{2}/s) = S (-) =$          | 1.5E-10<br>1.0E-06 |                                 | -0.             |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $S(-) = K_s(m/s) =$                  |                    |                                 |                 |  |
| 10 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>0</sup>       | $S_s (11/s) = S_s (1/m) = S_s (1/m)$ | 7.5E-12<br>5.0E-08 |                                 |                 |  |
| 5                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ressur                |                                      | J.U⊑-U0            |                                 |                 |  |
| od od                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3 Deconvoluted pres | The recommended                      | tranomicaisits: at | f 1.5•10-10 m2/s wa             | e derived from  |  |
|                                         | Ch. Lacabagaa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To-1                  | the radial flow anal                 |                    | ase (outer zone). Th            |                 |  |
| 10 0                                    | معسینمیپیشیپیشیپیشید                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ţ <u> </u>            | range for the interv                 |                    |                                 | John delice     |  |
| · · · · · · · · · · · · · · · · · · ·   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 0.03                  | 6.0E-11 to 3.0E-10                   | m2/s. The static   | pressure could not              | be extrapolated |  |
|                                         | <b>.</b> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03                  | due to the very low                  | transmissivity.    |                                 |                 |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-2</sup>      |                                      |                    |                                 |                 |  |
| 10-1' 10-0                              | 10 <sup>1</sup> 10 <sup>2</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) °                   |                                      |                    |                                 |                 |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                          | Sum                    | mary Sheet                                          |                    |                          |                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|-----------------------------------------------------|--------------------|--------------------------|------------------|--|--|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi                         |                        |                                                     |                    |                          | CHi              |  |  |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                             | xema                   | r Test no:                                          |                    |                          | 1                |  |  |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KI                                              | X11/                   | Test start:                                         |                    |                          | 060709 11:08     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                        |                                                     |                    |                          |                  |  |  |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 703.00-723                                      | 3.00 m                 | Responsible for test execution:                     |                    |                          | Stephan Roh      |  |  |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | 0.076                  | Responsible for                                     |                    | Crist                    | ian Enachescı    |  |  |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                        | test evaluation: Flow period                        |                    | Recovery period          |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                        | Indata                                              |                    | Indata                   |                  |  |  |  |
| 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KLX11A_703.00-723.00_060709_1_CHir_Q_r          | 0.05                   | p <sub>0</sub> (kPa) =                              | 6700               |                          |                  |  |  |  |
| e950 - •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                        | p <sub>i</sub> (kPa ) =                             | 6718               |                          |                  |  |  |  |
| 6900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . \                                             | 0.04                   | $p_p(kPa) =$                                        | 6928               | p <sub>F</sub> (kPa ) =  | 676              |  |  |  |
| 6850 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                        | $Q_p (m^3/s) =$                                     | 5.00E-08           |                          |                  |  |  |  |
| <u>₹</u> 6800 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.03 =                 | tp (s) =                                            | 1200               | t <sub>F</sub> (s) =     | 240              |  |  |  |
| S 0750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                               | ate [1/mi              | S el S <sup>*</sup> (-)=                            |                    | S el S <sup>*</sup> (-)= | 1.00E-0          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Injection Rate [I/min] | EC <sub>w</sub> (mS/m)=                             |                    | 0 01 0 (-)-              |                  |  |  |  |
| \$ 6700 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | 0.02 =                 | Temp <sub>w</sub> (gr C)=                           | 17.3               |                          |                  |  |  |  |
| 6650 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                        | Derivative fact.=                                   |                    | Derivative fact.=        | 0.0              |  |  |  |
| 6600 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section P above P below                       | 0.01                   | Benvative last.                                     | 0.00               | Berryative ract.         | 0.0              |  |  |  |
| 6550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                             |                        |                                                     | +                  |                          |                  |  |  |  |
| 6500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150 2.00                                        | 0.00                   | Results                                             |                    | Results                  |                  |  |  |  |
| Elapsed Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                        |                                                     | 2.3E-09            | Results                  |                  |  |  |  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow poriod                                       |                        | Q/s $(m^2/s)=$                                      | 2.4E-09            |                          |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                               |                        | T <sub>M</sub> (m <sup>2</sup> /s)=<br>Flow regime: | transient          | Flow regime:             | transient        |  |  |  |
| 10 <sup>-2</sup> Lapsed time (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,10,0                                           | ŀ                      | $dt_1 \text{ (min)} =$                              | NA                 |                          | NA               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                        | ` ′                                                 | _                  | ` ,                      | !                |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 3000                   | dt <sub>2</sub> (min) =                             | NA<br>4.0F.40      | $dt_2 (min) =$           | NA               |  |  |  |
| †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 10 <sup>3</sup>        | $T (m^2/s) =$                                       |                    | $T (m^2/s) =$            | 2.6E-1           |  |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 10                     | S (-) =                                             | 1.0E-06            |                          | 1.0E-0           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                        | $K_s (m/s) =$                                       |                    | $K_s (m/s) =$            | 1.3E-1           |  |  |  |
| ida j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 300                    | $S_s(1/m) =$                                        |                    | $S_s(1/m) =$             | 5.0E-0           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 2                      | C (m³/Pa) =                                         | NA                 | $C (m^3/Pa) =$           | 1.4E-1           |  |  |  |
| 10.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 10 - 5                 | $C_D(-) =$                                          | NA                 | $C_D(-) =$               | 1.6E-0           |  |  |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                        | ξ (-) =                                             | -3.4               | ξ (-) =                  | -3.              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                               | 30                     |                                                     |                    |                          |                  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 10 <sup>1</sup>        | $T_{GRF}(m^2/s) =$                                  | NA                 | $T_{GRF}(m^2/s) =$       | NA               |  |  |  |
| 10 <sup>2</sup> 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>0</sup> 10 <sup>1</sup> 10 <sup>2</sup> | 10                     | $S_{GRF}(-) =$                                      | NA                 | $S_{GRF}(-) =$           | NA               |  |  |  |
| tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                        | $D_{GRF}$ (-) =                                     | NA                 | $D_{GRF}$ (-) =          | NA               |  |  |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                 |                        | Selected repres                                     | entative paran     | neters.                  |                  |  |  |  |
| Elapsed time [!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,1                                            |                        | $dt_1 (min) =$                                      | NA                 | $C (m^3/Pa) =$           | 1.4E-1           |  |  |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                        | $dt_2$ (min) =                                      | NA                 | $C_D(-) =$               | 1.6E-0           |  |  |  |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 3000                   | $T_T (m^2/s) =$                                     | 2.6E-10            | ξ (-) =                  | -3.              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 <sup>3</sup>        | S (-) =                                             | 1.0E-06            |                          |                  |  |  |  |
| or or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |                        | $K_s$ (m/s) =                                       | 1.3E-11            |                          |                  |  |  |  |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 300                    | S <sub>s</sub> (1/m) =                              | 5.0E-08            |                          |                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | - 6                    | Comments:                                           |                    |                          |                  |  |  |  |
| September 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | 10 <sup>2</sup>        |                                                     | l transmissivity o | f 2.6E-10 m2/s was       | derived from th  |  |  |  |
| 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | G                      |                                                     |                    | ase, which shows the     |                  |  |  |  |
| "   Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | 30                     | derivative quality.                                 | The confidence     | range for the interva    | l transmissivity |  |  |  |
| and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |                                                 | -                      |                                                     |                    | 10 m2/s. Due to the      | low              |  |  |  |
| * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 10 <sup>1</sup>        | transmissivity no                                   | tresh water head v | was calculated.          |                  |  |  |  |
| ,°'//.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                        |                                                     |                    |                          |                  |  |  |  |
| 10 <sup>-1</sup> 10 <sup>0</sup> tD/CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> |                        |                                                     |                    |                          |                  |  |  |  |

|                                          | Test Si                  | umr                   | nary Sheet                       |                   |                          |                |
|------------------------------------------|--------------------------|-----------------------|----------------------------------|-------------------|--------------------------|----------------|
| Project:                                 | Oskarshamn site investig | ation                 | Test type:[1]                    |                   |                          | Р              |
| Area:                                    | Lax                      | emar                  | Test no:                         |                   |                          | 1              |
| Borehole ID:                             | KL                       | X11A                  | Test start:                      |                   |                          | 060709 13:58   |
| Test section from - to (m):              | 723 00-743               | 00 m                  | Responsible for                  |                   |                          | Stephan Rohs   |
|                                          |                          |                       | test execution:                  |                   |                          |                |
| Section diameter, 2·r <sub>w</sub> (m):  | (                        | ).076                 | Responsible for test evaluation: |                   |                          | ian Enachescu  |
| Linear plot Q and p                      |                          |                       | Flow period                      |                   | Recovery period          |                |
| 7200                                     |                          | T 0.10                | Indata<br>p <sub>0</sub> (kPa) = | 6886              | Indata                   |                |
| KLX11A_723.00-743.00_060709_1_PLQ_r      | P section P above        | - 0.09                | $p_0 (kPa) =$ $p_i (kPa) =$      | NA                | ,                        |                |
| 7100                                     | P below<br>Q             |                       | $p_i(kPa) =$                     | NA                | p <sub>F</sub> (kPa ) =  | NA             |
| 7000 -                                   |                          | - 0.08                | *                                | NA                | ρ <sub>F</sub> (KFa ) –  | INA            |
| ·                                        | •                        | 0.07                  | $Q_p (m^3/s) =$                  |                   | t (a) -                  | NIA            |
| g 6900                                   |                          | [win] 90.0            | tp (s) =                         | NA                | $t_F(s) =$               | NA             |
| Fed in 1990 (1990)                       | ſ                        | njection Rate (I/min) | S el S <sup>*</sup> (-)=         | NA                | S el S <sup>*</sup> (-)= | NA             |
| A 8800 -                                 |                          | 0.04                  | EC <sub>w</sub> (mS/m)=          |                   |                          | <u> </u>       |
| 6700                                     |                          | - 0.03                | Temp <sub>w</sub> (gr C)=        | 17.6              |                          |                |
|                                          |                          | 0.02                  | Derivative fact.=                | NA                | Derivative fact.=        | NA             |
| 6600                                     |                          |                       |                                  | <u> </u>          |                          |                |
|                                          |                          | - 0.01                |                                  |                   |                          |                |
| 6500<br>0.00 0.20 0.40 0.60<br>Elapsed T |                          | 0.00                  | Results                          |                   | Results                  |                |
| ·                                        |                          |                       | $Q/s (m^2/s)=$                   | NA                |                          |                |
| Log-Log plot incl. derivates- fl         | ow period                |                       | $T_M (m^2/s)=$                   | NA                |                          |                |
|                                          |                          |                       | Flow regime:                     | transient         | Flow regime:             | transient      |
|                                          |                          |                       | $dt_1$ (min) =                   | NA                | $dt_1$ (min) =           | NA             |
|                                          |                          |                       | $dt_2$ (min) =                   | NA                | $dt_2$ (min) =           | NA             |
|                                          |                          |                       | $T (m^2/s) =$                    | NA                | $T (m^2/s) =$            | NA             |
|                                          |                          |                       | S (-) =                          | NA                | S (-) =                  | NA             |
|                                          |                          |                       | $K_s (m/s) =$                    | NA                | $K_s (m/s) =$            | NA             |
|                                          |                          |                       | S <sub>s</sub> (1/m) =           | NA                | $S_s(1/m) =$             | NA             |
| Not Ar                                   | nalysed                  |                       | $C (m^3/Pa) =$                   | NA                | $C (m^3/Pa) =$           | NA             |
|                                          |                          |                       | $C_D(-) =$                       | NA                | $C_D(-) =$               | NA             |
|                                          |                          |                       | ξ(-) =                           | NA                | ξ (-) =                  | NA             |
|                                          |                          |                       | - \ /                            | 1                 | · \ /                    |                |
|                                          |                          |                       | $T_{GRF}(m^2/s) =$               | NA                | $T_{GRF}(m^2/s) =$       | NA             |
|                                          |                          |                       | $S_{GRF}(III / S) =$             | NA                | $S_{GRF}(III / S) =$     | NA             |
|                                          |                          |                       | $D_{GRF}(-) =$                   | NA                | $D_{GRF}(-) =$           | NA             |
| Log-Log plot incl. derivatives-          | recovery period          |                       | Selected repres                  |                   |                          |                |
| 33 biot mon delivatives-                 | polica                   |                       | dt <sub>1</sub> (min) =          | NA                | C (m <sup>3</sup> /Pa) = | NA             |
|                                          |                          |                       | $dt_1 (min) =$ $dt_2 (min) =$    | NA                | $C_D(-) =$               | NA             |
|                                          |                          |                       |                                  | NA                |                          | NA             |
|                                          |                          |                       | $T_{T} (m^{2}/s) = S (-) =$      | NA<br>NA          | ξ (-) =                  | INA            |
|                                          |                          |                       |                                  |                   |                          |                |
|                                          |                          |                       | $K_s (m/s) =$                    | NA                |                          | <u> </u>       |
|                                          |                          |                       | $S_s (1/m) =$ Comments:          | NA                | <u> </u>                 |                |
| Not Ai                                   | nalysed                  |                       |                                  | esponse the inter | val transmissivity is    | lower than 1E- |
|                                          |                          |                       |                                  |                   |                          |                |

|                                              | Test Sumn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nary Sheet                       |                   |                          |                |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|--------------------------|----------------|
| Project:                                     | Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                   |                          | Р              |
| Area:                                        | Laxemar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Took no.                         |                   |                          |                |
| Alea.                                        | Laxemai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | restrio.                         |                   |                          |                |
| Borehole ID:                                 | KLX11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test start:                      |                   |                          | 060709 15:45   |
| Test section from - to (m):                  | 743.00-763.00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsible for test execution:  |                   |                          | Stephan Rohs   |
| Section diameter, 2·r <sub>w</sub> (m):      | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsible for test evaluation: |                   | Crist                    | ian Enachescı  |
| Linear plot Q and p                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow period                      |                   | Recovery period          |                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                           |                   | Indata                   |                |
| 7400<br>KLX11A_743.00-763.00_060709_1_PI_Q_r | α10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p <sub>0</sub> (kPa) =           | 7070              |                          |                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p <sub>i</sub> (kPa ) =          | NA                |                          |                |
| 7300                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p_p(kPa) =$                     | NA                | p <sub>F</sub> (kPa ) =  | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Q_p (m^3/s) =$                  | NA                |                          |                |
| 7200 ·                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tp (s) =                         | NA                | t <sub>F</sub> (s) =     | NA             |
| \$ 7100 ·                                    | • ist e [Vmis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S el S <sup>*</sup> (-)=         | NA                | S el S <sup>*</sup> (-)= | NA             |
| (Fed) answered a 7000                        | Place Property Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control | EC <sub>w</sub> (mS/m)=          |                   | 5 51 5 (·)-              |                |
| 7000-                                        | • + 0.04 <u>=</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temp <sub>w</sub> (gr C)=        | 17.9              |                          |                |
|                                              | P section P above P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Derivative fact.=                | NA NA             | Derivative fact.=        | NA             |
| 6900 -                                       | - 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benvative last.                  | 10.0              | Derivative last.         | 147 (          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |                          |                |
| 6800                                         | 0.80 1.00 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Results                          |                   | Results                  |                |
| 0.00 0.20 0.40 0.60 Elapsed Ti               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | NA                | Results                  |                |
| l and an most included instance for          | an maniad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q/s $(m^2/s)=$                   |                   |                          |                |
| Log-Log plot incl. derivates- fl             | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T_M (m^2/s) =$                  | NA                | []                       | t              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                     | transient         | Flow regime:             | transient      |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1 (min) =$                   | NA                | $dt_1 (min) =$           | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2 (min) =$                   | NA                | $dt_2 (min) =$           | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T (m^2/s) =$                    | NA                | $T (m^2/s) =$            | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                          | NA                | S (-) =                  | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s$ (m/s) =                    | NA                | $K_s (m/s) =$            | NA             |
| Not Ar                                       | alved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $S_s(1/m) =$                     | NA                | $S_s(1/m) =$             | NA             |
| Not Al                                       | larysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C (m^3/Pa) =$                   | NA                | $C (m^3/Pa) =$           | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_D(-) =$                       | NA                | $C_D(-) =$               | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ξ (-) =                          | NA                | ξ (-) =                  | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |                          |                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{GRF}(m^2/s) =$               | NA                | $T_{GRF}(m^2/s) =$       | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_{GRF}(-) =$                   | NA                | $S_{GRF}(-) =$           | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>GRF</sub> (-) =           | NA                | D <sub>GRF</sub> (-) =   | NA             |
| Log-Log plot incl. derivatives-              | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected represe                 | entative paran    |                          |                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1$ (min) =                   | NA                | C (m <sup>3</sup> /Pa) = | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2$ (min) =                   | NA                | $C_D(-) =$               | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_T (m^2/s) =$                  | NA                | ξ(-) =                   | NA             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                          | NA                | - ( /                    |                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s (m/s) =$                    | NA                | <del> </del>             |                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S <sub>s</sub> (1/m) =           | NA                | <del> </del>             |                |
| Not Ar                                       | nolyced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:                        |                   | <u> </u>                 | 1              |
| 10071                                        | anysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Based on the test re<br>11 m2/s. | esponse the inter | val transmissivity is    | lower than 1.0 |

|                                         | Test Sumr                     | nary Sheet                        |                   |                                                  |              |
|-----------------------------------------|-------------------------------|-----------------------------------|-------------------|--------------------------------------------------|--------------|
| Project:                                | Oskarshamn site investigation |                                   |                   |                                                  | F            |
| Area:                                   | Lavamar                       | Test no:                          |                   |                                                  |              |
| Alea.                                   | Laxemai                       | restrio.                          |                   |                                                  |              |
| Borehole ID:                            | KLX11A                        | Test start:                       |                   |                                                  | 060709 17:2  |
| Test section from - to (m):             | 763.00-783.00 m               | Responsible for test execution:   |                   |                                                  | Stephan Roh  |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                         | Responsible for test evaluation:  |                   | Crist                                            | ian Enachesc |
| Linear plot Q and p                     |                               | Flow period                       |                   | Recovery period                                  |              |
|                                         |                               | Indata                            |                   | Indata                                           |              |
| 7600                                    | 0.10<br>• P section           | p <sub>0</sub> (kPa) =            | 7254              |                                                  |              |
| KLX11A_763.00-783.00_060709_1_PI_Q_r    | P above P below               | p <sub>i</sub> (kPa ) =           | NA                |                                                  |              |
| 7500 -                                  | 0.08                          | $p_p(kPa) =$                      | NA                | p <sub>F</sub> (kPa ) =                          | NA           |
|                                         |                               | $Q_p (m^3/s) =$                   | NA                | , ,                                              |              |
| 7400                                    | 1006 =                        | tp (s) =                          | NA                | t <sub>F</sub> (s) =                             | NA           |
| 2 8 7300                                | sate [l/m ir                  | S el S <sup>*</sup> (-)=          | NA                | S el S <sup>*</sup> (-)=                         | NA           |
| [ * d)                                  | 000 lingertion Rate (Pm.hz)   | EC <sub>w</sub> (mS/m)=           |                   | 0 61 0 (*) <u>-</u>                              | ]· "·        |
| 7200                                    | 0.04 =                        | Temp <sub>w</sub> (gr C)=         | 18.2              |                                                  | 1            |
|                                         |                               | Derivative fact.=                 | NA                | Derivative fact.=                                | NA           |
| 7100 -                                  | 0.02                          | Derivative fact.                  | INA               | Derivative lact.                                 | INA          |
|                                         |                               |                                   |                   |                                                  |              |
| 7000                                    | 0.50 0.80 0.70 0.80           | Results                           |                   | Results                                          |              |
| 0.00 0.10 0.20 0.30 0.40<br>Elapsed Tir |                               |                                   | INIA              | Results                                          | I            |
|                                         |                               | Q/s $(m^2/s)=$                    | NA                |                                                  |              |
| Log-Log plot incl. derivates- flo       | ow period                     | $T_{\rm M} ({\rm m}^2/{\rm s}) =$ | NA<br>· · ·       |                                                  |              |
|                                         |                               | Flow regime:                      | transient         | Flow regime:                                     | transient    |
|                                         |                               | $dt_1 (min) =$                    | NA                | $dt_1$ (min) =                                   | NA           |
|                                         |                               | $dt_2 (min) =$                    | NA                | $dt_2$ (min) =                                   | NA           |
|                                         |                               | $T (m^2/s) =$                     | NA                | $T (m^2/s) =$                                    | NA           |
|                                         |                               | S (-) =                           | NA                | S (-) =                                          | NA           |
|                                         |                               | $K_s (m/s) =$                     | NA                | $K_s (m/s) =$                                    | NA           |
| Not An                                  | alveed                        | $S_s(1/m) =$                      | NA                | $S_s(1/m) =$                                     | NA           |
| Not All                                 | arysed                        | $C (m^3/Pa) =$                    | NA                | $C (m^3/Pa) =$                                   | NA           |
|                                         |                               | $C_D(-) =$                        | NA                | $C_D(-) =$                                       | NA           |
|                                         |                               | ξ (-) =                           |                   | ξ (-) =                                          | NA           |
|                                         |                               |                                   |                   |                                                  |              |
|                                         |                               | $T_{GRF}(m^2/s) =$                | NA                | $T_{GRF}(m^2/s) =$                               | NA           |
|                                         |                               | S <sub>GRF</sub> (-) =            | NA                | $S_{GRF}(-) =$                                   | NA           |
|                                         |                               | D <sub>GRF</sub> (-) =            | NA                | D <sub>GRF</sub> (-) =                           | NA           |
| Log-Log plot incl. derivatives-         | recovery period               | Selected represe                  | entative paran    | neters.                                          |              |
|                                         |                               | $dt_1$ (min) =                    | NA                | C (m <sup>3</sup> /Pa) =                         | NA           |
|                                         |                               | $dt_2 \text{ (min)} =$            | NA                | $C_D(-) =$                                       | NA           |
|                                         |                               | $T_T (m^2/s) =$                   | NA                | ξ (-) =                                          | NA           |
|                                         |                               | S (-) =                           | NA                | /                                                |              |
|                                         |                               | K <sub>s</sub> (m/s) =            | NA                | <del>                                     </del> |              |
|                                         |                               | S <sub>s</sub> (1/m) =            | NA                | <del>                                     </del> |              |
| Not An                                  | alvead                        | Comments:                         | 1                 | <u> </u>                                         | 1            |
| Not All                                 | aryscu                        |                                   | esponse the inter | val transmissivity is                            | lower than   |

|                                         | Test Si                  | umn                    | nary Sheet                                          |                   |                                               |                          |
|-----------------------------------------|--------------------------|------------------------|-----------------------------------------------------|-------------------|-----------------------------------------------|--------------------------|
| Project:                                | Oskarshamn site investig |                        |                                                     |                   |                                               | CHir                     |
| Area:                                   | Lav                      |                        | Took no.                                            |                   |                                               |                          |
| Area:                                   | Lax                      | emar                   | Test no:                                            |                   |                                               | 1                        |
| Borehole ID:                            | KL                       | X11A                   | Test start:                                         |                   |                                               | 060709 18:43             |
| Test section from - to (m):             | 783.00-803.              | 00 m                   | Responsible for test execution:                     |                   |                                               | Stephan Rohs             |
| Section diameter, 2·r <sub>w</sub> (m): | (                        | 0.076                  | Responsible for                                     |                   | Crist                                         | ian Enachescı            |
| Linear plot Q and p                     |                          |                        | test evaluation:                                    |                   | Recovery period                               |                          |
| a p.o. 4 aa p                           |                          |                        | Indata                                              |                   | Indata                                        |                          |
| 7500 1                                  |                          | ¥ 0.10                 | p <sub>0</sub> (kPa) =                              | 7439              |                                               |                          |
| KLX11A_783.00-803.00_060709_1_PI_Q_r    | ●P section<br>▲P above   | 0.09                   | p <sub>i</sub> (kPa ) =                             | NA                |                                               |                          |
| 7700                                    | ©P below<br>*Q           | 0.08                   | $p_p(kPa) =$                                        | NA                | p <sub>F</sub> (kPa ) =                       | NA                       |
|                                         |                          | 0.07                   | $Q_p (m^3/s) =$                                     | NA                | , ,                                           |                          |
| 7600 - G.                               |                          | 0.06 🖫                 | tp (s) =                                            | NA                | t <sub>F</sub> (s) =                          | NA                       |
| 2 7500 P                                | •                        | Rate (I/mir            | S el S <sup>*</sup> (-)=                            | NA                | S el S <sup>*</sup> (-)=                      | NA                       |
| (red) united according                  |                          | Injection Rate [I/min] | EC <sub>w</sub> (mS/m)=                             |                   | ( )                                           |                          |
| 7400                                    | •                        | 0.04 =                 | Temp <sub>w</sub> (gr C)=                           | 18.5              |                                               |                          |
|                                         |                          |                        | Derivative fact.=                                   | NA                | Derivative fact.=                             | NA                       |
| 7300                                    |                          | 0.02                   |                                                     | <u> </u>          | 22                                            | 1                        |
| -                                       |                          | 0.01                   |                                                     |                   |                                               |                          |
| 7200                                    | 0.80 1.00 1.20 1.        | 0.00<br>40             | Results                                             |                   | Results                                       |                          |
|                                         |                          |                        | Q/s $(m^2/s)=$                                      | NA                | results                                       |                          |
| Log-Log plot incl. derivates- flo       | ow period                |                        |                                                     | NA                | 1                                             |                          |
| Log-Log plot mei. denvates- ne          | ow period                |                        | T <sub>M</sub> (m <sup>2</sup> /s)=<br>Flow regime: | transient         | Flow regime:                                  | transient                |
|                                         |                          |                        | dt <sub>1</sub> (min) =                             | NA                | $dt_1 \text{ (min)} =$                        | NA                       |
|                                         |                          |                        | $dt_1 (min) = $ $dt_2 (min) = $                     | NA                | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA                       |
|                                         |                          |                        |                                                     | NA                | $T (m^2/s) =$                                 | NA                       |
|                                         |                          |                        | $T (m^2/s) = S (-) =$                               | NA                | S (-) =                                       | NA                       |
|                                         |                          |                        | 9 ( )                                               | NA<br>NA          |                                               | NA                       |
|                                         |                          |                        | $K_s (m/s) =$                                       |                   | $K_s (m/s) =$                                 |                          |
| Not An                                  | alysed                   |                        | S <sub>s</sub> (1/m) =                              | NA                | $S_s(1/m) =$                                  | NA                       |
|                                         | •                        |                        | $C (m^3/Pa) =$                                      | NA                | $C (m^3/Pa) =$                                | NA                       |
|                                         |                          |                        | $C_D(-) =$                                          | NA                | $C_D(-) =$                                    | NA                       |
|                                         |                          |                        | ξ(-) =                                              | NA                | ξ (-) =                                       | NA                       |
|                                         |                          |                        | <del>-</del> , 2, ,                                 | NA                | T (2,)                                        | NA                       |
|                                         |                          |                        | $T_{GRF}(m^2/s) =$                                  | NA<br>NA          | $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$             | NA                       |
|                                         |                          |                        | $S_{GRF}(-) = D_{GRF}(-) =$                         | NA<br>NA          | - Ora ( )                                     | NA                       |
| Log Log platinal desiratives            | receive my period        |                        | D <sub>GRF</sub> (-) = Selected represe             |                   | D <sub>GRF</sub> (-) =                        | INA<br>Selektristristris |
| Log-Log plot incl. derivatives-         | recovery period          |                        | dt <sub>1</sub> (min) =                             | NA                | <u> </u>                                      | NA                       |
|                                         |                          |                        | $dt_1 (min) =$ $dt_2 (min) =$                       | NA<br>NA          | $C (m^3/Pa) = C_D (-) =$                      | NA                       |
|                                         |                          |                        |                                                     | NA                |                                               | NA                       |
|                                         |                          |                        | $T_T (m^2/s) = S(-) = $                             | NA<br>NA          | ξ (-) =                                       | INA                      |
|                                         |                          |                        | 9 ( )                                               |                   |                                               |                          |
|                                         |                          |                        | $K_s (m/s) =$                                       | NA                |                                               |                          |
|                                         |                          |                        | S <sub>s</sub> (1/m) = Comments:                    | NA                |                                               |                          |
| Not An                                  | alysed                   |                        |                                                     | esponse the inter | val transmissivity is                         | lower than 1.0H          |
|                                         |                          |                        |                                                     |                   |                                               |                          |

|                                         | Test Sun                          | nmary Sheet                                 |           |                                   |                   |
|-----------------------------------------|-----------------------------------|---------------------------------------------|-----------|-----------------------------------|-------------------|
| Project:                                | Oskarshamn site investigation     | on Test type:[1]                            |           |                                   | CHi               |
| A 100                                   | Lavama                            | an Taat na                                  |           |                                   |                   |
| Area:                                   | Laxem                             | ar Test no:                                 |           |                                   |                   |
| Borehole ID:                            | KLX1                              | A Test start:                               |           |                                   | 060710 08:19      |
| Test section from - to (m):             | 803.00-823.00                     | m Responsible for                           |           |                                   | Stephan Rohs      |
| Section diameter, 2·r <sub>w</sub> (m): | 0.0                               | test execution:<br>76 Responsible for       | 1         | Cris                              | stian Enachescu   |
| occion diameter, 2 m (m).               | 0.0                               | test evaluation:                            |           | One                               | Starr Enachesee   |
| Linear plot Q and p                     |                                   | Flow period                                 |           | Recovery perio                    | d                 |
| 7900                                    | T 0.10                            | Indata                                      |           | Indata                            |                   |
| KLX11A_803.00-823.00_060710_1_CHir_Q_r  | •                                 | p <sub>0</sub> (kPa) =                      | 7623      |                                   |                   |
|                                         |                                   | p <sub>i</sub> (kPa ) =                     | NA        |                                   |                   |
| 7800                                    | 0.08                              | $p_p(kPa) =$                                | NA        | p <sub>F</sub> (kPa ) =           | NA                |
| 7750                                    | 0.07                              | $Q_p (m^3/s) =$                             | NA        |                                   |                   |
| G 7700                                  | 0.00                              | tp (s) =                                    | NA        | $t_F(s) =$                        | NA                |
| 7650                                    | 0.05                              | S el S* (-)=                                | NA        | S el S <sup>*</sup> (-)=          | NA                |
| € 7600 ·                                | 0.04                              |                                             |           |                                   |                   |
| 7550                                    | 0.03                              | Temp <sub>w</sub> (gr C)=                   | 18.8      |                                   |                   |
| 7500                                    | P section     P above     P below | Derivative fact.=                           | NA NA     | Derivative fact.=                 | NA                |
| 7450 -                                  | · Q                               |                                             |           |                                   |                   |
| 7400                                    | 0.00                              | Danilla                                     | <u> </u>  | D 16 -                            |                   |
| 0.00 0.10 0.20 0.30 0.40 0.50 Elapsed T |                                   | Results                                     | INIA      | Results                           |                   |
| lan lan mistimal danivatas fi           | maniad                            | Q/s $(m^2/s)=$                              | NA        |                                   |                   |
| Log-Log plot incl. derivates- fl        | ow period                         | $T_{\rm M}$ (m <sup>2</sup> /s)=            | NA        | Flow regime:                      | transiant         |
|                                         |                                   | Flow regime:                                | transient | Flow regime:                      | transient         |
|                                         |                                   | $dt_1 (min) =$                              | NA        | $dt_1 (min) =$                    | NA<br>NA          |
|                                         |                                   | $dt_2 (min) =$                              | NA<br>NA  | $dt_2 (min) =$                    | NA<br>NA          |
|                                         |                                   | $T (m^2/s) =$                               |           | $T (m^2/s) =$                     |                   |
|                                         |                                   | $S(-) = K_s(m/s) =$                         | NA<br>NA  | $S(-) = K_s(m/s) =$               | NA<br>NA          |
|                                         |                                   | $S_s (1/m) =$                               | NA        | $S_s(11/s) =$ $S_s(1/m) =$        | NA                |
| Not Ar                                  | nalysed                           | $C (m^3/Pa) =$                              | NA        | $S_s(1/111) = C(m^3/Pa) =$        | NA                |
|                                         |                                   | $C_D(-) =$                                  | NA        | $C_D(-) =$                        | NA                |
|                                         |                                   | $\xi(-) =$                                  | NA        | ξ(-) =                            | NA                |
|                                         |                                   | Ç (−) =                                     | INA       | S (-) -                           | INA               |
|                                         |                                   | $T_{GRF}(m^2/s) =$                          | NA        | $T_{GRF}(m^2/s) =$                | NA                |
|                                         |                                   | $S_{GRF}(m / s) =$ $S_{GRF}(-) =$           | NA        | $S_{GRF}(III/S) =$ $S_{GRF}(-) =$ | NA                |
|                                         |                                   | $D_{GRF}(-) =$                              | NA        | $D_{GRF}(\cdot) =$                | NA                |
| Log-Log plot incl. derivatives-         | recovery period                   | Selected repres                             |           |                                   |                   |
| <u> </u>                                | <b>,</b> ,                        | dt₁ (min) =                                 | NA        | C (m <sup>3</sup> /Pa) =          | NA                |
|                                         |                                   | $dt_2 \text{ (min)} =$                      | NA        | $C_D(-) =$                        | NA                |
|                                         |                                   | $T_T (m^2/s) =$                             | NA        | ξ(-) =                            | NA                |
|                                         |                                   | S (-) =                                     | NA        |                                   |                   |
|                                         |                                   | $K_s$ (m/s) =                               | NA        |                                   |                   |
|                                         |                                   | $S_s(1/m) =$                                | NA        |                                   |                   |
| Not Ar                                  | nalysed                           | Comments:                                   |           |                                   |                   |
|                                         |                                   | Based on the test r<br>transmissivity is lo |           |                                   | nce) the interval |

|                                         | Test Sumr                              | nary Sheet                             |                 |                                                  |                  |
|-----------------------------------------|----------------------------------------|----------------------------------------|-----------------|--------------------------------------------------|------------------|
| Project:                                | Oskarshamn site investigation          | Test type:[1]                          |                 |                                                  | CHi              |
| A = 0 = 1                               | Lavaman                                | Took no                                |                 |                                                  |                  |
| Area:                                   | Laxemar                                | rest no:                               |                 |                                                  |                  |
| Borehole ID:                            | KLX11A                                 | Test start:                            |                 |                                                  | 060710 09:45     |
| Test section from - to (m):             | 823.00-843.00 m                        | Responsible for test execution:        |                 |                                                  | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                                  | Responsible for test evaluation:       |                 | Crist                                            | ian Enachescu    |
| Linear plot Q and p                     |                                        | Flow period                            |                 | Recovery period                                  |                  |
|                                         |                                        | Indata                                 |                 | Indata                                           |                  |
| 8100                                    | 0.10                                   | p <sub>0</sub> (kPa) =                 | 7807            | 7                                                |                  |
| KLX11A_823.00-843.00_060710_1_CHir_Q_r  | • P section • P above • 0.09 • P below | p <sub>i</sub> (kPa ) =                | NA              |                                                  |                  |
| 8000                                    | -0                                     | $p_p(kPa) =$                           | NA              | p <sub>F</sub> (kPa ) =                          | NA               |
|                                         | 0.07                                   | $Q_p (m^3/s) =$                        | NA              | , ,                                              |                  |
| 7900                                    | 0.06                                   | tp (s) =                               | NA              | t <sub>F</sub> (s) =                             | NA               |
| d sare                                  | Parce [hw ho]                          | S el S <sup>*</sup> (-)=               | NA              | S el S <sup>*</sup> (-)=                         | NA               |
| Fade sense of section 1999              | • • • • • • • • • • • • • • • • • • •  | S el S (-)=<br>EC <sub>w</sub> (mS/m)= |                 | o ero (-)≕                                       |                  |
|                                         | 0.04 🖻                                 | Temp <sub>w</sub> (gr C)=              | 19.1            | <del>                                     </del> | 1                |
| 7700                                    | - 0.03                                 | Derivative fact.=                      |                 | Derivative fact.=                                | NA               |
| 7600                                    | 0.02                                   | Derivative fact                        | INA             | Derivative fact                                  | INA              |
| 760                                     | 001                                    |                                        |                 |                                                  |                  |
| 7500                                    | 0.00                                   | Danista                                |                 | Describe                                         |                  |
| 0.00 0.10 0.20 0.30 0.40 0.<br>Elapsed  | 0 0.60 0.70 0.60 0.90 1.00             | Results                                | To a second     | Results                                          |                  |
|                                         |                                        | Q/s $(m^2/s)=$                         | NA              |                                                  |                  |
| Log-Log plot incl. derivates- f         | low period                             | $T_M (m^2/s)=$                         | NA              |                                                  |                  |
|                                         |                                        | Flow regime:                           | transient       | Flow regime:                                     | transient        |
|                                         |                                        | $dt_1$ (min) =                         | NA              | $dt_1$ (min) =                                   | NA               |
|                                         |                                        | $dt_2$ (min) =                         | NA              | $dt_2$ (min) =                                   | NA               |
|                                         |                                        | $T (m^2/s) =$                          | NA              | $T (m^2/s) =$                                    | NA               |
|                                         |                                        | S (-) =                                | NA              | S (-) =                                          | NA               |
|                                         |                                        | $K_s (m/s) =$                          | NA              | $K_s (m/s) =$                                    | NA               |
| NI <sub>24</sub> A                      | u a la ca d                            | $S_s(1/m) =$                           | NA              | $S_s(1/m) =$                                     | NA               |
| Not A                                   | nalysed                                | $C (m^3/Pa) =$                         | NA              | $C (m^3/Pa) =$                                   | NA               |
|                                         |                                        | $C_D(-) =$                             | NA              | $C_D(-) =$                                       | NA               |
|                                         |                                        | ξ (-) =                                | NA              | ξ (-) =                                          | NA               |
|                                         |                                        |                                        |                 |                                                  |                  |
|                                         |                                        | $T_{GRF}(m^2/s) =$                     | NA              | $T_{GRF}(m^2/s) =$                               | NA               |
|                                         |                                        | $S_{GRF}(-) =$                         | NA              | $S_{GRF}(-) =$                                   | NA               |
|                                         |                                        | D <sub>GRF</sub> (-) =                 | NA              | D <sub>GRF</sub> (-) =                           | NA               |
| Log-Log plot incl. derivatives-         | recovery period                        | Selected repres                        | entative paran  |                                                  |                  |
|                                         |                                        | $dt_1$ (min) =                         | NA              | C (m <sup>3</sup> /Pa) =                         | NA               |
|                                         |                                        | $dt_2$ (min) =                         | NA              | $C_D(-) =$                                       | NA               |
|                                         |                                        | $T_T (m^2/s) =$                        | NA              | ξ (-) =                                          | NA               |
|                                         |                                        | S (-) =                                | NA              | · ( /                                            |                  |
|                                         |                                        | $K_s (m/s) =$                          | NA              | <del> </del>                                     | 1                |
|                                         |                                        | $S_s(1/m) =$                           | NA              | <del>                                     </del> |                  |
| NT. / A                                 | malroad                                | Comments:                              | <u> </u>        | <u> </u>                                         | <u> </u>         |
| Not A                                   | nalysed                                | Based on the test re                   |                 | ged packer complian                              | ce) the interval |
|                                         |                                        | transmissivity is lo                   | wer than 1.0E-1 | 1 m2/s.                                          |                  |
|                                         |                                        |                                        |                 |                                                  |                  |
|                                         |                                        |                                        |                 |                                                  |                  |
|                                         |                                        |                                        |                 |                                                  |                  |
|                                         |                                        |                                        |                 |                                                  |                  |
|                                         |                                        |                                        |                 |                                                  |                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                          | Sumi                           | mary Sheet                       |                   |                          |                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|----------------------------------|-------------------|--------------------------|-----------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi                         | igatior                        | Test type:[1]                    |                   |                          | CHi             |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | La                                              | xema                           | Test no:                         |                   |                          |                 |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KI                                              | I ¥11∆                         | Test start:                      |                   |                          | 060710 11:10    |  |
| Borenole ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N                                               |                                | rest start.                      |                   |                          | 00071011.10     |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 843.00-863                                      | 3.00 m                         | Responsible for test execution:  |                   | Stephan Rohs             |                 |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | 0.076                          | Responsible for test evaluation: |                   | Crist                    | ian Enachescı   |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                | Flow period                      |                   | Recovery period          |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                | Indata                           |                   | Indata                   |                 |  |
| 8500 KLX11A_843.00-863.00_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 060710_1_CHir_Q_r                               |                                | p <sub>0</sub> (kPa) =           | 7794              |                          |                 |  |
| 8400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P secton P above P below                        | 0.014                          | p <sub>i</sub> (kPa ) =          | 7983              |                          |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                               | 0.012                          | $p_p(kPa) =$                     | 8223              | p <sub>F</sub> (kPa ) =  | 801             |  |
| 8300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                | $Q_p (m^3/s) =$                  | 6.67E-08          | , , ,                    |                 |  |
| <u>a</u> ≈200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.010                          | tp (s) =                         |                   | t <sub>F</sub> (s) =     | 120             |  |
| §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                               | 0.008                          |                                  |                   | S el S <sup>*</sup> (-)= | 1.00E-0         |  |
| 8 8100 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | 9000<br>Injection Rate [Vm in] | S el S* (-)=                     | 1.00E-00          | S el S (-)=              | 1.00E-0         |  |
| 0 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 0.006                          | EC <sub>w</sub> (mS/m)=          | 10.5              |                          |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                | Temp <sub>w</sub> (gr C)=        | 19.5              |                          |                 |  |
| 7900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7.7                                           | 0.004                          | Derivative fact.=                | 0.08              | Derivative fact.=        | 0.0             |  |
| 7800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.002                          |                                  |                   |                          |                 |  |
| <u>:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                |                                  |                   |                          |                 |  |
| 7700 0.00 0.50 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.50 2.00                                       | 0.000                          | Results                          |                   | Results                  |                 |  |
| Elaps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed Time [h]                                     |                                | Q/s $(m^2/s)=$                   | 2.7E-09           |                          |                 |  |
| Log-Log plot incl. derivates-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | flow period                                     |                                | $T_{\rm M} (m^2/s) =$            | 2.9E-09           |                          |                 |  |
| Elapsed tip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne [h]                                          |                                | Flow regime:                     | transient         | Flow regime:             | transient       |  |
| 10,10,10,10,10,10,10,10,10,10,10,10,10,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,0                                            | 13                             | $dt_1 \text{ (min)} =$           | NA                | $dt_1 \text{ (min)} =$   | NA              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 <sup>3</sup>                | $dt_2 \text{ (min)} =$           | NA                | $dt_2 \text{ (min)} =$   | NA              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 1                              | , ,                              |                   | $T (m^2/s) =$            | 8.2E-1          |  |
| 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 300                            | $T (m^2/s) =$                    |                   |                          |                 |  |
| 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                               | ,                              | S (-) =                          | 1.0E-06           |                          | 1.0E-0          |  |
| and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | NA                                              | 10 <sup>2</sup>                | $K_s$ (m/s) =                    |                   | $K_s (m/s) =$            | 4.1E-1          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | , Gi                           | $S_{s}(1/m) =$                   |                   | $S_s(1/m) =$             | 5.0E-0          |  |
| of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th | i a sa                                          | 30                             | $C (m^3/Pa) =$                   | NA                | C (m³/Pa) =              | 8.8E-1          |  |
| 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                               |                                | $C_D(-) =$                       | NA                | $C_D(-) =$               | 9.7E-0          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                               | 10 <sup>1</sup>                | ξ (-) =                          | -2.2              | ξ (-) =                  | -2.             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                |                                  |                   |                          | Î               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 3                              | $T_{GRF}(m^2/s) =$               | NA                | $T_{GRF}(m^2/s) =$       | NA              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Į                              | $S_{GRF}(-) =$                   | NA                | $S_{GRF}(-) =$           | NA              |  |
| 10 <sup>-1</sup> 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> | -                              | D <sub>GRF</sub> (-) =           | NA                | D <sub>GRF</sub> (-) =   | NA              |  |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s- recovery period                              |                                | Selected represe                 |                   |                          |                 |  |
| Elapsed tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                | dt <sub>1</sub> (min) =          | NA                | <u></u>                  | 8.8E-1          |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | ]                              |                                  |                   | $C (m^3/Pa) =$           |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 <sup>3</sup>                | $dt_2 (min) =$                   | NA                | C <sub>D</sub> (-) =     | 9.7E-0          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                | $T_T (m^2/s) =$                  | 8.2E-10           |                          | -2.             |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 300                            | S (-) =                          | 1.0E-06           |                          |                 |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                | $K_s$ (m/s) =                    | 4.1E-11           |                          |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mark.                                           | 10 <sup>2</sup>                | $S_s (1/m) =$                    | 5.0E-08           |                          |                 |  |
| a Junear Marie Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | EP3                            | Comments:                        |                   |                          |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 1 2                            |                                  |                   | f 8.2E-10 m2/s was       |                 |  |
| 10 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 30 2                           | radial flow analysis             | s of the CHir pha | se, which shows the      | better data and |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | F10 <sup>1</sup>               |                                  |                   | ange for the interva     |                 |  |
| ·://                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 10                             |                                  |                   | 99 m2/s. Due to the      | low             |  |
| • //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | [                              | transmissivity no fi             | esh water head v  | vas calculated.          |                 |  |
| 10.1 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | 3                              |                                  |                   |                          |                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> |                                |                                  |                   |                          |                 |  |

|                                         | Test S                    | umr                   | nary Sheet                      |                 |                                  |                                          |
|-----------------------------------------|---------------------------|-----------------------|---------------------------------|-----------------|----------------------------------|------------------------------------------|
| Project:                                | Oskarshamn site investig  | gation                | Test type:[1]                   |                 |                                  | CHi                                      |
| Area:                                   | Lo                        | (omor                 | Test no:                        |                 |                                  |                                          |
| Alea.                                   | Lax                       | Kemai                 | rest no.                        |                 |                                  |                                          |
| Borehole ID:                            | KL                        | .X11A                 | Test start:                     |                 |                                  | 060710 14:04                             |
| Test section from - to (m):             | 863.00-883                | .00 m                 | Responsible for test execution: |                 |                                  | Stephan Rohs                             |
| Section diameter, 2·r <sub>w</sub> (m): |                           | 0.076                 | Responsible for                 |                 | Crist                            | ian Enachescu                            |
| l :                                     |                           |                       | test evaluation:                |                 |                                  | q(+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0 |
| Linear plot Q and p                     |                           |                       | Flow period<br>Indata           |                 | Recovery period                  |                                          |
| 8500                                    |                           | T 0.003               | p <sub>0</sub> (kPa) =          | NA              | inuata                           | 1                                        |
| KLX11A_863.00-883.00_060710_1_CHir_Q_r  | P section P above P below |                       | $p_0 (RPa) =$ $p_i (RPa) =$     | NA              |                                  |                                          |
| 8400                                    | .0                        |                       | $p_{p}(kPa) =$                  | NA              | p <sub>F</sub> (kPa ) =          | NA                                       |
|                                         |                           |                       |                                 | NA              | ρ <sub>F</sub> (KF a ) =         | INA                                      |
| 8300 -                                  |                           | 0.002                 | $Q_p (m^3/s) =$                 |                 | t (a) -                          | NΙΛ                                      |
| ure [k Pa                               | :                         | [Vm in]               | tp (s) =                        | NA              | $t_F$ (s) =                      | NA                                       |
| Fed. J. annual de 2000                  |                           | injection Rate [Vmin] | S el S* (-)=                    | NA              | S el S <sup>*</sup> (-)=         | NA                                       |
| Do wn ht                                | ;                         | Inject                | EC <sub>w</sub> (mS/m)=         |                 | 0                                |                                          |
| 8100                                    |                           | 0.001                 | Temp <sub>w</sub> (gr C)=       | 19.             |                                  |                                          |
|                                         |                           |                       | Derivative fact.=               | NA              | Derivative fact.=                | NA                                       |
| 8000                                    |                           |                       |                                 |                 |                                  |                                          |
| -                                       |                           |                       |                                 |                 |                                  |                                          |
| 7900                                    |                           |                       | Results                         |                 | Results                          |                                          |
| Eupseu I III                            | re (II)                   |                       | $Q/s (m^2/s) =$                 | NA              |                                  |                                          |
| Log-Log plot incl. derivates- flo       | ow period                 |                       | $T_M (m^2/s)=$                  | NA              |                                  |                                          |
|                                         |                           |                       | Flow regime:                    | transient       | Flow regime:                     | transient                                |
|                                         |                           |                       | $dt_1$ (min) =                  | NA              | $dt_1$ (min) =                   | NA                                       |
|                                         |                           |                       | $dt_2$ (min) =                  | NA              | $dt_2$ (min) =                   | NA                                       |
|                                         |                           |                       | $T (m^2/s) =$                   | NA              | $T (m^2/s) =$                    | NA                                       |
|                                         |                           |                       | S (-) =                         | NA              | S (-) =                          | NA                                       |
|                                         |                           |                       | $K_s (m/s) =$                   | NA              | $K_s (m/s) =$                    | NA                                       |
|                                         |                           |                       | $S_s(1/m) =$                    | NA              | S <sub>s</sub> (1/m) =           | NA                                       |
| Not An                                  | alysed                    |                       | $C (m^3/Pa) =$                  | NA              | $C (m^3/Pa) =$                   | NA                                       |
|                                         |                           |                       | $C_D(-) =$                      | NA              | $C_D(-) =$                       | NA                                       |
|                                         |                           |                       | ξ(-) =                          | NA              | ξ (-) =                          | NA                                       |
|                                         |                           |                       | ٦()                             | 1               | ٦ ( )                            |                                          |
|                                         |                           |                       | $T_{GRF}(m^2/s) =$              | NA              | $T_{GRF}(m^2/s) =$               | NA                                       |
|                                         |                           |                       | $S_{GRF}(m/s) =$ $S_{GRF}(-) =$ | NA              | $S_{GRF}(HI/S) =$ $S_{GRF}(-) =$ | NA                                       |
|                                         |                           |                       | $D_{GRF}(-)$ =                  | NA              | $D_{GRF}(-) =$                   | NA                                       |
| Log-Log plot incl. derivatives-         | recovery period           |                       | Selected repres                 |                 |                                  |                                          |
| Log Log plot incl. delivatives-         | 1000 very periou          |                       | dt <sub>1</sub> (min) =         | NA              |                                  | NA                                       |
|                                         |                           |                       | $dt_1 (min) =$ $dt_2 (min) =$   | NA              | $C (m^3/Pa) = C_D (-) =$         | NA                                       |
|                                         |                           |                       |                                 | NA              |                                  | NA<br>NA                                 |
|                                         |                           |                       | $T_T (m^2/s) =$                 |                 | ξ (-) =                          | INA                                      |
|                                         |                           |                       | S (-) =                         | NA              |                                  |                                          |
|                                         |                           |                       | $K_s (m/s) =$                   | NA              |                                  |                                          |
|                                         |                           |                       | $S_s(1/m) =$                    | NA              |                                  |                                          |
| Not An                                  | alysed                    |                       | Comments:                       |                 |                                  |                                          |
|                                         |                           |                       | Based on the test r<br>11 m2/s. | esponse me inte | erval transmissivity is          | iower than 1.01                          |

| Characa   Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ımı              | nary Sheet              |                                         |                         |               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|-----------------------------------------|-------------------------|---------------|--|
| Section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation            | Test type:[1]           |                                         |                         | CHi           |  |
| Responsible for test execution:   Stephan Rot test execution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emar             | Test no:                |                                         |                         | 1             |  |
| Responsible for test execution:   Stephan Rot test execution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parahala ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ZI V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /11 A            | Toot start:             |                                         |                         | 060712 07:20  |  |
| Interest execution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | borenoie ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |                                         |                         | 00071207.30   |  |
| Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation:   Cristan Enachesc tevaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 303.00-308.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 m             |                         |                                         | Stephan Rohs            |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .076             | Responsible for         |                                         | Crist                   | ian Enachescı |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |                                         | Recovery period         |               |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Indata                  | • ; • ; • ; • ; • ; • ; • ; • ; • ; • ; | Indata                  |               |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3150<br>KLX11A_303.00-308.00_060712_1_CHir_Q_r •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0              | p <sub>0</sub> (kPa) =  | 2828                                    |                         |               |  |
| $ \frac{1}{\sqrt{2}} = \frac{1.06E \cdot 0S}{\text{tp (s)}} = \frac{1.00E \cdot 0S}{\text{tp (s)}} = \frac{1.200}{\text{tp (s)}$                                                                                                                                                                                                                                                                            | 3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pabove Pbelow Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | p <sub>i</sub> (kPa ) = | 2823                                    |                         |               |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5              | $p_p(kPa) =$            | 3024                                    | p <sub>F</sub> (kPa ) = | 282           |  |
| Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Content   Total Conten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Material Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of t |                  | $Q_{n} (m^{3}/s) =$     | 1.06E-05                                |                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g 3000 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē                |                         | 1200                                    | t <sub>F</sub> (s) =    | 120           |  |
| Temps,(gr C)= 11.1 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e.ins 89-22950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 Mg           |                         |                                         |                         |               |  |
| Temps,(gr C)= 11.1 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 Derivative fact.= 0.06 De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and other states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states of the states |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | njection         |                         |                                         | 3 61 3 (-)-             |               |  |
| Derivative fact. = 0.06 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Derivative fact. = 0.00 Deriv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Š 2900 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | _                |                         | 11 1                                    |                         |               |  |
| Results $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $0.5 \cdot 2E \cdot C7$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_{\rm s}(m^2/s)=$ $O_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5              |                         |                                         |                         | 0.0           |  |
| Results  Q/s (m <sup>2</sup> /s)= 5.2E-07  T <sub>M</sub> (m <sup>2</sup> /s)= 4.3E-07  Flow regime: transient Flow regime: transient dt, (min) = 0.50 dt, (min) = 0.4 dt <sub>2</sub> (min) = 17.83 dt <sub>2</sub> (min) = 2.1 T (m <sup>2</sup> /s) = 6.0E-07 T (m <sup>2</sup> /s) = 2.4E-0 S (-) = 1.0E-0 S (-) = 0.03 S (-) = 2.1 T (m <sup>2</sup> /s) = 0.03 S (-) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E-0 T (m <sup>2</sup> /s) = 0.0E- | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Denvative lact.         | 0.00                                    | Derivative lact.        | 0.0           |  |
| Results $Q/s$ ( $m^2/s$ )= $5.2E-07$   T <sub>M</sub> ( $m^2/s$ )= $4.3E-07$   Flow regime: transient $dt_1$ (min) = $0.50$ $dt_1$ (min) = $0.4$ $dt_2$ (min) = $17.83$ $dt_2$ (min) = $2.1$ $t_1$ (min) = $17.83$ $dt_2$ (min) = $2.1$ $t_2$ (min) = $17.83$ $dt_2$ (min) = $2.1$ $t_3$ (min) = $2.1$ $t_4$ (min) = $2.1$ $t_4$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$ (min) = $2.1$ $t_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                         |                                         |                         |               |  |
| Log-Log plot incl. derivates- flow period $T_{M}(m^2/s) = 4.3E-07$ Flow regime: transient $dt_1(min) = 0.50 dt_1(min) = 0.4 dt_2(min) = 2.1 T(m^2/s) = 6.0E-07 T(m^2/s) = 2.4E-0 S(-1) = 1.0E-06 S(-1) = 1.0E-06 S(-1) = 1.0E-06 S(-1) = 1.0E-06 S(-1) = 1.0E-06 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E-07 S(-1) = 1.0E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 0.20 0.40 0.80 0.80 1.00 1.20 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0              | Results                 |                                         | Results                 |               |  |
| Flow regime: transient $dt_1 (min) = 0.50 dt_1 (min) = 0.4 dt_2 (min) = 17.83 dt_2 (min) = 2.1 Temperature dt_1 (min) = 0.50 dt_1 (min) = 0.4 dt_2 (min) = 17.83 dt_2 (min) = 2.1 Temperature dt_1 (min) = 0.50 dt_1 (min) = 0.4 dt_2 (min) = 17.83 dt_2 (min) = 2.1 Temperature dt_1 (min) = 0.50 dt_1 (min) = 0.4 dt_2 (min) = 1.0 dt_2 (min) = 2.1 Temperature dt_1 (min) = 0.50 dt_1 (min) = 0.4 dt_2 (min) = 2.1 Temperature dt_1 (min) = 0.50 dt_1 (min) = 0.4 dt_2 (min) = 2.1 Temperature dt_1 (min) = 0.50 dt_1 (min) = 0.4 dt_2 (min) = 2.1 dt_2 (min) = 1.0 dt_2 (min) = 1.0 dt_2 (min) = 2.1 dt_2 (min) = 2.1 dt_2 (min) = 2.1 dt_2 (min) = 2.1 dt_2 (min) = 2.1 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min) = 2.0 dt_2 (min$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Q/s $(m^2/s)=$          | 5.2E-07                                 |                         |               |  |
| $\frac{dt_1  (\text{min})  =  0.50  dt_1  (\text{min})  =  0.4}{dt_2  (\text{min})  =  17.83  dt_2  (\text{min})  =  2.1}{T  (\text{m}^2/\text{s})  =  6.0\text{E-}07  \text{T}  (\text{m}^2/\text{s})  =  2.4\text{E-}0}{S  (\cdot)  =  1.0\text{E-}06  S  (\cdot)  =  1.0\text{E-}0}{S  (\cdot)  =  1.0\text{E-}06  S  (\cdot)  =  1.0\text{E-}0}{S  (\cdot)  =  1.0\text{E-}06  S  (\cdot)  =  1.0\text{E-}0}{S  (\cdot)  =  1.0\text{E-}07  \text{K}_{\text{s}}  (\text{m/s})  =  4.9\text{E-}0}{S  (\cdot)  =  1.0\text{E-}07  \text{K}_{\text{s}}  (\text{m/s})  =  3.6\text{E-}1}{S  (\cdot)  =  1.0\text{E-}0}{S  (\cdot)  =  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | $T_{\rm M} (m^2/s) =$   | 4.3E-07                                 |                         |               |  |
| $\frac{dt_1  (\text{min})  =  0.50}{dt_2  (\text{min})  =  17.83}  dt_2  (\text{min})  =  2.1$ $T  (\text{m}^2/\text{s})  =  6.0\text{E-O7}  (\text{m}^2/\text{s})  =  2.4\text{E-O}$ $S  (\cdot)  =  1.0\text{E-O6}  S  (\cdot)  =  1.0\text{E-O}$ $S  (\cdot)  =  1.0\text{E-O6}  S  (\cdot)  =  1.0\text{E-O}$ $S  (\cdot)  =  1.0\text{E-O}  (\cdot)  (\cdot)  =  1.0\text{E-O}$ $S  (\cdot)  =  1.0\text{E-O}  (\cdot)  (\cdot)  (\cdot)  =  1.0\text{E-O}$ $S  (\cdot)  =  1.0\text{E-O}  (\cdot)  (\cdot)  (\cdot)  =  1.0\text{E-O}$ $S  (\cdot)  =  1.0\text{E-O}  (\cdot)  (\cdot)  (\cdot)  (\cdot)  =  1.0\text{E-O}$ $S  (\cdot)  =  1.0\text{E-O}  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot)  (\cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elanced time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Flow regime:            | transient                               | Flow regime:            | transient     |  |
| $T (m^2/s) = 6.0E-07 T (m^2/s) = 2.4E-0 S (-) = 1.0E-06 S (-) = 1.0E-06 S (-) = 1.0E-06 S (-) = 1.0E-06 S (-) = 1.0E-06 S (-) = 1.0E-06 S (-) = 1.0E-06 S (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-) = 1.0E-07 T (-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 2 10,4 10,3 10,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | $dt_1$ (min) =          | 0.50                                    | $dt_1$ (min) =          | 0.4           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101              | $dt_2$ (min) =          | 17.83                                   | $dt_2$ (min) =          | 2.1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10               | $T (m^2/s) =$           | 6.0E-07                                 | $T(m^2/s) =$            | 2.4E-0        |  |
| $K_{S}(m/s) = 1.2E-07 K_{S}(m/s) = 4.9E-05 K_{S}(1/m) = 2.0E-07 S_{S}(1/m) = 2.0E-07 S_{S}(1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |                                         |                         | 1.0E-0        |  |
| $S_{8} (1/m) = 2.0E-07 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1 S_{8} (1/m) = 3.6E-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                |                         |                                         |                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100              | - ' '                   |                                         |                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l Vil            | ,                       |                                         | - ,                     |               |  |
| $\xi(\cdot) = 0.3  \xi(\cdot) = 21.$ $T_{GRF}(m^2/s) = NA \qquad T_{GRF}(m^2/s) = NA$ $S_{GRF}(\cdot) = NA \qquad S_{GRF}(\cdot) = NA$ $D_{GRF}(\cdot) = NA \qquad D_{GRF}(\cdot) = NA$ $N_{GRF}(\cdot) = NA \qquad N_{GRF}(\cdot) =$                                                                                                                                                                                                                                                                                                 | 1/dp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1/a).           |                         |                                         |                         |               |  |
| $T_{GRF}(m^2/s) = NA \qquad T_{GRF}(m^2/s) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $T_{GRF}(-) = NA$ $T_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ا<br>چين پيم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3 ≦            |                         |                                         |                         |               |  |
| $S_{GRF}(-) = NA \qquad S_{GRF}(-) = NA$ $D_{GRF}(-) = NA \qquad D_{GRF}(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-1</sup> | ς (-) –                 | 0.3                                     | ς (-) –                 | 21            |  |
| $S_{GRF}(-) = NA \qquad S_{GRF}(-) = NA$ $D_{GRF}(-) = NA \qquad D_{GRF}(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | $T_{}(m^2/s) =$         | NA                                      | $T_{}(m^2/s) =$         | NA            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03             |                         |                                         |                         |               |  |
| Selected representative parameters. $ \frac{\text{dt}_1(\text{min}) = 0.50 \text{ C } (\text{m}^3/\text{Pa}) = 3.6\text{E-1}}{\text{dt}_2(\text{min}) = 17.83 \text{ C}_D(-) = 4.0\text{E-0}}{\text{dt}_2(\text{min}) = 1.0\text{E-006}} $ $ \frac{\text{K}_S(\text{m/s}) = 1.2\text{E-07}}{\text{S}_S(1/\text{m}) = 2.0\text{E-07}} $ $ \frac{\text{Comments:}}{\text{The recommended transmissivity of } 6.0\text{E-7 m2/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0\text{E-7 to } 9.0\text{E-7 m2/s}. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 <sup>3</sup> 10 <sup>4</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 <sup>6</sup> 10 <sup>6</sup> 10 <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |                                         |                         |               |  |
| $\frac{10^{3}}{10^{3}} = \frac{10^{4}}{10^{3}} = \frac{10^{3}}{10^{3}} = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Log Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rocovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |                                         |                         |               |  |
| $dt_2 \text{ (min)} = 17.83 \text{ C}_D \text{ (-)} = 4.0\text{E-O}$ $T_T \text{ (m}^2\text{/s)} = 6.0\text{E-O}^7 \xi \text{ (-)} = 0.$ $S \text{ (-)} = 1.0\text{E-O}^6 \text{ K}_s \text{ (m/s)} = 1.2\text{E-O}^7$ $S_s \text{ (1/m)} = 2.0\text{E-O}^7$ $Comments:$ The recommended transmissivity of 6.0E-7 m2/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |                                         |                         | 2 GE 4        |  |
| $T_T (m^2/s) = 6.0E-07 \xi (-) = 0.0E$ $S (-) = 1.0E-06$ $K_s (m/s) = 1.2E-07$ $S_s (1/m) = 2.0E-07$ $Comments:$ The recommended transmissivity of 6.0E-7 m2/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 <sup>-5</sup> 10,-4 10,-4 10,-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |                                         | Ο (III /I α)            |               |  |
| $S(-) = 1.0E-06$ $K_s(m/s) = 1.2E-07$ $S_s(1/m) = 2.0E-07$ $Comments:$ The recommended transmissivity of 6.0E-7 m2/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |                                         |                         |               |  |
| $K_s$ (m/s) = 1.2E-07 $S_s$ (1/m) = 2.0E-07 $S_s$ (1/m) = 2.0E-07 $S_s$ (1/m) = 2.0E-7 $S_s$ was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00               |                         |                                         |                         | 0.            |  |
| $S_s$ (1/m) = 2.0E-07  Comments:  The recommended transmissivity of 6.0E-7 m2/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                |                         |                                         |                         |               |  |
| Comments:  The recommended transmissivity of 6.0E-7 m2/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-               |                         |                                         |                         |               |  |
| The recommended transmissivity of 6.0E-7 m2/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                |                         | 2.0E-07                                 |                         |               |  |
| radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                |                         |                                         |                         |               |  |
| quality. The confidence range for the interval transmissivity is estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | `\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |                                         |                         |               |  |
| estimated to be 2.0E-7 to 9.0E-7 m2/s. The static pressure measured a transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0. 5             | radiai flow affaiysis   |                                         |                         |               |  |
| transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                         |                                         |                         |               |  |
| extrapolation in the Horner plot to a value of 2,822.7 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                         |                                         |                         |               |  |
| 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                |                         |                                         |                         |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103 104 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 ັ              | I .                     | 1                                       | ,                       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tD/CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                         |                                         |                         |               |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ımı                 | nary Sheet                         |               |                                             |                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------|---------------|---------------------------------------------|----------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Oskarshamn site investiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation               | Test type:[1]                      |               |                                             | CHi            |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emar                | Test no:                           |               |                                             | 1              |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KI X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (11A                | Test start:                        |               |                                             | 060712 09:30   |  |
| Borelloic IB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                    |               |                                             |                |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 308.00-313.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 m                | Responsible for test execution:    |               | Stephan Rohs                                |                |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .076                | Responsible for                    |               | Crist                                       | ian Enachescu  |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | test evaluation:<br>Flow period    |               | Recovery period                             |                |  |
| Emour prot & and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Indata                             |               | Indata                                      |                |  |
| 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sup>6</sup>      | p <sub>0</sub> (kPa) =             | 2875          |                                             |                |  |
| KLX11A_308.00-313.00_060712_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Psection Pabove Pbelow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | p <sub>i</sub> (kPa ) =            | 2871          |                                             | 1              |  |
| 3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                   | $p_p(kPa) =$                       |               | p <sub>F</sub> (kPa ) =                     | 287            |  |
| 3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                     |                                    | 5.33E-05      |                                             | 207            |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                   | $Q_p (m^3/s) =$                    |               |                                             | 120            |  |
| 6 3000<br>8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Rate [l/min]      | tp (s) =                           |               | t <sub>F</sub> (s) =                        | 120            |  |
| \$ 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2950 - C 2 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on Rate             | S el S* (-)=                       | 1.00E-06      | S el S <sup>*</sup> (-)=                    | 1.00E-0        |  |
| 2900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Injection           | EC <sub>w</sub> (mS/m)=            |               |                                             |                |  |
| 2850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                   | Temp <sub>w</sub> (gr C)=          | 11.3          |                                             |                |  |
| 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Derivative fact.=                  | 0.1           | Derivative fact.=                           | 0.0            |  |
| 2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                   |                                    |               |                                             |                |  |
| 2700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ].                  |                                    |               |                                             |                |  |
| 0.00 0.20 0.40 0.60 0.80 1.00 1.20<br>Ellapsed Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.40                | Results                            |               | Results                                     | т              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $Q/s (m^2/s) =$                    | 2.6E-06       |                                             |                |  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | $T_{\rm M}  ({\rm m}^2/{\rm s}) =$ | 2.2E-06       |                                             |                |  |
| Elapsed time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | Flow regime:                       | transient     | Flow regime:                                | transient      |  |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $dt_1$ (min) =                     | 0.55          | $dt_1$ (min) =                              | 3.3            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>0</sup>     | $dt_2$ (min) =                     | 4.85          | $dt_2$ (min) =                              | 12.1           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $T (m^2/s) =$                      | 7.0E-06       | $T (m^2/s) =$                               | 6.5E-0         |  |
| 0 0 0 000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                 | S (-) =                            | 1.0E-06       | , ,                                         | 1.0E-0         |  |
| 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $K_s (m/s) =$                      |               | $K_s (m/s) =$                               | 1.3E-0         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-1</sup>    | C (1/m) =                          |               |                                             |                |  |
| (14D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [min./]             | S <sub>s</sub> (1/m) =             |               | S <sub>s</sub> (1/m) =                      | 2.0E-0         |  |
| , v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>y</i> . :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03 (8)            | $C (m^3/Pa) =$                     | NA            | $C (m^3/Pa) =$                              | 3.5E-10        |  |
| 10 ".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/4                 | C <sub>D</sub> (-) =               | NA            | C <sub>D</sub> (-) =                        | 3.8E-0         |  |
| 7. 10. 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * * · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 <sup>-2</sup>    | ξ (-) =                            | 8.2           | ξ (-) =                                     | 20.            |  |
| • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 2                                  | 4.55.00       | 2                                           | NIA            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003               | $T_{GRF}(m^2/s) =$                 |               | $T_{GRF}(m^2/s) =$                          | NA             |  |
| 10 <sup>11</sup> 10 <sup>12</sup> 10 <sup>13</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 <sup>14</sup> 10 <sup>15</sup> 10 <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | $S_{GRF}(-) =$                     | 1.0E-06       |                                             | NA             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $D_{GRF}$ (-) =                    |               | D <sub>GRF</sub> (-) =                      | NA             |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Selected represe                   | ntative paran | ieters.                                     |                |  |
| 10. <sup>-4</sup> 10. <sup>-3</sup> Elapsed time [f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-210-110-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | $dt_1$ (min) =                     | 3.33          | C (m <sup>3</sup> /Pa) =                    | 3.5E-10        |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | $dt_2$ (min) =                     | 12.15         | C <sub>D</sub> (-) =                        | 3.8E-0         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | $T_T (m^2/s) =$                    | 6.5E-06       | ξ (-) =                                     | 20.            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | S (-) =                            | 1.0E-06       |                                             | 1              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                   | $K_s (m/s) =$                      | 1.3E-06       |                                             |                |  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | S <sub>s</sub> (1/m) =             | 2.0E-07       |                                             | 1              |  |
| . \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KP<br>[e            |                                    | 2.52 07       |                                             | <u> </u>       |  |
| a · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p-p0, (p-p0)' [kPa] | The recommendation                 | manamiasi i   | F 6 5 E 6 2/ 1                              | aniroad Casa d |  |
| .\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0d-(              | radial flow analysis               |               | f 6.5E-6 m2/s was de                        |                |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | we will be a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۵                   | radiai ilow aliarysis              |               | se (outer zone), whi<br>he confidence range |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                    |               | E-6 to 9.0E-6 m2/s.                         |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                    |               | oth, was derived from                       |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                   |                                    |               | on in the Horner plo                        |                |  |
| 101 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 <sup>3</sup> 10 <sup>4</sup> 10 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2,867.5 kPa.                       |               | pro                                         |                |  |
| tD/CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1 1                                |               |                                             |                |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Si                  | umn                      | nary Sheet                                   |              |                                |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|----------------------------------------------|--------------|--------------------------------|------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig | ation                    | Test type:[1]                                |              |                                | CHi              |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lov                      | omor                     | Test no:                                     |              |                                |                  |
| Alea.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                      | emai                     | restrio.                                     |              |                                |                  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX                      | X11A                     | Test start:                                  |              |                                | 060712 11:13     |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 313.00-318.              | 00 m                     | Responsible for test execution:              | Stephan Rohs |                                |                  |
| Section diameter, 2⋅r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (                        | 0.076                    | Responsible for test evaluation:             |              | Crist                          | ian Enachescu    |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                          | Flow period                                  |              | Recovery period                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | Indata                                       |              | Indata                         |                  |
| 3150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • P section            | 0.003                    | p <sub>0</sub> (kPa) =                       | 2925         | 5                              |                  |
| KLX11A_313.00-318.00_060712_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P above P below          |                          | p <sub>i</sub> (kPa ) =                      | NA           |                                |                  |
| 3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                        |                          | $p_p(kPa) =$                                 | NA           | p <sub>F</sub> (kPa ) =        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                        |                          | $Q_p (m^3/s) =$                              | NA           |                                |                  |
| 3050 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0.002                    | tp (s) =                                     | NA           | t <sub>F</sub> (s) =           | NA               |
| 2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                        | tate [l/mi               | S el S <sup>*</sup> (-)=                     | NA           | S el S <sup>*</sup> (-)=       | NA               |
| For All services of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t |                          | in jection Rate [l/m in] | EC <sub>w</sub> (mS/m)=                      |              | · · · · /                      |                  |
| 2990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | 0.001                    | Temp <sub>w</sub> (gr C)=                    | 11.4         | 1                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | Derivative fact.=                            | NA           | Derivative fact.=              | NA               |
| 2900 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·<br>:                   |                          | 20                                           |              | 20                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                              |              |                                |                  |
| 2850 0.00 0.10 0.20 0.30 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50 0.60 0.70 0.80 0.3  | 0.000                    | Results                                      |              | Results                        |                  |
| 0.00 0.70 0.20 0.30 0.40 Elapsed Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | 90                       |                                              | NA           | Results                        |                  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nu pariad                |                          | $Q/s (m^2/s) =$                              | NA           |                                |                  |
| Log-Log plot incl. derivates- no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                |                          | $T_M (m^2/s) =$                              |              | Flavy va sima a v              | transiant        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | Flow regime:                                 | transient    | Flow regime:                   | transient        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | dt <sub>1</sub> (min) =                      | NA           | $dt_1 (min) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $dt_2 (min) =$                               | NA           | $dt_2$ (min) =                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $T (m^2/s) =$                                | NA           | $T (m^2/s) =$                  | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | S (-) =                                      | NA           | S (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $K_s (m/s) =$                                | NA           | $K_s (m/s) =$                  | NA               |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alvsed                   |                          | $S_s (1/m) =$                                | NA           | $S_s(1/m) =$                   | NA               |
| 1100111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | arysoa                   |                          | $C (m^3/Pa) =$                               | NA           | $C (m^3/Pa) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $C_D(-) =$                                   | NA           | $C_D(-) =$                     | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | ξ (-) =                                      | NA           | ξ (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                              |              |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $T_{GRF}(m^2/s) =$                           | NA           | $T_{GRF}(m^2/s) =$             | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $S_{GRF}(-) =$                               | NA           | $S_{GRF}(-)$ =                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $D_{GRF}$ (-) =                              | NA           | $D_{GRF}$ (-) =                | NA               |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period          |                          | Selected represe                             |              | neters.                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $dt_1$ (min) =                               | NA           | $C (m^3/Pa) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $dt_2$ (min) =                               | NA           | $C_D(-) =$                     | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | $T_T (m^2/s) =$                              | NA           | ξ (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | S (-) =                                      | NA           |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | K <sub>s</sub> (m/s) =                       | NA           |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | S <sub>s</sub> (1/m) =                       | NA           |                                |                  |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alvsed                   |                          | Comments:                                    | •            | -                              | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | Based on the test re<br>transmissivity is lo |              | ged packer complian<br>1 m2/s. | ce) the interval |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                  | umr                   | nary Sheet                                  |           |                                  |                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|---------------------------------------------|-----------|----------------------------------|-------------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi | gation                | Test type:[1]                               |           |                                  | CHi               |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | La                      | xemar                 | Test no:                                    |           |                                  |                   |  |
| Arca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | La                      | xciiiai               | 1 631 110.                                  |           |                                  |                   |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                      | X11A                  | Test start:                                 |           |                                  | 060712 13:09      |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 318.00-323              | 3.00 m                | Responsible for test execution:             |           | Stephan Rohs                     |                   |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 0.076                 | Responsible for test evaluation:            |           | Cris                             | tian Enachescı    |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                       | Flow period                                 |           | Recovery period                  | d                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | Indata                                      |           | Indata                           | <u> </u>          |  |
| 3200<br>KLX11A_318.00-323.00_060712_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • P section             | 0.003                 | p <sub>0</sub> (kPa) =                      | 297       | 12                               |                   |  |
| 3150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pabore Pbelow Q         |                       | p <sub>i</sub> (kPa ) =                     | NA        |                                  |                   |  |
| 3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                     |                       | $p_p(kPa) =$                                | NA        | p <sub>F</sub> (kPa ) =          | NA                |  |
| 3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>.</u> .              | 0.002                 | $Q_p (m^3/s) =$                             | NA        |                                  |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | tp (s) =                                    | NA        | t <sub>F</sub> (s) =             | NA                |  |
| To 2000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.00 |                         | njection Rate [l/min] | S el S <sup>*</sup> (-)=                    | NA        | S el S* (-)=                     | NA                |  |
| mhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                     | Injection             | EC <sub>w</sub> (mS/m)=                     |           | 3 5. 5 ( )                       |                   |  |
| å 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                | 0.001                 | Temp <sub>w</sub> (gr C)=                   | 11        | .5                               | <del> </del>      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                       |                       | Derivative fact.=                           |           | Derivative fact.=                | NA                |  |
| 2950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                       |                       | 20                                          |           | 20                               |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                       |                       |                                             |           |                                  | +                 |  |
| 2900 0.10 0.20 0.30 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50 0.60 0.70 0.80     | 0.000                 | Results                                     |           | Results                          |                   |  |
| Elapsed Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                       |                                             | NA        | Results                          | 1                 |  |
| Log Log platinal derivates fla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aw nariad               |                       | Q/s $(m^2/s)=$                              | NA        |                                  |                   |  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow period               |                       | $T_M (m^2/s) =$                             |           | Flavora eiro e                   | transiant         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | Flow regime:                                | transient | Flow regime:                     | transient         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $dt_1 (min) =$                              | NA        | $dt_1 (min) =$                   | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $dt_2 (min) =$                              | NA        | $dt_2 (min) =$                   | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $T (m^2/s) =$                               | NA        | $T (m^2/s) =$                    | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | S (-) =                                     | NA        | S (-) =                          | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $K_s$ (m/s) =                               | NA        | $K_s (m/s) =$                    | NA                |  |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alvsed                  |                       | $S_s (1/m) =$                               | NA        | $S_s(1/m) =$                     | NA                |  |
| 1,00711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | arysou                  |                       | $C (m^3/Pa) =$                              | NA        | $C (m^3/Pa) =$                   | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $C_D(-) =$                                  | NA        | $C_D(-) =$                       | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | ξ (-) =                                     | NA        | ξ (-) =                          | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       |                                             |           |                                  |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $T_{GRF}(m^2/s) =$                          | NA        | $T_{GRF}(m^2/s) =$               | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $S_{GRF}(-) =$                              | NA        | $S_{GRF}(-) =$                   | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $D_{GRF}$ (-) =                             | NA        | $D_{GRF}$ (-) =                  | NA                |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period         |                       | Selected repres                             |           | meters.                          |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $dt_1$ (min) =                              | NA        | $C (m^3/Pa) =$                   | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $dt_2$ (min) =                              | NA        | $C_D(-) =$                       | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $T_T (m^2/s) =$                             | NA        | ξ (-) =                          | NA                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | S (-) =                                     | NA        |                                  |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | K <sub>s</sub> (m/s) =                      | NA        |                                  |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | $S_s (1/m) =$                               | NA        |                                  |                   |  |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alvsed                  |                       | Comments:                                   | -         | -                                | _                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                       | Based on the test r<br>transmissivity is lo |           | nged packer compliar<br>11 m2/s. | nce) the interval |  |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 est 5                                         | um                        | mary Sheet                        |                     |                          |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------|-----------------------------------|---------------------|--------------------------|-----------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi                         | gatior                    | Test type:[1]                     |                     |                          | CHi             |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                             | xema                      | r Test no:                        |                     |                          |                 |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                                              | X11/                      | Test start:                       |                     |                          | 060712 14:3     |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3//3 00-3//8                                    | 2 00 m                    | Responsible for                   |                     |                          | Stephan Roh     |
| ` ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                           | test execution:                   |                     |                          |                 |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | 0.076                     | Responsible for test evaluation:  |                     | Crist                    | ian Enachesc    |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                           | Flow period                       |                     | Recovery period          |                 |
| 349.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | -0.40                     | Indata                            |                     | Indata                   |                 |
| KLX11A_343.00-348.00_060712_1_CHIEQ_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • P section                                     | 0.10                      | p <sub>0</sub> (kPa) =            | 3206                |                          |                 |
| 3400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • P above<br>• P below<br>• Q                   |                           | p <sub>i</sub> (kPa ) =           | 3222                |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                               | 0.08                      | $p_p(kPa) =$                      |                     | p <sub>F</sub> (kPa ) =  | 331             |
| 3350 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '                                               |                           | $Q_p (m^3/s) =$                   | 1.67E-07            |                          |                 |
| <u>e</u> 3300 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.06 =                    | tp (s) =                          | 1200                | $t_F$ (s) =              | 120             |
| P 76 S L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | 10 jection Rate [l/m in ] | S el S <sup>*</sup> (-)=          | 1.00E-06            | S el S <sup>*</sup> (-)= | 1.00E-0         |
| g 3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | 0.04 II                   | $EC_w (mS/m)=$                    |                     |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                           | Temp <sub>w</sub> (gr C)=         | 11.8                |                          |                 |
| 3200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :                                               |                           | Derivative fact.=                 | 0.05                | Derivative fact.=        | 0.0             |
| 3150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.02                      |                                   |                     |                          |                 |
| 3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·<br>                                           | 0.00                      | Results                           |                     | Results                  |                 |
| 0.00 0.20 0.40 0.60 0.80 Elapsed Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00 1.20 1.40 1.80<br>[h]                      | 1.80                      |                                   | 7.05.00             |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                           | Q/s (m <sup>2</sup> /s)=          | 7.8E-09             |                          |                 |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w perioa                                        |                           | $T_{\rm M} ({\rm m}^2/{\rm s}) =$ | 6.4E-09             |                          |                 |
| Elapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,010,1                                        |                           | Flow regime:                      | transient           | Flow regime:             | transient       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | . 3                       | $dt_1 (min) =$                    | NA                  | dt <sub>1</sub> (min) =  | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 <sup>3</sup>           | dt <sub>2</sub> (min) =           | NA                  | $dt_2 (min) =$           | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                           | $T (m^2/s) =$                     |                     | $T (m^2/s) =$            | 3.6E-0          |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 300                       | S (-) =                           | 1.0E-06             |                          | 1.0E-0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 <sup>2</sup>           | $K_s$ (m/s) =                     |                     | $K_s (m/s) =$            | 7.2E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | I) II)                    | $S_s(1/m) =$                      |                     | $S_s (1/m) =$            | 2.0E-0          |
| المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المنافق المناف |                                                 | (1/0/1                    | C (m <sup>3</sup> /Pa) =          | NA                  | C (m³/Pa) =              | 1.3E-1          |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                               | 30 5                      | $C_D(-) =$                        | NA                  | $C_D(-) =$               | 1.4E-0          |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 10 <sup>1</sup>           | ξ (-) =                           | -2.1                | ξ (-) =                  | -3.             |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |                           |                                   |                     |                          |                 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 3                         | $T_{GRF}(m^2/s) =$                | 6.3E-09             | $T_{GRF}(m^2/s) =$       | 3.6E-0          |
| 10 <sup>8</sup> 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> |                           | $S_{GRF}(-) =$                    | 1.0E-06             |                          | 1.0E-0          |
| tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                           | $D_{GRF}$ (-) =                   | 1.68                | D <sub>GRF</sub> (-) =   | 1.7             |
| Log-Log plot incl. derivatives- r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecovery period                                  |                           | Selected repres                   | entative paran      | neters.                  |                 |
| Elapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,-1 , , , , , , , , , , , , , , , , , ,       |                           | $dt_1$ (min) =                    | NA                  | C (m³/Pa) =              | 1.3E-1          |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 10 <sup>3</sup>           | $dt_2$ (min) =                    | NA                  | $C_D(-) =$               | 1.4E-0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                           | $T_T (m^2/s) =$                   | 3.6E-09             | ξ(-) =                   | -3.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 300                       | S (-) =                           | 1.0E-06             |                          |                 |
| 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | •                         | $K_s$ (m/s) =                     | 7.2E-10             |                          |                 |
| "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>.</u>                                        | 10 <sup>2</sup>           | $S_s (1/m) =$                     | 2.0E-07             |                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALTER AND AND AND AND AND AND AND AND AND AND   | - 2                       | Comments:                         | •                   |                          |                 |
| a.v.y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                               | 30                        |                                   | transmissivity of   | f 3.6E-9 m2/s was d      | erived from the |
| 10 <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                           |                                   |                     | se (inner zone), whi     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 1                      | better data and de                | rivative quality. T | he confidence range      | for the interva |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                           |                                   |                     | E-9 to 8.0E-9 m2/s.      | Due to the low  |
| //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | 3                         | transmissivity no                 | tresh water head v  | vas calculated.          |                 |
| //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                           |                                   |                     |                          |                 |
| 10 <sup>-1</sup> 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> |                           |                                   |                     |                          |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                | ıımr                  | nary Sheet                                  |               |                                  |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|---------------------------------------------|---------------|----------------------------------|--------------------------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig              | gation                | Test type:[1]                               |               |                                  | CHi                                              |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |                       | T 4                                         |               |                                  |                                                  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                   | kemar                 | Test no:                                    |               |                                  | 1                                                |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                                    | .X11A                 | Test start:                                 |               |                                  | 060712 16:38                                     |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 348.00-353                            | .00 m                 | Responsible for test execution:             |               |                                  | Stephan Rohs                                     |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 0.076                 | Responsible for test evaluation:            |               | Crist                            | tian Enachescu                                   |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                       | Flow period                                 |               | Recovery period                  | j                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | Indata                                      |               | Indata                           |                                                  |
| 3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 0.003                 | p <sub>0</sub> (kPa) =                      | 325           |                                  |                                                  |
| KLX11A_348.00-353.00_060712_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section P above P below             |                       | p <sub>i</sub> (kPa ) =                     | NA            |                                  |                                                  |
| 3450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>,</b> "                            |                       | $p_p(kPa) =$                                | NA            | p <sub>F</sub> (kPa ) =          | NA                                               |
| 3400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •:                                    |                       | $Q_p (m^3/s) =$                             | NA            | , ,                              |                                                  |
| [eds]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     | 0.002                 | tp (s) =                                    | NA            | t <sub>F</sub> (s) =             | NA                                               |
| 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | te [l/min             | S el S <sup>*</sup> (-)=                    | NA            | S el S <sup>*</sup> (-)=         | NA                                               |
| To a 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 - 1300 |                                       | njection Rate [l/min] | EC <sub>w</sub> (mS/m)=                     | 1.".          | J 61 J (-)=                      |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                              | 0.001                 | Temp <sub>w</sub> (gr C)=                   | 11.           | 9                                |                                                  |
| 3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                     | 0.001                 | Derivative fact.=                           |               | Derivative fact.=                | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | Derivative fact.                            | INA           | Derivative fact.                 | INA                                              |
| 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                       |                                             |               |                                  |                                                  |
| 3150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · | 0.000                 | Results                                     |               | Results                          |                                                  |
| 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00<br>Elapsed Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                       |                                             | IN I A        | Results                          | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | Q/s ( $m^2/s$ )=                            | NA            |                                  |                                                  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                             |                       | $T_{\rm M} ({\rm m}^2/{\rm s}) =$           | NA            |                                  |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | Flow regime:                                | transient     | Flow regime:                     | transient                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $dt_1 (min) =$                              | NA            | $dt_1$ (min) =                   | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $dt_2 (min) =$                              | NA            | $dt_2 (min) =$                   | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $T (m^2/s) =$                               | NA            | $T (m^2/s) =$                    | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | S (-) =                                     | NA            | S (-) =                          | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $K_s (m/s) =$                               | NA            | $K_s (m/s) =$                    | NA                                               |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nalysed                               |                       | $S_s (1/m) =$                               | NA            | $S_s(1/m) =$                     | NA                                               |
| Not Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | naryscu                               |                       | $C (m^3/Pa) =$                              | NA            | $C (m^3/Pa) =$                   | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $C_D(-) =$                                  | NA            | $C_D(-) =$                       | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | ξ (-) =                                     | NA            | ξ (-) =                          | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                                             |               |                                  |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $T_{GRF}(m^2/s) =$                          | NA            | $T_{GRF}(m^2/s) =$               | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $S_{GRF}(-) =$                              | NA            | S <sub>GRF</sub> (-) =           | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | D <sub>GRF</sub> (-) =                      | NA            | D <sub>GRF</sub> (-) =           | NA                                               |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                       |                       | Selected repres                             | entative para |                                  |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $dt_1$ (min) =                              | NA            | $C (m^3/Pa) =$                   | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $dt_2 \text{ (min)} =$                      | NA            | $C_D(-) =$                       | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $T_T (m^2/s) =$                             | NA            | ξ (-) =                          | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | S (-) =                                     | NA            | ,                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | $K_s (m/s) =$                               | NA            |                                  |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       | S <sub>s</sub> (1/m) =                      | NA            |                                  | <del>                                     </del> |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nalysed                               |                       | Comments:                                   | 1             |                                  | Ī                                                |
| NOT AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                       | Based on the test r<br>transmissivity is lo |               | nged packer complian<br>11 m2/s. | ice) the interval                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                                             |               |                                  |                                                  |

|                                                  | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umr                    | nary Sheet                                  |           |                                               |                   |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|-----------|-----------------------------------------------|-------------------|
| Project:                                         | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation                  | Test type:[1]                               |           |                                               | CHii              |
| Area:                                            | Lav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | omar                   | Test no:                                    |           |                                               |                   |
| Alea.                                            | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ciliai                 | rest no.                                    |           |                                               |                   |
| Borehole ID:                                     | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X11A                   | Test start:                                 |           |                                               | 060712 17:56      |
| Test section from - to (m):                      | 353.00-358.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .00 m                  | Responsible for test execution:             |           |                                               | Stephan Rohs      |
| Section diameter, 2·r <sub>w</sub> (m):          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                  | Responsible for test evaluation:            |           | Crist                                         | tian Enachescu    |
| Linear plot Q and p                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Flow period                                 |           | Recovery period                               | j                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Indata                                      |           | Indata                                        |                   |
| 3550<br>KLX11A_353.00-358.00_060712_1_CHir_Q_r   | • P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.003                  | p <sub>0</sub> (kPa) =                      | 329       | 8                                             |                   |
| 3500 -                                           | Pabove P below Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | p <sub>i</sub> (kPa ) =                     | NA        |                                               |                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $p_p(kPa) =$                                | NA        | p <sub>F</sub> (kPa ) =                       | NA                |
| 3450 -                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002                  | $Q_p (m^3/s) =$                             | NA        |                                               |                   |
| g g. 34m.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ē                      | tp (s) =                                    | NA        | t <sub>F</sub> (s) =                          | NA                |
| 10 3400 - 10 10 10 10 10 10 10 10 10 10 10 10 10 | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | injection Rate [/m in] | S el S <sup>*</sup> (-)=                    | NA        | S el S <sup>*</sup> (-)=                      | NA                |
| 90 H 3350 -                                      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Injection              | EC <sub>w</sub> (mS/m)=                     |           | ` '                                           |                   |
| •                                                | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                  | Temp <sub>w</sub> (gr C)=                   | 12.       | 0                                             | 1                 |
| 3300                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Derivative fact.=                           | NA NA     | Derivative fact.=                             | NA                |
| 3250                                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                             |           |                                               |                   |
|                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                             |           |                                               | <del> </del>      |
| 3200 0.00 0.10 0.20 0.30 0.40                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                  | Results                                     |           | Results                                       | <u> </u>          |
| Elapsed Ta                                       | [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | $Q/s (m^2/s)=$                              | NA        |                                               | T                 |
| Log-Log plot incl. derivates- fl                 | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | $T_{\rm M} (m^2/s) =$                       | NA        |                                               |                   |
| 20g 20g piot iiion doi.ivateo ii                 | on ponou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | Flow regime:                                | transient | Flow regime:                                  | transient         |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | dt <sub>1</sub> (min) =                     | NA        | dt <sub>1</sub> (min) =                       | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $dt_1 (min) =$ $dt_2 (min) =$               | NA        | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $T (m^2/s) =$                               | NA        | $T (m^2/s) =$                                 | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | S (-) =                                     | NA        | S (-) =                                       | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $K_s(m/s) =$                                | NA        | $K_s (m/s) =$                                 | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                             | NA        |                                               | NA                |
| Not Ar                                           | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | $S_s(1/m) =$                                | NA        | $S_s(1/m) =$                                  | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $C (m^3/Pa) =$                              |           | $C (m^3/Pa) =$                                |                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $C_D(-) =$                                  | NA        | C <sub>D</sub> (-) =                          | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ξ (-) =                                     | NA        | ξ (-) =                                       | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 2                                           | NI A      | 2                                             | NI A              |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $T_{GRF}(m^2/s) =$                          | NA        | $T_{GRF}(m^2/s) =$                            | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $S_{GRF}(-) =$                              | NA        | S <sub>GRF</sub> (-) =                        | NA                |
| lantanulatinat it tot                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | D <sub>GRF</sub> (-) =                      | NA        | D <sub>GRF</sub> (-) =                        | NA                |
| Log-Log plot incl. derivatives-                  | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Selected repres                             |           |                                               | Tala              |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $dt_1 (min) =$                              | NA        | C (m <sup>3</sup> /Pa) =                      | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $dt_2 (min) =$                              | NA        | C <sub>D</sub> (-) =                          | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $T_T (m^2/s) =$                             | NA        | ξ (-) =                                       | NA                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | S (-) =                                     | NA        |                                               |                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $K_s$ (m/s) =                               | NA        |                                               |                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $S_s(1/m) =$                                | NA        |                                               |                   |
| Not Ar                                           | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | Comments:                                   |           |                                               |                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Based on the test r<br>transmissivity is lo |           | nged packer complian<br>11 m2/s.              | ice) the interval |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                             |           |                                               |                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sumr                          | nary Sheet                              |                                                  |                                               |                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investigation      | Test type:[1]                           |                                                  |                                               | CHi                                            |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxemar                            | Toot no:                                |                                                  |                                               |                                                |  |
| Alea.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxemai                            | restrio.                                |                                                  |                                               |                                                |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX11A                             | Test start:                             |                                                  |                                               | 060713 07:50                                   |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 358.00-363.00 m                    | Responsible for test execution:         |                                                  | Stephan Rohs                                  |                                                |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.076                              | Responsible for                         |                                                  |                                               |                                                |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | test evaluation: Flow period            |                                                  | Recovery period                               | <b>1</b> 0101010101010101010101010101010101010 |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | Indata                                  |                                                  | Indata                                        |                                                |  |
| 3550<br>KLX11A_358.00-363.00_660713_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P section                          | p <sub>0</sub> (kPa) =                  | 3341                                             |                                               |                                                |  |
| 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | □ P below • ○                      | p <sub>i</sub> (kPa ) =                 | NA                                               |                                               |                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>,</i>                           | $p_p(kPa) =$                            | NA                                               | p <sub>F</sub> (kPa ) =                       | NA                                             |  |
| 3450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 2002                             | $Q_p (m^3/s) =$                         | NA                                               | Pr (III G )                                   | 10.                                            |  |
| [4:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                  | tp(s) =                                 | NA                                               | t <sub>F</sub> (s) =                          | NA                                             |  |
| Edit services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a services and a service and a services and a services and a service and a services and a services and a services and a services and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a service and a servic | • Grand lead consiste of           | S el S <sup>*</sup> (-)=                | NA                                               | S el S <sup>*</sup> (-)=                      | NA                                             |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | S el S (-)=<br>EC <sub>w</sub> (mS/m)=  |                                                  | J E  J (-)=                                   |                                                |  |
| 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                              | Temp <sub>w</sub> (gr C)=               | 12.0                                             |                                               |                                                |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                  | Derivative fact.=                       | NA                                               | Derivative fact.=                             | NA                                             |  |
| 2330 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | Solivative lact.                        |                                                  | Denvative lact.                               | ''''                                           |  |
| 3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,000                              |                                         | <del>                                     </del> |                                               |                                                |  |
| 0.00 0.10 0.20 0.30 0.40 Elapsed Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50 0.50 0.70 0.20 0.90<br>ma [h] | Results                                 | <u> </u>                                         | Results                                       |                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | Q/s $(m^2/s)=$                          | NA                                               | results                                       |                                                |  |
| Log-Log plot incl. derivates-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | low period                         | $Q/S (m/S) =$ $T_M (m^2/S) =$           | NA                                               |                                               |                                                |  |
| Log-Log plot ilici. derivates-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | low period                         | I <sub>M</sub> (m /s)=<br>Flow regime:  | transient                                        | Flow regime:                                  | transient                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | dt <sub>1</sub> (min) =                 | NA                                               | $dt_1 \text{ (min)} =$                        | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $dt_1 (min) =$ $dt_2 (min) =$           | NA                                               | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $T (m^2/s) =$                           | NA                                               | $T (m^2/s) =$                                 | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | S (-) =                                 | NA                                               | S (-) =                                       | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $K_s(m/s) =$                            | NA                                               | $K_s(m/s) =$                                  | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $S_s(11/s) = S_s(1/m) = S_s(1/m)$       | NA                                               | $S_s(11/s) = S_s(1/m) = S_s(1/m)$             | NA                                             |  |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nalysed                            | $C_s(1/11) = C_s(m^3/Pa) = 0$           | NA                                               |                                               | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $C_D(-) =$                              | NA                                               | $C (m^3/Pa) = C_D (-) =$                      | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                         | NA                                               |                                               | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | ξ (-) =                                 | INA                                              | ξ (-) =                                       | INA                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | T (" 2")                                | NA                                               | T (, 2, )                                     | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$       | NA<br>NA                                         | $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$             | NA<br>NA                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | - 614 ( )                               | NA<br>NA                                         | - 614 ( )                                     | NA<br>NA                                       |  |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - recovery period                  | D <sub>GRF</sub> (-) = Selected represe |                                                  | GIU ()                                        |                                                |  |
| Log-Log piot inci. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - recovery periou                  | dt <sub>1</sub> (min) =                 | NA                                               |                                               | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $dt_1 (min) =$ $dt_2 (min) =$           | NA                                               | $C (m^3/Pa) = C_D (-) =$                      | NA<br>NA                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                         | NA                                               |                                               | NA                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $T_{T} (m^{2}/s) = S (-) =$             | NA<br>NA                                         | ξ (-) =                                       | INA                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                         | NA<br>NA                                         |                                               |                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $K_s (m/s) = S_s (1/m) =$               | NA<br>NA                                         |                                               |                                                |  |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1                                | Comments:                               | INA                                              | <u> </u>                                      |                                                |  |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nalysed                            |                                         |                                                  | ged packer complian<br>1 m2/s.                | ce) the interval                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                         |                                                  |                                               |                                                |  |

|                                         | Test S                  | Sumr                  | nary Sheet                                  |           |                                  |                  |
|-----------------------------------------|-------------------------|-----------------------|---------------------------------------------|-----------|----------------------------------|------------------|
| Project:                                | Oskarshamn site investi | igation               | Test type:[1]                               |           |                                  | CHi              |
| Area:                                   | l a                     | vemar                 | Test no:                                    |           |                                  |                  |
| Alea.                                   | La                      | Aciliai               | rest no.                                    |           |                                  |                  |
| Borehole ID:                            | KI                      | _X11A                 | Test start:                                 |           |                                  | 060713 09:14     |
| Test section from - to (m):             | 383.00-388              | 3.00 m                | Responsible for test execution:             |           |                                  | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m): |                         | 0.076                 | Responsible for                             |           | Crist                            | tian Enachescu   |
| Linear plot Q and p                     |                         |                       | test evaluation: Flow period                |           | Recovery period                  | <u> </u>         |
|                                         |                         |                       | Indata                                      |           | Indata                           |                  |
| 3800                                    | • Psecton               | 0.003                 | p <sub>0</sub> (kPa) =                      | 357       | 76                               |                  |
| KLX11A_383.00-388.00_060713_1_CHir_Q_r  | • Pabove • P below • Q  |                       | p <sub>i</sub> (kPa ) =                     | NA        |                                  |                  |
| 3750                                    | •                       |                       | $p_p(kPa) =$                                | NA        | p <sub>F</sub> (kPa ) =          | NA               |
|                                         |                         |                       | $Q_p (m^3/s) =$                             | NA        |                                  |                  |
| 3700                                    |                         | 0.002                 | tp (s) =                                    | NA        | t <sub>F</sub> (s) =             | NA               |
| Ted & 2000                              | ن نیز                   | njection Rate [l/min] | S el S <sup>*</sup> (-)=                    | NA        | S el S* (-)=                     | NA               |
| No.                                     | **********              | jecton R              | EC <sub>w</sub> (mS/m)=                     |           | 3 51 5 (- <i>j</i> -             | <del> </del>     |
| 3600 -                                  |                         | 0.001                 | Temp <sub>w</sub> (gr C)=                   | 12.       | 4                                |                  |
|                                         |                         |                       | Derivative fact.=                           |           | Derivative fact.=                | NA               |
| 3550 -                                  |                         |                       | _ calivo laot.=                             | 1""       | 20                               | T. " '           |
|                                         |                         |                       |                                             | +         |                                  | +                |
| 3500 0.00 0.10 0.20 0.30 0.40           | 0.50 0.60 0.70 0.80     | 0.000                 | Results                                     |           | Results                          |                  |
| Elapsed Time [h]                        |                         |                       |                                             | NA        | Results                          | 1                |
| Log-Log plot incl. derivates- flo       | aw nariad               |                       | Q/s $(m^2/s)=$                              | NA        |                                  |                  |
| Log-Log plot incl. derivates- no        | ow period               |                       | $T_M (m^2/s) =$                             |           | Flavora sima a                   | transiant        |
|                                         |                         |                       | Flow regime:                                | transient | Flow regime:                     | transient        |
|                                         |                         |                       | $dt_1 (min) =$                              | NA        | dt <sub>1</sub> (min) =          | NA               |
|                                         |                         |                       | $dt_2 (min) =$                              | NA        | $dt_2 (min) =$                   | NA               |
|                                         |                         |                       | $T (m^2/s) =$                               | NA        | $T (m^2/s) =$                    | NA               |
|                                         |                         |                       | S (-) =                                     | NA        | S (-) =                          | NA               |
|                                         |                         |                       | $K_s (m/s) =$                               | NA        | $K_s (m/s) =$                    | NA               |
| Not An                                  | alvsed                  |                       | $S_s (1/m) =$                               | NA        | $S_s (1/m) =$                    | NA               |
| 11007111                                | arysou                  |                       | $C (m^3/Pa) =$                              | NA        | $C (m^3/Pa) =$                   | NA               |
|                                         |                         |                       | $C_D(-) =$                                  | NA        | $C_D(-) =$                       | NA               |
|                                         |                         |                       | ξ (-) =                                     | NA        | ξ (-) =                          | NA               |
|                                         |                         |                       |                                             |           |                                  |                  |
|                                         |                         |                       | $T_{GRF}(m^2/s) =$                          | NA        | $T_{GRF}(m^2/s) =$               | NA               |
|                                         |                         |                       | $S_{GRF}(-) =$                              | NA        | $S_{GRF}(-) =$                   | NA               |
|                                         |                         |                       | $D_{GRF}$ (-) =                             | NA        | $D_{GRF}$ (-) =                  | NA               |
| Log-Log plot incl. derivatives-         | recovery period         |                       | Selected repres                             |           | meters.                          |                  |
|                                         |                         |                       | $dt_1$ (min) =                              | NA        | C (m <sup>3</sup> /Pa) =         | NA               |
|                                         |                         |                       | $dt_2$ (min) =                              | NA        | $C_D(-) =$                       | NA               |
|                                         |                         |                       | $T_T (m^2/s) =$                             | NA        | ξ (-) =                          | NA               |
|                                         |                         |                       | S (-) =                                     | NA        |                                  |                  |
|                                         |                         |                       | $K_s$ (m/s) =                               | NA        |                                  |                  |
|                                         |                         |                       | $S_s(1/m) =$                                | NA        |                                  |                  |
| Not An                                  | alysed                  |                       | Comments:                                   |           |                                  |                  |
|                                         |                         |                       | Based on the test r<br>transmissivity is lo |           | nged packer complian<br>11 m2/s. | ce) the interval |

| Project: Area:                                 | Oskarshamn site investig | ation                  | nary Sheet                       | 1              |                                |                  |  |
|------------------------------------------------|--------------------------|------------------------|----------------------------------|----------------|--------------------------------|------------------|--|
| Area:                                          |                          | J = 1                  | rest type.[1]                    |                |                                | CHir             |  |
| , ii oa.                                       | Lay                      | emar                   | Test no:                         | 1              |                                | 1                |  |
|                                                | Lui                      | Ciliai                 | rest no.                         |                |                                | '                |  |
| Borehole ID:                                   | KL                       | .X11A                  | Test start:                      |                |                                | 060713 10:28     |  |
| Test section from - to (m):                    | 388.00-393               | .00 m                  | Responsible for test execution:  |                | Stephan Rohs                   |                  |  |
| Section diameter, 2·r <sub>w</sub> (m):        |                          | 0.076                  | Responsible for test evaluation: |                | Crist                          | ian Enachescu    |  |
| Linear plot Q and p                            |                          |                        | Flow period                      |                | Recovery period                | 1                |  |
|                                                |                          |                        | Indata                           |                | Indata                         |                  |  |
| 3850<br>KLX11A_388.00-393.00_060713_1_CHir_Q_r | • P section              | 0.003                  | p <sub>0</sub> (kPa) =           | 3624           | 1                              |                  |  |
| 3800                                           | P above<br>P below<br>Q  |                        | p <sub>i</sub> (kPa ) =          | NA             |                                |                  |  |
|                                                | •                        |                        | $p_p(kPa) =$                     | NA             | p <sub>F</sub> (kPa ) =        | NA               |  |
| 3750                                           | •                        | 0.002                  | $Q_p (m^3/s) =$                  | NA             |                                |                  |  |
| (K P 9)                                        | ************             |                        | tp (s) =                         | NA             | $t_F$ (s) =                    | NA               |  |
| [6d] 9 3700 -                                  |                          | injection Rate [l/min] | S el S <sup>*</sup> (-)=         | NA             | S el S* (-)=                   | NA               |  |
| 9 3000 .                                       | <u> </u>                 | Injection              | EC <sub>w</sub> (mS/m)=          | 1              | 5 5. 5 ( )                     |                  |  |
| å <u> </u>                                     | •                        | 0.001                  | Temp <sub>w</sub> (gr C)=        | 12.5           | 5                              |                  |  |
| 3600                                           | •                        |                        | Derivative fact.=                |                | Derivative fact.=              | NA               |  |
| 3550                                           | •                        |                        | Bonvativo naot.                  |                | Bonvauvo laot.                 |                  |  |
|                                                | •                        |                        |                                  | +              |                                |                  |  |
| 0.00 0.10 0.20 0.30 0.40                       | 0.50 0.60 0.70 0.80      | 0.000                  | Results                          |                | Results                        | L                |  |
| Elapsed Time [h]                               |                          |                        |                                  | NA             | Results                        | T                |  |
| Lag Lag platinal degivetes fla                 | aw nariad                |                        | Q/s $(m^2/s)=$                   | NA             |                                |                  |  |
| Log-Log plot incl. derivates- flo              | ow period                |                        | $T_M (m^2/s) =$                  |                | Flavy va sima a v              | transiant        |  |
|                                                |                          |                        | Flow regime:                     | transient      | Flow regime:                   | transient        |  |
|                                                |                          |                        | $dt_1 (min) =$                   | NA             | dt <sub>1</sub> (min) =        | NA               |  |
|                                                |                          |                        | $dt_2 (min) =$                   | NA             | $dt_2 (min) =$                 | NA               |  |
|                                                |                          |                        | $T (m^2/s) =$                    | NA             | $T (m^2/s) =$                  | NA               |  |
|                                                |                          |                        | S (-) =                          | NA             | S (-) =                        | NA               |  |
|                                                |                          |                        | $K_s (m/s) =$                    | NA             | $K_s (m/s) =$                  | NA               |  |
| Not An                                         | alvsed                   |                        | $S_s (1/m) =$                    | NA             | $S_s(1/m) =$                   | NA               |  |
| NOT All                                        | arysea                   |                        | $C (m^3/Pa) =$                   | NA             | $C (m^3/Pa) =$                 | NA               |  |
|                                                |                          |                        | $C_D(-) =$                       | NA             | $C_D(-) =$                     | NA               |  |
|                                                |                          |                        | ξ (-) =                          | NA             | ξ (-) =                        | NA               |  |
|                                                |                          |                        |                                  |                |                                |                  |  |
|                                                |                          |                        | $T_{GRF}(m^2/s) =$               | NA             | $T_{GRF}(m^2/s) =$             | NA               |  |
|                                                |                          |                        | S <sub>GRF</sub> (-) =           | NA             | $S_{GRF}(-) =$                 | NA               |  |
|                                                |                          |                        | D <sub>GRF</sub> (-) =           | NA             | D <sub>GRF</sub> (-) =         | NA               |  |
| Log-Log plot incl. derivatives-                | recovery period          |                        | Selected repres                  | entative parar | neters.                        |                  |  |
|                                                |                          |                        | $dt_1$ (min) =                   | NA             | $C (m^3/Pa) =$                 | NA               |  |
|                                                |                          |                        | $dt_2$ (min) =                   | NA             | $C_D(-) =$                     | NA               |  |
|                                                |                          |                        | $T_T (m^2/s) =$                  | NA             | ξ(-) =                         | NA               |  |
|                                                |                          |                        | S (-) =                          | NA             | - \ /                          |                  |  |
|                                                |                          |                        | $K_s (m/s) =$                    | NA             |                                |                  |  |
|                                                |                          |                        | S <sub>s</sub> (1/m) =           | NA             |                                |                  |  |
| Not An                                         | unlusad                  |                        | Comments:                        | 1              |                                |                  |  |
| NOT All                                        |                          |                        |                                  |                | ged packer complian<br>1 m2/s. | ce) the interval |  |

|                                                   | Test Sum                      | mary Sheet                      |                     |                                                  |                     |
|---------------------------------------------------|-------------------------------|---------------------------------|---------------------|--------------------------------------------------|---------------------|
| Project:                                          | Oskarshamn site investigation |                                 |                     |                                                  | CHi                 |
| A                                                 | 1                             | T 4                             |                     |                                                  |                     |
| Area:                                             | Laxema                        | r Test no:                      |                     |                                                  |                     |
| Borehole ID:                                      | KLX11A                        | Test start:                     |                     |                                                  | 060713 12:29        |
| Test section from - to (m):                       | 393.00-398.00 n               | Responsible for test execution: |                     |                                                  | Stephan Roh         |
| Section diameter, 2·r <sub>w</sub> (m):           | 0.076                         | Responsible for                 |                     | Crist                                            | ian Enachesc        |
|                                                   |                               | test evaluation:                | ******************* |                                                  | ******************* |
| Linear plot Q and p                               |                               | Flow period                     |                     | Recovery period                                  |                     |
| 3800 1                                            | • 0.002                       | Indata                          | 2.672               | Indata                                           | ı                   |
| KLX11A_393.00-398.00_060713_1_CHir_Q_r            | • • Psection                  | p <sub>0</sub> (kPa) =          | 3673                |                                                  |                     |
| 3780                                              | Pabove Pbelow Q               | p <sub>i</sub> (kPa ) =         | NA                  | n /l/Dn ) =                                      | NΙΔ                 |
| 3760                                              |                               | $p_p(kPa) =$                    | NA                  | p <sub>F</sub> (kPa ) =                          | NA                  |
| 3740                                              | • 0.002                       | $Q_p (m^3/s) =$                 | NA                  |                                                  |                     |
| (A) 3720                                          | lei u                         | tp (s) =                        | NA                  | t <sub>F</sub> (s) =                             | NA                  |
| 2 3700                                            | injection state (hm h)        | S el S* (-)=                    | NA                  | S el S <sup>*</sup> (-)=                         | NA                  |
| 2 1700<br>2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | injectio                      | EC <sub>w</sub> (mS/m)=         | ļ                   |                                                  |                     |
| 3660                                              | 0.001                         | Temp <sub>w</sub> (gr C)=       | 12.5                |                                                  |                     |
|                                                   | ,                             | Derivative fact.=               | NA                  | Derivative fact.=                                | NA                  |
| 3640                                              |                               |                                 |                     |                                                  |                     |
| 3620                                              |                               |                                 |                     |                                                  |                     |
| 3800 0.00 0.10 0.20 0.30 0.40 0.50 Elapsed Tin    | Results                       |                                 | Results             |                                                  |                     |
| Elapsea I III                                     | te [n]                        | Q/s $(m^2/s)=$                  | NA                  |                                                  |                     |
| Log-Log plot incl. derivates- flo                 | ow period                     | $T_M (m^2/s)=$                  | NA                  |                                                  |                     |
|                                                   |                               | Flow regime:                    | transient           | Flow regime:                                     | transient           |
|                                                   |                               | $dt_1 (min) =$                  | NA                  | $dt_1$ (min) =                                   | NA                  |
|                                                   |                               | $dt_2 (min) =$                  | NA                  | $dt_2$ (min) =                                   | NA                  |
|                                                   |                               | $T (m^2/s) =$                   | NA                  | $T (m^2/s) =$                                    | NA                  |
|                                                   |                               | S (-) =                         | NA                  | S (-) =                                          | NA                  |
|                                                   |                               | $K_s (m/s) =$                   | NA                  | $K_s (m/s) =$                                    | NA                  |
| 27                                                |                               | $S_s (1/m) =$                   | NA                  | $S_s (1/m) =$                                    | NA                  |
| Not An                                            | alysed                        | $C (m^3/Pa) =$                  | NA                  | C (m <sup>3</sup> /Pa) =                         | NA                  |
|                                                   |                               | C <sub>D</sub> (-) =            | NA                  | $C_D(-) =$                                       | NA                  |
|                                                   |                               | ξ (-) =                         | NA                  | ξ (-) =                                          | NA                  |
|                                                   |                               | 3 ( )                           |                     | 3 ( )                                            |                     |
|                                                   |                               | $T_{GRF}(m^2/s) =$              | NA                  | $T_{GRF}(m^2/s) =$                               | NA                  |
|                                                   |                               | $S_{GRF}(-) =$                  | NA                  | $S_{GRF}(-) =$                                   | NA                  |
|                                                   |                               | $D_{GRF}(-) =$                  | NA                  | $D_{GRF}$ (-) =                                  | NA                  |
| Log-Log plot incl. derivatives-                   | recovery period               | Selected repres                 |                     |                                                  |                     |
| <u> </u>                                          | <b>71</b> * * * *             | $dt_1 (min) =$                  | NA                  | C (m <sup>3</sup> /Pa) =                         | NA                  |
|                                                   |                               | $dt_2 \text{ (min)} =$          | NA                  | $C_D(-) =$                                       | NA                  |
|                                                   |                               | $T_T (m^2/s) =$                 | NA                  | ξ(-) =                                           | NA                  |
|                                                   |                               | S (-) =                         | NA                  | 2 ( ) —                                          |                     |
|                                                   |                               | $K_s (m/s) =$                   | NA                  | <del>                                     </del> |                     |
|                                                   |                               | $S_s (1/m) =$                   | NA                  | <del>                                     </del> |                     |
| NT-/ A                                            | almad                         | Comments:                       | <u> </u>            | <u> </u>                                         |                     |
| Not An                                            | un you                        |                                 |                     | ged packer complian<br>1 m2/s.                   | ce) the interval    |

|                                                                        | Test                                   | Sumi               | mary Sheet                      |                    |                                               |                  |
|------------------------------------------------------------------------|----------------------------------------|--------------------|---------------------------------|--------------------|-----------------------------------------------|------------------|
| Project:                                                               | Oskarshamn site inves                  | tigatior           | Test type:[1]                   |                    |                                               | CHi              |
| Area:                                                                  | La                                     | axema              | Test no:                        |                    |                                               |                  |
| Borehole ID:                                                           | K                                      | LX11A              | Test start:                     |                    |                                               | 060713 13:44     |
| Test section from - to (m):                                            | 398.00-40                              | 3.00 m             | Responsible for                 |                    |                                               | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m):                                |                                        | 0.076              | test execution: Responsible for |                    | Crist                                         | ian Enachescu    |
| ` ,                                                                    |                                        |                    | test evaluation:                |                    |                                               |                  |
| Linear plot Q and p                                                    |                                        |                    | Flow period<br>Indata           |                    | Recovery period<br>Indata                     |                  |
| 4000                                                                   |                                        | 0.010              | p <sub>0</sub> (kPa) =          | 3718               |                                               | <u> </u>         |
| .                                                                      | KLX11A_398.00-403.00_060713_1_CHir_Q_r | 0.009              | $p_0(kl^2a) =$                  | 3717               |                                               |                  |
| 3950                                                                   | P section<br>P above                   | 0.008              | $p_p(kPa) =$                    |                    | p <sub>F</sub> (kPa ) =                       | 371              |
| 3900 -                                                                 | • P below<br>• Q                       | 0.007              |                                 | 8.33E-08           |                                               | 3/1.             |
| -                                                                      |                                        |                    | $Q_p (m^3/s) =$                 |                    |                                               | 120              |
| 9850<br>8850                                                           | <u> </u>                               | 0.000 Rate [/min]  | tp (s) =                        |                    | $t_F(s) =$                                    | 1.00E-0          |
| 600<br>8                                                               |                                        | njection Rat       | S el S* (-)=                    | 1.00E-06           | S el S <sup>*</sup> (-)=                      | 1.00E-0          |
| E 3800                                                                 | TV                                     | - 0.004 흔          | EC <sub>w</sub> (mS/m)=         | 10.6               |                                               |                  |
| 3750                                                                   |                                        | 0.003              | Temp <sub>w</sub> (gr C)=       | 12.6               |                                               | 0.0              |
|                                                                        |                                        | - 0.002            | Derivative fact.=               | 0.17               | Derivative fact.=                             | 0.0              |
| 3700 -                                                                 |                                        | 0.001              |                                 |                    |                                               |                  |
| 3650 0.00 0.20 0.40 0.80 0.80                                          | 1.00 1.20 1.40                         | 0.000              | Results                         |                    | Results                                       |                  |
| Elapsed Tirr                                                           | e [h]                                  |                    | Q/s $(m^2/s)=$                  | 3.5E-09            |                                               |                  |
| Log-Log plot incl. derivates- flo                                      | ow period                              |                    | $T_{\rm M} (m^2/s) =$           | 2.9E-09            |                                               |                  |
|                                                                        | -                                      |                    | Flow regime:                    | transient          | Flow regime:                                  | transient        |
| Elapsed time [h] 10, <sup>-4</sup> 10, <sup>-3</sup> 10, <sup>-2</sup> | 10,-1                                  | 7,,,,,             | $dt_1 (min) =$                  |                    | $dt_1 \text{ (min)} =$                        | NA               |
|                                                                        |                                        | 3000               | $dt_2 (min) =$                  |                    | $dt_1$ (min) =                                | NA               |
| 1                                                                      |                                        | 10 <sup>3</sup>    | $T (m^2/s) =$                   |                    | $T (m^2/s) =$                                 | 3.0E-0           |
| 1                                                                      |                                        |                    | S (-) =                         | 1.0E-06            | ` '                                           | 1.0E-0           |
| 10 <sup>1</sup>                                                        |                                        | 300                | $K_s (m/s) =$                   |                    | $K_s(m/s) =$                                  | 5.9E-1           |
|                                                                        |                                        | 300                | $S_s (11/s) =$                  |                    | $S_s(11/s) = S_s(1/m) = S_s(1/m)$             | <b>!</b>         |
| , (1/qD)                                                               |                                        | 10 <sup>2</sup>    |                                 | 2.0E-07            | ,                                             | 2.0E-0<br>2.0E-1 |
| 140.                                                                   | ••                                     | (16)               | $C (m^3/Pa) =$                  |                    | $C (m^3/Pa) =$                                |                  |
| 10 <sup>0</sup>                                                        |                                        | 30                 | C <sub>D</sub> (-) =            | NA                 | C <sub>D</sub> (-) =                          | 2.1E-0           |
|                                                                        |                                        | -                  | ξ (-) =                         | 2.7                | ξ (-) =                                       | 3.               |
| · . ·                                                                  |                                        | 10 <sup>1</sup>    | 2                               | 111                | 2                                             |                  |
| ·                                                                      |                                        | -                  | $T_{GRF}(m^2/s) =$              | NA                 | $T_{GRF}(m^2/s) =$                            | NA               |
| 10 <sup>3</sup> 10 <sup>4</sup>                                        | 10 <sup>5</sup> 10 <sup>6</sup> 11     |                    | $S_{GRF}(-) =$                  | NA                 | $S_{GRF}(-) =$                                | NA               |
| -                                                                      |                                        |                    | D <sub>GRF</sub> (-) =          | NA                 | D <sub>GRF</sub> (-) =                        | NA               |
| Log-Log plot incl. derivatives-                                        | recovery period                        |                    | Selected repres                 |                    |                                               |                  |
| Elapsed time (t                                                        | 10, 10, 10, 10, 10, 10, 10, 10, 1      | <b>¬</b>           | $dt_1 (min) =$                  | NA                 | $C (m^3/Pa) =$                                | 2.0E-1           |
| 10                                                                     |                                        | 300                | $dt_2 (min) =$                  | NA                 | $C_D(-) =$                                    | 2.1E-0           |
|                                                                        |                                        |                    | $T_T (m^2/s) =$                 | 3.0E-09            |                                               | 3.               |
| and it is the same                                                     |                                        | 102                | S (-) =                         | 1.0E-06            |                                               |                  |
| 10"                                                                    |                                        |                    | $K_s$ (m/s) =                   | 6.0E-10            |                                               |                  |
|                                                                        |                                        | 30                 | $S_s (1/m) =$                   | 2.0E-07            |                                               |                  |
| a                                                                      |                                        | · [kPa]            | Comments:                       |                    |                                               |                  |
| g / / '+                                                               | am <sup>a</sup>                        | 10 10 00-000 [KPa] | The recommended                 |                    | f 3.0E-09 m2/s was                            |                  |
| م. ٠                                                                   |                                        | 00-0               | radiai iron anarjor             | s of the CHir pha  | ise (inner zone), whi                         | ich shows the    |
|                                                                        |                                        | 3                  |                                 |                    | The confidence range                          |                  |
|                                                                        |                                        |                    |                                 |                    | E-10 to 6.0E-09 m <sup>2</sup>                |                  |
|                                                                        |                                        | 10 <sup>0</sup>    |                                 |                    | oth, was derived from<br>on in the Horner plo |                  |
| l                                                                      | ,                                      | _                  | 3,712.4 kPa.                    | ii mie extrapolati | on in the Horner pic                          | n to a varac of  |
| 10 <sup>d</sup> 10 <sup>f</sup>                                        | 10 <sup>2</sup> 10 <sup>3</sup> 1      | 104                | - ,                             |                    |                                               |                  |

|                                                | Test Sumr                             | nary Sheet                                    |                |                                |                  |  |
|------------------------------------------------|---------------------------------------|-----------------------------------------------|----------------|--------------------------------|------------------|--|
| Project:                                       | Oskarshamn site investigation         |                                               |                |                                | CHi              |  |
| Area:                                          | l axemar                              | Test no:                                      |                |                                | ,                |  |
| , ii oa.                                       | Editorral                             | r oot no.                                     |                |                                |                  |  |
| Borehole ID:                                   | KLX11A                                | Test start:                                   |                |                                | 060713 15:46     |  |
| Test section from - to (m):                    | 423.00-428.00 m                       | Responsible for test execution:               |                | Stephan Rohs                   |                  |  |
| Section diameter, 2·r <sub>w</sub> (m):        | 0.076                                 | Responsible for                               |                | Crist                          | ian Enachescı    |  |
| Linear plot Q and p                            |                                       | test evaluation: Flow period                  |                | Recovery period                |                  |  |
| zmour prot q unu p                             |                                       | Indata                                        |                | Indata                         |                  |  |
| 4100                                           | 0.003                                 | p <sub>0</sub> (kPa) =                        | 3952           |                                |                  |  |
| KLX11A_423.00-428.00_060713_1_CHir_Q_r         | ● Piscolon  ▲ Pabove  ■ Piscolow      | p <sub>i</sub> (kPa ) =                       | NA             |                                |                  |  |
| 4350                                           | • •Q                                  | $p_p(kPa) =$                                  | NA             | p <sub>F</sub> (kPa ) =        | NA               |  |
|                                                | 0.002                                 | $Q_p (m^3/s) =$                               | NA             | , , ,                          |                  |  |
| € 4000-                                        |                                       | tp (s) =                                      | NA             | $t_F$ (s) =                    | NA               |  |
|                                                | · · · · · · · · · · · · · · · · · · · | S el S <sup>*</sup> (-)=                      | NA             | S el S <sup>*</sup> (-)=       | NA               |  |
| (4) 000 000 000 000 000 000 000 000 000 0      | in ject to a                          | EC <sub>w</sub> (mS/m)=                       | <u> </u>       | <u> </u>                       | T                |  |
| •                                              | 0.001                                 | Temp <sub>w</sub> (gr C)=                     | 13.0           |                                |                  |  |
|                                                |                                       | Derivative fact.=                             | NA             | Derivative fact.=              | NA               |  |
| 3900                                           | •                                     | Derivative lact                               | INA            | Derivative fact                | INA              |  |
|                                                | •                                     |                                               |                |                                |                  |  |
| 3850 0.00 0.10 0.20 0.30 0.40 0.50 Elapsed Tim | 0.60 0.70 0.80 0.90 1.00              | Results                                       |                | Results                        |                  |  |
| вархов і п                                     | o la)                                 |                                               | IN LA          | Results                        | I                |  |
|                                                |                                       | Q/s (m <sup>2</sup> /s)=                      | NA             |                                |                  |  |
| Log-Log plot incl. derivates- flo              | ow period                             | $T_M (m^2/s) =$                               | NA             | []                             | 4                |  |
|                                                |                                       | Flow regime:                                  | transient      | Flow regime:                   | transient        |  |
|                                                |                                       | dt <sub>1</sub> (min) =                       | NA             | $dt_1 (min) =$                 | NA               |  |
|                                                |                                       | $dt_2 (min) =$                                | NA             | $dt_2 (min) =$                 | NA               |  |
|                                                |                                       | $T (m^2/s) =$                                 | NA             | $T (m^2/s) =$                  | NA               |  |
|                                                |                                       | S (-) =                                       | NA             | S (-) =                        | NA               |  |
|                                                |                                       | $K_s (m/s) =$                                 | NA             | $K_s (m/s) =$                  | NA               |  |
| Not An                                         | alvsed                                | $S_s (1/m) =$                                 | NA             | $S_s (1/m) =$                  | NA               |  |
| 11017111                                       | ury 50 d                              | $C (m^3/Pa) =$                                | NA             | $C (m^3/Pa) =$                 | NA               |  |
|                                                |                                       | $C_D(-) =$                                    | NA             | $C_D(-) =$                     | NA               |  |
|                                                |                                       | ξ (-) =                                       | NA             | ξ (-) =                        | NA               |  |
|                                                |                                       |                                               |                |                                |                  |  |
|                                                |                                       | $T_{GRF}(m^2/s) =$                            | NA             | $T_{GRF}(m^2/s) =$             | NA               |  |
|                                                |                                       | $S_{GRF}(-)$ =                                | NA             | $S_{GRF}(-)$ =                 | NA               |  |
|                                                |                                       | $D_{GRF}$ (-) =                               | NA             | $D_{GRF}$ (-) =                | NA               |  |
| Log-Log plot incl. derivatives-                | recovery period                       | Selected represe                              | entative paran | neters.                        |                  |  |
|                                                |                                       | $dt_1$ (min) =                                | NA             | $C (m^3/Pa) =$                 | NA               |  |
|                                                |                                       | $dt_2$ (min) =                                | NA             | $C_D(-) =$                     | NA               |  |
|                                                |                                       | $T_T (m^2/s) =$                               | NA             | ξ (-) =                        | NA               |  |
|                                                |                                       | S (-) =                                       | NA             |                                |                  |  |
|                                                |                                       | $K_s (m/s) =$                                 | NA             |                                |                  |  |
|                                                |                                       | $S_s (1/m) =$                                 | NA             |                                |                  |  |
| Not An                                         | alvsed                                | Comments:                                     | -              | -                              | -                |  |
|                                                |                                       | Based on the test re<br>transmissivity is lov |                | ged packer complian<br>1 m2/s. | ce) the interval |  |

|                                                                     | Test Si                                 | ıımr                  | nary Sheet                                  |           |                                |                  |
|---------------------------------------------------------------------|-----------------------------------------|-----------------------|---------------------------------------------|-----------|--------------------------------|------------------|
| Project:                                                            | Oskarshamn site investig                | ation                 | Test type:[1]                               |           |                                | CHi              |
| A                                                                   | 1                                       |                       | Test no:                                    |           |                                |                  |
| Area:                                                               | Lax                                     | emar                  | rest no:                                    |           |                                |                  |
| Borehole ID:                                                        | KL                                      | X11A                  | Test start:                                 |           |                                | 060713 16:59     |
| Test section from - to (m):                                         | 428.00-433.                             | 00 m                  | Responsible for test execution:             |           |                                | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m):                             | (                                       | 0.076                 | Responsible for                             |           | Crist                          | ian Enachescu    |
| Linear plot Q and p                                                 |                                         |                       | test evaluation:                            |           | Recovery period                |                  |
|                                                                     |                                         |                       | Indata                                      |           | Indata                         |                  |
| 4250                                                                |                                         | 0.003                 | p <sub>0</sub> (kPa) =                      | 399       |                                |                  |
| KLX11A_428.00-433.00_060713_1_CHir_Q_r                              | P section     P above     P below       |                       | p <sub>i</sub> (kPa ) =                     | NA        | †                              |                  |
| 4200 -                                                              | P below<br>Q                            |                       | $p_p(kPa) =$                                | NA        | p <sub>F</sub> (kPa ) =        | NA               |
| 4150 -                                                              | ··                                      |                       | $Q_p (m^3/s) =$                             | NA        | P1 ( 5. )                      |                  |
| le de                                                               |                                         | 0.002                 | tp(s) =                                     | NA        | t <sub>F</sub> (s) =           | NA               |
| 보 4100 -                                                            |                                         | ate [Ilmin.           | S el S <sup>*</sup> (-)=                    | NA        |                                | NA               |
| To de 4100-                                                         | *************************************** | njection Rate [Ilmin] | S el S (-)=<br>EC <sub>w</sub> (mS/m)=      | 14/7      | S el S <sup>*</sup> (-)=       | 14/7             |
| » od                                                                | <u> </u>                                | · 0.001               | , ,                                         | 13.       | 0                              |                  |
| 4000                                                                | •                                       | 3.001                 | Temp <sub>w</sub> (gr C)= Derivative fact.= |           | Derivative fact.=              | NA               |
|                                                                     | •                                       |                       | Derivative fact.=                           | NA        | Derivative fact.=              | NA               |
| 3950                                                                | •                                       |                       |                                             |           |                                |                  |
| 3900                                                                | <u> </u>                                | 0.000                 |                                             |           |                                |                  |
| 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90  Elapsed Time [h] |                                         |                       | Results                                     |           | Results                        |                  |
|                                                                     |                                         |                       | $Q/s (m^2/s) =$                             | NA        |                                |                  |
| Log-Log plot incl. derivates- flo                                   | ow period                               |                       | $T_M (m^2/s)=$                              | NA        |                                |                  |
|                                                                     |                                         |                       | Flow regime:                                | transient | Flow regime:                   | transient        |
|                                                                     |                                         |                       | $dt_1$ (min) =                              | NA        | $dt_1 (min) =$                 | NA               |
|                                                                     |                                         |                       | $dt_2$ (min) =                              | NA        | $dt_2$ (min) =                 | NA               |
|                                                                     |                                         |                       | $T (m^2/s) =$                               | NA        | $T (m^2/s) =$                  | NA               |
|                                                                     |                                         |                       | S (-) =                                     | NA        | S (-) =                        | NA               |
|                                                                     |                                         |                       | $K_s (m/s) =$                               | NA        | $K_s (m/s) =$                  | NA               |
| NI 4 A                                                              | 1 1                                     |                       | $S_s(1/m) =$                                | NA        | $S_s(1/m) =$                   | NA               |
| Not An                                                              | alysed                                  |                       | $C (m^3/Pa) =$                              | NA        | $C (m^3/Pa) =$                 | NA               |
|                                                                     |                                         |                       | C <sub>D</sub> (-) =                        | NA        | C <sub>D</sub> (-) =           | NA               |
|                                                                     |                                         |                       | ξ (-) =                                     | NA        | ξ (-) =                        | NA               |
|                                                                     |                                         |                       |                                             |           |                                |                  |
|                                                                     |                                         |                       | $T_{GRF}(m^2/s) =$                          | NA        | $T_{GRF}(m^2/s) =$             | NA               |
|                                                                     |                                         |                       | $S_{GRF}(-) =$                              | NA        | $S_{GRF}(-) =$                 | NA               |
|                                                                     |                                         |                       | $D_{GRF}$ (-) =                             | NA        | D <sub>GRF</sub> (-) =         | NA               |
| Log-Log plot incl. derivatives-                                     | recovery period                         |                       | Selected repres                             |           |                                |                  |
| 3 3,                                                                | • r · · ·                               |                       | dt <sub>1</sub> (min) =                     | NA        | $C (m^3/Pa) =$                 | NA               |
|                                                                     |                                         |                       | $dt_2$ (min) =                              | NA        | $C_D(-) =$                     | NA               |
|                                                                     |                                         |                       | $T_T (m^2/s) =$                             | NA        | ξ(-) =                         | NA               |
|                                                                     |                                         |                       | S (-) =                                     | NA        | ⇒ (⁻/ −                        | 1.".             |
|                                                                     |                                         |                       | $K_s (m/s) =$                               | NA        | +                              | <u> </u>         |
|                                                                     |                                         |                       | $S_s(11/s) = S_s(1/m) = S_s(1/m)$           | NA<br>NA  | <del> </del>                   |                  |
|                                                                     | 1 1                                     |                       | Comments:                                   | I NA      |                                |                  |
| Not An                                                              | iaiyseu                                 |                       |                                             |           | ged packer complian<br>1 m2/s. | ce) the interval |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Si                          | umn                   | nary Sheet                      |           |                                                  |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|---------------------------------|-----------|--------------------------------------------------|------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oskarshamn site investig         |                       |                                 |           |                                                  | CHi              |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lau                              |                       | T4                              |           |                                                  |                  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lax                              | emar                  | Test no:                        |           |                                                  |                  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KL                               | X11A                  | Test start:                     |           |                                                  | 060714 07:5      |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 433.00-438.                      | 00 m                  | Responsible for test execution: |           |                                                  | Stephan Roh      |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (                                | 0.076                 | Responsible for                 |           | Crist                                            | ian Enachesc     |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                       | test evaluation: Flow period    |           | Recovery period                                  |                  |
| Linear plot & and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                       | Indata                          |           | Indata                                           |                  |
| 4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | 0.003                 | p <sub>0</sub> (kPa) =          | 4043      |                                                  |                  |
| KLX11A_433.00-438.00_060714_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P section P above P below        |                       | p <sub>i</sub> (kPa ) =         | NA        |                                                  |                  |
| 4250 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                                |                       | $p_p(kPa) =$                    | NA        | p <sub>F</sub> (kPa ) =                          | NA               |
| 4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *****                            |                       | $Q_p (m^3/s) =$                 | NA        | pr (Kr u )                                       | 177              |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , and the second second          | 0.002                 | $Q_p (m / s) = $ $tp (s) = $    | NA        | t <sub>F</sub> (s) =                             | NA               |
| 보 4150 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | te [l/min]            |                                 | NA        |                                                  | NA<br>NA         |
| (64.1 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 410.4 | /                                | njection Rate [l/min] | S el S* (-)=                    | INA       | S el S <sup>*</sup> (-)=                         | INA              |
| Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>/</u>                         | _                     | EC <sub>w</sub> (mS/m)=         | 10.1      | <del>                                     </del> |                  |
| 4050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                | - 0.001               | Temp <sub>w</sub> (gr C)=       | 13.1      |                                                  | N 1 A            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                |                       | Derivative fact.=               | NA        | Derivative fact.=                                | NA               |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                |                       |                                 |           |                                                  |                  |
| 3950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                | - 0.000               |                                 |           |                                                  |                  |
| 0.00 0.10 0.20 0.30 0.40<br>Elapsed Tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50 0.60 0.70 0.80 0.<br>ne [h] | 90                    | Results                         | _         | Results                                          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $Q/s (m^2/s) =$                 | NA        |                                                  |                  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ow period                        |                       | $T_M (m^2/s)=$                  | NA        |                                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | Flow regime:                    | transient | Flow regime:                                     | transient        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $dt_1 (min) =$                  | NA        | $dt_1$ (min) =                                   | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $dt_2$ (min) =                  | NA        | $dt_2$ (min) =                                   | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $T (m^2/s) =$                   | NA        | $T (m^2/s) =$                                    | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | S (-) =                         | NA        | S (-) =                                          | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $K_s (m/s) =$                   | NA        | $K_s (m/s) =$                                    | NA               |
| 37 . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                       | $S_s (1/m) =$                   | NA        | $S_s(1/m) =$                                     | NA               |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alysed                           |                       | C (m <sup>3</sup> /Pa) =        | NA        | C (m³/Pa) =                                      | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $C_D(-) =$                      | NA        | $C_D(-) =$                                       | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | ξ(-) =                          | NA        | ξ (-) =                                          | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | 3 ( )                           |           | 3 ( )                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $T_{GRF}(m^2/s) =$              | NA        | $T_{GRF}(m^2/s) =$                               | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $S_{GRF}(-) =$                  | NA        | $S_{GRF}(-) =$                                   | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | D <sub>GRF</sub> (-) =          | NA        | D <sub>GRF</sub> (-) =                           | NA               |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | recovery period                  |                       | Selected represe                |           |                                                  |                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • r · · ·                        |                       | dt <sub>1</sub> (min) =         | NA        | C (m <sup>3</sup> /Pa) =                         | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $dt_2 \text{ (min)} =$          | NA        | $C_D(-) =$                                       | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $T_T (m^2/s) =$                 | NA        | ξ(-) =                                           | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | S (-) =                         | NA        | - ۱ / -                                          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $K_s (m/s) =$                   | NA        | <del>                                     </del> |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                       | $S_s(1/m) =$                    | NA        | <del>                                     </del> |                  |
| āī · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                              |                       | Comments:                       | 1.4/-7    | <u> </u>                                         |                  |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | larysed                          |                       |                                 |           | ged packer complian<br>1 m2/s.                   | ce) the interval |

|                                                                  | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sumr                            | nary Sheet                       |                     |                                           |               |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|---------------------|-------------------------------------------|---------------|--|
| Project:                                                         | Oskarshamn site inves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stigation                       | Test type:[1]                    |                     |                                           | CHi           |  |
| Area:                                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .axemar                         | Test no:                         |                     |                                           | •             |  |
| Borehole ID:                                                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KLX11A                          | Test start:                      |                     |                                           | 060714 09:17  |  |
| Test section from - to (m):                                      | 438.00.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13 00 m                         | Responsible for                  |                     |                                           | Stephan Rohs  |  |
| , ,                                                              | 430.00-4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | test execution:                  |                     |                                           |               |  |
| Section diameter, 2·r <sub>w</sub> (m):                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                           | Responsible for test evaluation: |                     | Crist                                     | ian Enachescı |  |
| Linear plot Q and p                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Flow period                      |                     | Recovery period                           |               |  |
| 470                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.40                          | Indata                           |                     | Indata                                    |               |  |
|                                                                  | KLX11A_438.00-443.00_060714_1_CHir_Q_r P sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | p <sub>0</sub> (kPa) =           | 4090                |                                           |               |  |
| 4300                                                             | • P bde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | p <sub>i</sub> (kPa ) =          | 4087                |                                           |               |  |
|                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                            | $p_p(kPa) =$                     |                     | p <sub>F</sub> (kPa ) =                   | 408           |  |
| 4250                                                             | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                 | $Q_p (m^3/s) =$                  | 1.17E-06            |                                           |               |  |
| (a) 4200                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                            | tp (s) =                         | 1200                | t <sub>F</sub> (s) =                      | 120           |  |
| Pressur                                                          | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Rate [l/min]                  | S el S <sup>*</sup> (-)=         | 1.00E-06            | S el S <sup>*</sup> (-)=                  | 1.00E-0       |  |
| 90 (fi 4150                                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04 L                          | EC <sub>w</sub> (mS/m)=          |                     |                                           |               |  |
| °                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | Temp <sub>w</sub> (gr C)=        | 13.2                |                                           |               |  |
| 4100                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Derivative fact.=                | 0.09                | Derivative fact.=                         | 0.0           |  |
| 4050                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                            |                                  |                     |                                           |               |  |
| 4000 0.00 0.20 0.40 0.60                                         | 0.80 1.00 1.20 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                            | D                                |                     | D 14                                      |               |  |
| U.DJ U.20 U.40 U.80 U.80 1.00 1.20 1.40 1.80<br>Elapsed Time [h] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.60                            | Results                          |                     | Results                                   |               |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Q/s $(m^2/s)=$                   | 5.7E-08             |                                           |               |  |
| Log-Log plot incl. derivates-                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | $T_M (m^2/s)=$                   | 4.7E-08             |                                           |               |  |
| Elapsed                                                          | time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .10,1                           | Flow regime:                     | transient           | Flow regime:                              | transient     |  |
| 10 2                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $dt_1$ (min) =                   | 1.42                | $dt_1 (min) =$                            | 0.8           |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $dt_2$ (min) =                   | 14.60               | $dt_2$ (min) =                            | 7.9           |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                              | $T (m^2/s) =$                    | 1.4E-07             | $T (m^2/s) =$                             | 1.9E-0        |  |
| 000000000000000000000000000000000000000                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 1                            | S (-) =                          | 1.0E-06             | S (-) =                                   | 1.0E-0        |  |
| 10 '                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                              | $K_s (m/s) =$                    | 2.7E-08             | $K_s (m/s) =$                             | 3.8E-0        |  |
| ,                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 5                             | $S_s(1/m) =$                     | 2.0E-07             | $S_s(1/m) =$                              | 2.0E-0        |  |
| Ф. (1/2)                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 (min                          | C (m <sup>3</sup> /Pa) =         | NA                  | C (m <sup>3</sup> /Pa) =                  | 2.4E-1        |  |
| -                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                             | $C_D(-) =$                       | NA                  | $C_D(-) =$                                | 2.6E-0        |  |
| 10"                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                              | ξ(-) =                           |                     | ξ(-) =                                    | 15.           |  |
| :                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | S (-) -                          | 0.7                 | S (-) -                                   | 10.           |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                             | <b>-</b> , 2, ,                  | 2 8⊑ 08             | T (21)                                    | NA            |  |
|                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 15 10 1                      | $T_{GRF}(m^2/s) =$               |                     | $T_{GRF}(m^2/s) =$                        |               |  |
| 10 <sup>11</sup> 10 <sup>12</sup>                                | 10 <sup>13'</sup> 10 <sup>14'</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 15 10                        | $S_{GRF}(-) =$                   | 1.0E-06             |                                           | NA            |  |
| lantanulatinat (C. 1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | D <sub>GRF</sub> (-) =           |                     | D <sub>GRF</sub> (-) =                    | NA            |  |
| Log-Log plot incl. derivative                                    | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | Selected represe                 | ******************* |                                           |               |  |
| Elapsed to 10,-3 10,-3 10,-2                                     | me [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | $dt_1 (min) =$                   |                     | $C (m^3/Pa) =$                            | 2.4E-1        |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $dt_2 (min) =$                   |                     | C <sub>D</sub> (-) =                      | 2.6E-0        |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                             | $T_T (m^2/s) =$                  | 1.9E-07             |                                           | 15.           |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | S (-) =                          | 1.0E-06             |                                           |               |  |
| 10 1                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>                 | $K_s$ (m/s) =                    | 3.8E-08             |                                           |               |  |
| · · · ·                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $S_s (1/m) =$                    | 2.0E-07             |                                           |               |  |
| , bo, po                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 KPal                         | Comments:                        |                     |                                           |               |  |
| • 1                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95 p-p0, (p-p0); [kPa           |                                  |                     | f 1.9E-7 m2/s was d                       |               |  |
| 10                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101                             |                                  |                     | se, which shows the                       |               |  |
| ÷                                                                | A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH |                                 |                                  |                     | ence range for the in                     |               |  |
|                                                                  | ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                               |                                  |                     | E-8 to 5.0E-7 m2/s. oth, was derived from |               |  |
| +                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | -                                | -                   | on in the Horner plo                      |               |  |
| 10 102                                                           | 103 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 <sup>5</sup> 10 <sup>0</sup> | 4,087.3 kPa.                     | c carapolan         | on in the Horner pic                      | u varue or    |  |
| 10 <sup>1</sup> 10 <sup>2</sup>                                  | 10 10 10 YCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                              | I ' - '''                        |                     |                                           |               |  |

|                                         | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umi                   | nary Sheet                                    |              |                                         |                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|--------------|-----------------------------------------|----------------|
| Project:                                | Oskarshamn site investi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gation                | Test type:[1]                                 |              |                                         | Р              |
| Area:                                   | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kemar                 | Test no:                                      |              |                                         | 1              |
| D 1 1 1D                                | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V44A                  | T - 1 - 1 - 1                                 |              |                                         | 000711111      |
| Borehole ID:                            | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .X11A                 | Test start:                                   |              |                                         | 060714 11:06   |
| Test section from - to (m):             | 442.00-447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '.00 m                | Responsible for test execution:               |              |                                         | Stephan Rohs   |
| Section diameter, 2·r <sub>w</sub> (m): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                 | Responsible for                               |              | Crist                                   | ian Enachescu  |
| Linear plot Q and p                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | test evaluation: Flow period                  |              | Recovery period                         |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Indata                                        |              | Indata                                  |                |
| 4400                                    | *Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.003                 | p <sub>0</sub> (kPa) =                        | 4133         |                                         |                |
|                                         | 7.00_060714_1_PI_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | p <sub>i</sub> (kPa ) =                       | 4147         |                                         |                |
| 4350                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $p_p(kPa) =$                                  | 4357         | p <sub>F</sub> (kPa ) =                 | 4150           |
| . \                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002                 | $Q_p (m^3/s) =$                               | NA           |                                         |                |
| 4300                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | tp (s) =                                      | 10           | t <sub>F</sub> (s) =                    | 3840           |
| [Fe/3]                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rate [ I/m            | S el S <sup>*</sup> (-)=                      | NA           | S el S <sup>*</sup> (-)=                | 1.00E-06       |
| 0 0 E                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | njection Rate [l/min] | EC <sub>w</sub> (mS/m)=                       |              | 3 61 3 (-)-                             |                |
| 4200                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001                 | Temp <sub>w</sub> (gr C)=                     | 13.3         |                                         |                |
|                                         | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | Derivative fact.=                             | NA           | Derivative fact.=                       | 0.0            |
| 4150                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Donvativo laot.                               |              | Donvativo laot.                         | 0.0            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                               |              |                                         |                |
| 4100                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                 | Results                                       |              | Results                                 |                |
| Elapsed Time (h)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $Q/s (m^2/s)=$                                | NA           |                                         | 1              |
| Log-Log plot incl. derivates- f         | low period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | $T_{\rm M} (m^2/s) =$                         | NA           |                                         |                |
| -og -og plot men den vates .            | ponou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Flow regime:                                  | transient    | Flow regime:                            | transient      |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | dt <sub>1</sub> (min) =                       | NA           | dt <sub>1</sub> (min) =                 | 0.9            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA           | $dt_1 (min) =$ $dt_2 (min) =$           | 5.33           |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | , ,                                           | NA           |                                         | 1.2E-10        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $T (m^2/s) = S (-) =$                         | NA           | $T (m^2/s) = S (-) =$                   | 1.0E-06        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $K_s (m/s) =$                                 | NA           | 9()                                     | 2.4E-1         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                               | NA           | $K_s (m/s) =$                           | 2.4E-1         |
| Not A                                   | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | $S_s(1/m) =$                                  |              | $S_s(1/m) =$                            |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $C (m^3/Pa) =$                                | NA           | $C (m^3/Pa) =$                          | 3.8E-1         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $C_D(-) =$                                    | NA           | $C_D(-) =$                              | 4.2E-03        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ξ (-) =                                       | NA           | ξ (-) =                                 | 0.2            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $T_{GRF}(m^2/s) =$                            | NA           | $T_{GRF}(m^2/s) =$                      | 1.2E-10        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $S_{GRF}(III/S) =$                            | NA           | $S_{GRF}(III/S) =$                      | 1.0E-06        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $D_{GRF}(-) =$                                | NA           | D <sub>GRF</sub> (-) =                  | 2.23           |
| Log-Log plot incl. derivatives          | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Selected represe                              |              |                                         |                |
| Bapsed time [                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $dt_1 \text{ (min)} =$                        | 0.95         |                                         | 3.8E-1         |
| 10 1 10 1                               | . 10 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T <sub>10</sub> °     | $dt_2 \text{ (min)} =$                        |              | $C_D(-) =$                              | 4.2E-03        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 3                                             | 1.2E-10      |                                         | 0.2            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                   | $T_T (m^2/s) = S (-) =$                       | 1.0E-06      |                                         | 0.4            |
|                                         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 0.3                   | $K_s (m/s) =$                                 |              |                                         |                |
| 10 °                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 -1                 |                                               | 2.4E-11      |                                         |                |
|                                         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | ,                     | S <sub>s</sub> (1/m) = Comments:              | 2.0E-07      |                                         | <u> </u>       |
| Ba da                                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                       |                                               | tronomicai i | £1.2E 102/-                             | dominad for /1 |
| · · · · · · · · · · · · · · · · · · ·   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Decomodul             |                                               |              | f 1.2E-10 m2/s was (inner zone). The co |                |
| 10 -1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 -2                 |                                               |              | mated to be 8.0E-11                     |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | m2/s. The static pre                          |              | be extrapolated due                     |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                 | transmissivity.                               |              |                                         |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                               |              |                                         |                |
| 10 <sup>-1</sup> 10 <sup>0</sup>        | 10 <sup>1</sup> 10 <sup>2</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 3                   | I                                             |              |                                         |                |

|                                                        | Test S                            | Sumi                           | nary Sheet                              |                   |                                                |                                          |  |
|--------------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------------------|-------------------|------------------------------------------------|------------------------------------------|--|
| Project:                                               | Oskarshamn site invest            | igatior                        | Test type:[1]                           |                   |                                                | CHi                                      |  |
| Area:                                                  | La                                | ixemai                         | Test no:                                |                   |                                                | •                                        |  |
| Borehole ID:                                           | K                                 | LX11A                          | Test start:                             | 060714 13:16      |                                                |                                          |  |
| T. (                                                   | 447.00.45                         | 0.00                           |                                         |                   |                                                |                                          |  |
| Test section from - to (m):                            | 447.00-45                         | 2.00 m                         | Responsible for test execution:         |                   |                                                | Stephan Rohs                             |  |
| Section diameter, 2·r <sub>w</sub> (m):                |                                   | 0.076                          | Responsible for test evaluation:        |                   | Crist                                          | ian Enachescu                            |  |
| Linear plot Q and p                                    |                                   |                                | Flow period                             |                   | Recovery period                                | 1                                        |  |
|                                                        |                                   |                                | Indata                                  |                   | Indata                                         | .,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,., |  |
| KLX11A_447.00-452.00_060714_1_CHir_Q_r                 | ******                            | 0.03                           | p <sub>0</sub> (kPa) =                  | 4175              |                                                |                                          |  |
| 4400                                                   | P section P above P below         |                                | p <sub>i</sub> (kPa ) =                 | 4176              |                                                |                                          |  |
|                                                        | •                                 |                                | $p_p(kPa) =$                            | 4377              | p <sub>F</sub> (kPa ) =                        | 417:                                     |  |
| 4350                                                   | :                                 | 0.02                           | $Q_p (m^3/s) =$                         | 2.17E-07          |                                                |                                          |  |
| E .                                                    | :                                 |                                | tp (s) =                                | 1200              | t <sub>F</sub> (s) =                           | 120                                      |  |
| e 4300<br>8                                            | :                                 | Rate [l/m                      | S el S <sup>*</sup> (-)=                |                   | S el S <sup>*</sup> (-)=                       | 1.00E-0                                  |  |
| 6.<br>6. 4250                                          | i<br>Magazini                     | njection Rate [l/min]          | EC <sub>w</sub> (mS/m)=                 |                   | 3 61 3 (-)-                                    |                                          |  |
| 8                                                      | **                                | - 0.01                         | Temp <sub>w</sub> (gr C)=               | 13.3              |                                                |                                          |  |
| 4200                                                   | <u> </u>                          |                                | Derivative fact.=                       |                   | Derivative fact.=                              | 0.0                                      |  |
| 4150                                                   |                                   |                                | Derivative fact                         | 0.09              | Derivative fact.                               | 0.0                                      |  |
|                                                        | <u></u>                           |                                |                                         |                   |                                                |                                          |  |
| 4100<br>0.00 0.20 0.40 0.60<br>Elspsed                 | 0.80 1.00 1.20 1.40               | 0.00                           | Results                                 |                   | Results                                        |                                          |  |
|                                                        |                                   |                                | Q/s $(m^2/s)=$                          | 1.1E-08           |                                                |                                          |  |
| Log-Log plot incl. derivates- f                        | low period                        |                                | $T_{\rm M} (m^2/s) =$                   | 8.7E-09           |                                                |                                          |  |
| Flansed time                                           | - That                            |                                | Flow regime:                            | transient         | Flow regime:                                   | transient                                |  |
| 10 <sup>2</sup> 10, <sup>-4</sup> 10, <sup>-3</sup> 10 | 10,1110,0                         | 7                              | $dt_1 \text{ (min)} =$                  | 1.95              | dt <sub>1</sub> (min) =                        | NA                                       |  |
|                                                        |                                   |                                | $dt_2 \text{ (min)} =$                  |                   | $dt_2 \text{ (min)} =$                         | NA                                       |  |
|                                                        |                                   | 300                            | $T (m^2/s) =$                           |                   | $T (m^2/s) =$                                  | 6.3E-0                                   |  |
| •                                                      |                                   | İ                              | . ,                                     |                   | ` '                                            |                                          |  |
| 101                                                    |                                   | 10 <sup>2</sup>                | 0 ( )                                   | 1.0E-06           |                                                | 1.0E-0                                   |  |
|                                                        |                                   |                                | $K_s$ (m/s) =                           |                   | $K_s (m/s) =$                                  | 1.3E-0                                   |  |
|                                                        |                                   | 30                             | $S_s (1/m) =$                           |                   | $S_s(1/m) =$                                   | 2.0E-0                                   |  |
| 1/4/0                                                  | •                                 | 1/0/1                          | C (m <sup>3</sup> /Pa) =                | NA                | C (m³/Pa) =                                    | 1.3E-1                                   |  |
| 10 <sup>0</sup>                                        |                                   | 101                            | C <sub>D</sub> (-) =                    | NA                | $C_D(-) =$                                     | 1.5E-0                                   |  |
|                                                        | ****                              | _                              | ξ (-) =                                 | 3.5               | ξ (-) =                                        | 33.2                                     |  |
|                                                        |                                   | 3                              |                                         |                   |                                                |                                          |  |
|                                                        |                                   |                                | $T_{GRF}(m^2/s) =$                      | NA                | $T_{GRF}(m^2/s) =$                             | NA                                       |  |
| 10 <sup>4</sup> 10 <sup>5</sup>                        | 10 <sup>6</sup> 10 <sup>7</sup> 1 | 0 <sup>8</sup> 10 <sup>0</sup> | S <sub>GRF</sub> (-) =                  | NA                | $S_{GRF}(-) =$                                 | NA                                       |  |
| 10 tD                                                  | 10 10 1                           | U                              | D <sub>GRF</sub> (-) =                  | NA                | D <sub>GRF</sub> (-) =                         | NA                                       |  |
| Log-Log plot incl. derivatives-                        | recovery period                   |                                | Selected represe                        | entative paran    |                                                |                                          |  |
| Flansed time                                           | [h]                               |                                | $dt_1$ (min) =                          | 1.95              | C (m <sup>3</sup> /Pa) =                       | 1.3E-1                                   |  |
| 10 4 10,4                                              | 10,-210,-1                        | 7                              | $dt_2 \text{ (min)} =$                  |                   | $C_D(-) =$                                     | 1.5E-0                                   |  |
|                                                        |                                   | 300                            |                                         | 1.4E-08           |                                                | 3.9                                      |  |
|                                                        | R. B. Karakanananan .             |                                | $T_T (m^2/s) = S(-) = $                 | 1.4E-06           |                                                | 3.                                       |  |
| /3, i                                                  | a constant                        | 10 <sup>2</sup>                | 9 ( )                                   |                   |                                                | <u> </u>                                 |  |
| 10                                                     | <u></u>                           |                                | K <sub>s</sub> (m/s) =                  | 2.8E-09           |                                                |                                          |  |
| /,                                                     | Ì                                 | 30                             | S <sub>s</sub> (1/m) =                  | 2.0E-07           |                                                |                                          |  |
| od 'd                                                  | · <del>/</del>                    | po) [kPa]                      | Comments:                               |                   |                                                |                                          |  |
|                                                        | :\                                | 101 0                          |                                         |                   | f 1.4E-08 m2/s was                             |                                          |  |
| 10"                                                    | ·                                 | 1                              |                                         |                   | se, which shows the                            |                                          |  |
|                                                        | and the same                      | 3                              |                                         |                   | range for the interva<br>08 m2/s. The static p |                                          |  |
|                                                        |                                   | 1                              | is estimated to be c                    |                   |                                                |                                          |  |
|                                                        |                                   |                                | measured at transdi                     | ucer depth, was a | derived from the CH                            | Iir phase using                          |  |
|                                                        |                                   | 10 <sup>0</sup>                | measured at transdestraight line extrap |                   | derived from the CH rner plot to a value       |                                          |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | umi             | mary Sheet                                    |           |                                            |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|-----------|--------------------------------------------|---------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gatior          | Test type:[1]                                 |           |                                            | CHi           |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xema            | Test no:                                      | 1         |                                            |               |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X11A            | Test start:                                   |           |                                            | 060714 15:01  |
| Tost section from to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 452.00.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ' 00 m          | Dognonsible for                               |           |                                            | Stonban Dobo  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 452.00-457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .00 11          | Responsible for test execution:               |           |                                            | Stephan Rohs  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.076           | Responsible for test evaluation:              |           | Crist                                      | ian Enachescu |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Flow period                                   |           | Recovery period                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Indata                                        |           | Indata                                     |               |
| KLX11A_452.00-457.00_060714_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.030           | p <sub>0</sub> (kPa) =                        | 4224      |                                            |               |
| 4450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pabove Pelow Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.025           | p <sub>i</sub> (kPa ) =                       | 4222      |                                            |               |
| 4400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + 0.025         | $p_p(kPa) =$                                  | 4430      | p <sub>F</sub> (kPa ) =                    | 422           |
| 4350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.020           | $Q_p (m^3/s) =$                               | 2.83E-07  |                                            |               |
| £ 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | en en en en en en en en en en en en en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | tp (s) =                                      | 1200      | t <sub>F</sub> (s) =                       | 1200          |
| 4250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57.1. January                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rate [/min]     | S el S <sup>*</sup> (-)=                      |           | S el S <sup>*</sup> (-)=                   | 1.00E-0       |
| of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Injection       | EC <sub>w</sub> (mS/m)=                       |           | 0010()                                     |               |
| 8 d200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.010           | Temp <sub>w</sub> (gr C)=                     | 13.4      |                                            |               |
| 4150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | Derivative fact.=                             |           | Derivative fact.=                          | 0.0           |
| 4100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005           | Derivative lact                               | 0.04      | Derivative fact.                           | 0.0.          |
| 4050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                               |           |                                            |               |
| 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000           | Results                                       |           | Results                                    |               |
| 0.00 0.20 0.40 0.00 Elapsed Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                               | 4.05.00   |                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Q/s (m <sup>2</sup> /s)=                      | 1.3E-08   |                                            |               |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | $T_{\rm M}  ({\rm m}^2/{\rm s}) =$            | 1.1E-08   |                                            |               |
| Bapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1               | Flow regime:                                  | transient | Flow regime:                               | transient     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | $dt_1$ (min) =                                |           | $dt_1 (min) =$                             | 1.3           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300             | $dt_2$ (min) =                                |           | $dt_2$ (min) =                             | 2.8           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 <sup>2</sup> | $T (m^2/s) =$                                 |           | $T (m^2/s) =$                              | 8.2E-08       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10              | S (-) =                                       | 1.0E-06   | S (-) =                                    | 1.0E-0        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | $K_s (m/s) =$                                 | 4.4E-09   | $K_s (m/s) =$                              | 1.6E-0        |
| ,(gb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30              | $S_s(1/m) =$                                  | 2.0E-07   | $S_s(1/m) =$                               | 2.0E-0        |
| (d)/db//db/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101 (91)        | C (m <sup>3</sup> /Pa) =                      | NA        | C (m³/Pa) =                                | 1.1E-1        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/0.0           | C <sub>D</sub> (-) =                          | NA        | C <sub>D</sub> (-) =                       | 1.2E-03       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | ξ(-) =                                        | 5.4       | ξ (-) =                                    | 33.3          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3               | 2 ( )                                         |           | 3 ( )                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10°             | $T_{GRF}(m^2/s) =$                            | NA        | $T_{GRF}(m^2/s) =$                         | NA            |
| 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŀ               | $S_{GRF}(-) =$                                | NA        | $S_{GRF}(III / S) =$                       | NA            |
| 10 <sup>8</sup> 10 <sup>7</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 <sup>8</sup> 10 <sup>9</sup> 10 <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | $D_{GRF}(\cdot) =$                            | NA        | $D_{GRF}(\cdot) =$                         | NA            |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Selected represe                              |           |                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | $dt_1 \text{ (min)} =$                        | 2.28      |                                            | 1.1E-1        |
| 102 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1               | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ |           | $C (m^3/Pa) = C_D (-) =$                   | 1.1L-1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300             |                                               |           |                                            | 1.2E-0.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameter Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of |                 | $T_T (m^2/s) =$                               | 2.2E-08   |                                            | 5.4           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <sup>2</sup> | S (-) =                                       | 1.0E-06   |                                            |               |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>*</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŀ               | $K_s (m/s) =$                                 | 4.4E-09   |                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 -            | $S_s (1/m) =$                                 | 2.0E-07   |                                            |               |
| og .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>,</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00. IKP         | Comments:                                     |           |                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | À .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 <sup>1</sup> |                                               |           | f 2.2E-8 m2/s was de                       |               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -               |                                               |           | se, which shows bett                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | are a comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3               |                                               |           | al transmissivity is e ressure measured at |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1               |                                               |           | hase using straight l                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>0</sup> |                                               |           | a value of 4,220.6 kl                      |               |
| 10 <sup>d</sup> 10 <sup>f</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup> 10 <sup>3</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ł               |                                               | -         |                                            |               |
| tD/CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                               |           |                                            |               |

|                                                                       | Test S                                | umr                   | nary Sheet                        |               |                          |                   |
|-----------------------------------------------------------------------|---------------------------------------|-----------------------|-----------------------------------|---------------|--------------------------|-------------------|
| Project:                                                              | Oskarshamn site investi               | gation                | Test type:[1]                     |               |                          | CHi               |
| A == 0.                                                               | l a                                   |                       | Test no:                          |               |                          |                   |
| Area:                                                                 | Lax                                   | kemar                 | rest no:                          |               |                          |                   |
| Borehole ID:                                                          | KL                                    | X11A                  | Test start:                       | 060714 16:45  |                          |                   |
| Test section from - to (m):                                           | 457.00-462                            | 2.00 m                | Responsible for test execution:   | Stephan Rohs  |                          |                   |
| Section diameter, 2·r <sub>w</sub> (m):                               |                                       | 0.076                 | Responsible for                   |               | Crist                    | tian Enachescu    |
| Linear plot Q and p                                                   |                                       |                       | test evaluation:                  |               | Recovery period          |                   |
| Emear plot & and p                                                    |                                       |                       | Indata                            |               | Indata                   |                   |
| 4500                                                                  | <b>1</b> 0                            | 0.003                 | p <sub>0</sub> (kPa) =            | 427           |                          | T                 |
| KLX11A_457.00-462.00_060714_1_CHir_Q_r                                | P section P above P below             |                       | p <sub>i</sub> (kPa ) =           | NA            | -                        |                   |
| 4450                                                                  |                                       |                       | $p_p(kPa) =$                      | NA            | p <sub>F</sub> (kPa ) =  | NA                |
|                                                                       |                                       |                       | ·                                 | NA            | ρ <sub>F</sub> (Ki α ) – | INA               |
| 4400 ·                                                                |                                       | 0.002                 | $Q_p (m^3/s) = tp (s) =$          | NA            | t <sub>r</sub> (s) =     | NA                |
| (add ann at 4,100.                                                    | , , , , , , , , , , , , , , , , , , , | ite [[/minj           | tp (e)                            |               | ·F (0)                   |                   |
| 8 4300 -                                                              |                                       | njection Rate [l/min] | S el S* (-)=                      | NA            | S el S <sup>*</sup> (-)= | NA                |
| 400 t.                                                                | /                                     | _                     | EC <sub>w</sub> (mS/m)=           |               |                          | <u> </u>          |
|                                                                       |                                       | 0.001                 | Temp <sub>w</sub> (gr C)=         | 13.           |                          | 1                 |
| 4250                                                                  | •                                     |                       | Derivative fact.=                 | · NA          | Derivative fact.=        | NA                |
|                                                                       | •                                     |                       |                                   |               |                          |                   |
| 4200                                                                  |                                       | 1,,,,,,               |                                   |               |                          |                   |
| 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.50<br>Elapsed Time [N] |                                       |                       | Results                           |               | Results                  |                   |
|                                                                       |                                       |                       | Q/s $(m^2/s)=$                    | NA            |                          |                   |
| Log-Log plot incl. derivates- fl                                      | ow period                             |                       | $T_M (m^2/s)=$                    | NA            |                          |                   |
|                                                                       |                                       |                       | Flow regime:                      | transient     | Flow regime:             | transient         |
|                                                                       |                                       |                       | $dt_1$ (min) =                    | NA            | $dt_1$ (min) =           | NA                |
|                                                                       |                                       |                       | $dt_2$ (min) =                    | NA            | $dt_2$ (min) =           | NA                |
|                                                                       |                                       |                       | $T (m^2/s) =$                     | NA            | $T (m^2/s) =$            | NA                |
|                                                                       |                                       |                       | S (-) =                           | NA            | S (-) =                  | NA                |
|                                                                       |                                       |                       | $K_s (m/s) =$                     | NA            | $K_s (m/s) =$            | NA                |
|                                                                       |                                       |                       | $S_s(1/m) =$                      | NA            | $S_s(1/m) =$             | NA                |
| Not Ar                                                                | nalysed                               |                       | C (m <sup>3</sup> /Pa) =          | NA            | C (m <sup>3</sup> /Pa) = | NA                |
|                                                                       |                                       |                       | $C_D(-) =$                        | NA            | $C_D(-) =$               | NA                |
|                                                                       |                                       |                       | ξ(-) =                            | NA            | ξ (-) =                  | NA                |
|                                                                       |                                       |                       | 3 ( )                             |               | 3 ( )                    |                   |
|                                                                       |                                       |                       | $T_{GRF}(m^2/s) =$                | NA            | $T_{GRF}(m^2/s) =$       | NA                |
|                                                                       |                                       |                       | $S_{GRF}(-) =$                    | NA            | $S_{GRF}(-) =$           | NA                |
|                                                                       |                                       |                       | $D_{GRF}$ (-) =                   | NA            | D <sub>GRF</sub> (-) =   | NA                |
| Log-Log plot incl. derivatives-                                       | recovery period                       |                       | Selected repres                   |               |                          |                   |
| J 0,                                                                  | > r                                   |                       | dt <sub>1</sub> (min) =           | NA            | C (m <sup>3</sup> /Pa) = | NA                |
|                                                                       |                                       |                       | $dt_2 \text{ (min)} =$            | NA            | $C_D(-) =$               | NA                |
|                                                                       |                                       |                       | $T_T (m^2/s) =$                   | NA            | ξ (-) =                  | NA                |
|                                                                       |                                       |                       | S (-) =                           | NA            | - ۱ ا د                  | T                 |
|                                                                       |                                       |                       | $K_s (m/s) =$                     | NA            |                          |                   |
|                                                                       |                                       |                       | $S_s(11/s) = S_s(1/m) = S_s(1/m)$ | NA            | 1                        | 1                 |
| 3T - 4                                                                | 1                                     |                       | Comments:                         | 1'''          | 1                        | <u> </u>          |
| Not Ar                                                                | nalysed                               |                       |                                   | genones (mest | nged packer complian     | uca) the interval |
|                                                                       |                                       |                       | transmissivity is lo              |               |                          |                   |
|                                                                       |                                       |                       |                                   |               |                          |                   |

| Project: Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oskarshamn site investig         | ation                  | nary Sheet                                   | ı            |                                               |                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|----------------------------------------------|--------------|-----------------------------------------------|------------------|--|
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                        | rest type.[1]                                |              |                                               | CHir             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lax                              | emar                   | Test no:                                     |              | 1                                             |                  |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                        | Test start:                                  | 060714 18:01 |                                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        |                                              |              |                                               |                  |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 462.00-467.                      | 00 m                   | Responsible for test execution:              |              |                                               | Stephan Rohs     |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C                                | 0.076                  | Responsible for test evaluation:             |              | Crist                                         | tian Enachescu   |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                        | Flow period                                  |              | Recovery period                               | 1                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | Indata                                       |              | Indata                                        |                  |  |
| 4550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • Psecton                        | 0.003                  | p <sub>0</sub> (kPa) =                       | 4317         | 7                                             |                  |  |
| KLX11A_462.00-467.00_060714_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pabove<br>P below<br>Q           |                        | p <sub>i</sub> (kPa ) =                      | NA           |                                               |                  |  |
| 4500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                        | $p_p(kPa) =$                                 | NA           | p <sub>F</sub> (kPa ) =                       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                |                        | $Q_p (m^3/s) =$                              | NA           | , ,                                           | 1                |  |
| 4450 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .•.                              | 0.002                  | tp (s) =                                     | NA           | t <sub>F</sub> (s) =                          | NA               |  |
| 9 44m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | tate [ /m.             | S el S <sup>*</sup> (-)=                     | NA           | S el S <sup>*</sup> (-)=                      | NA               |  |
| Ledi Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds Powinds P | Approximates or .                | injection Rate [*m in] | S ei S (-)=<br>EC <sub>w</sub> (mS/m)=       |              | J El J (-)=                                   | T. " \           |  |
| 80 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ]                              | 0.001                  | Temp <sub>w</sub> (gr C)=                    | 13.5         |                                               | 1                |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>/</del>                     | a.vvl                  | Derivative fact.=                            |              |                                               | NA               |  |
| 4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                |                        | Derivative fact.=                            | NA           | Derivative fact.=                             | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                |                        |                                              |              |                                               |                  |  |
| 4280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | 0.000                  |                                              |              |                                               |                  |  |
| 0.00 0.10 0.20 0.30 0.40 Elapsed Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60 0.60 0.70 0.80 0.5<br>ne[h] | 90                     | Results                                      |              | Results                                       |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $Q/s (m^2/s) =$                              | NA           |                                               |                  |  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow period                        |                        | $T_M (m^2/s)=$                               | NA           |                                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | Flow regime:                                 | transient    | Flow regime:                                  | transient        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $dt_1 (min) =$                               | NA           | $dt_1$ (min) =                                | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $dt_2$ (min) =                               | NA           | $dt_2$ (min) =                                | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $T (m^2/s) =$                                | NA           | $T (m^2/s) =$                                 | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | S (-) =                                      | NA           | S (-) =                                       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $K_s (m/s) =$                                | NA           | $K_s (m/s) =$                                 | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | S <sub>s</sub> (1/m) =                       | NA           | S <sub>s</sub> (1/m) =                        | NA               |  |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alysed                           |                        | $C (m^3/Pa) =$                               | NA           | $C_s(1/H) = C_s(1/H)$                         | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | , ,                                          | NA           | $C_D(-) =$                                    | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | -6()                                         |              |                                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | ξ (-) =                                      | NA           | ξ (-) =                                       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | <del>-</del> ( 2( )                          | NA           | <b>-</b> , 2, ,                               | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $T_{GRF}(m^2/s) =$                           |              | $T_{GRF}(m^2/s) =$                            |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | S <sub>GRF</sub> (-) =                       | NA           | $S_{GRF}(-) =$                                | NA               |  |
| Landanulation 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                        | D <sub>GRF</sub> (-) =                       | NA           | D <sub>GRF</sub> (-) =                        | NA               |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery perioa                  |                        | Selected represe                             |              | <u>-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1</u> | Tala             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $dt_1 (min) =$                               | NA           | $C (m^3/Pa) =$                                | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $dt_2 (min) =$                               | NA           | $C_D(-) =$                                    | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $T_T (m^2/s) =$                              | NA           | ξ (-) =                                       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | S (-) =                                      | NA           |                                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $K_s$ (m/s) =                                | NA           |                                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | $S_s(1/m) =$                                 | NA           |                                               |                  |  |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alysed                           |                        | Comments:                                    |              |                                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        | Based on the test re<br>transmissivity is lo |              | ged packer complian<br>I m2/s.                | ce) the interval |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Su                                 | mm        | ary Sheet                                    |                |                                |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|----------------------------------------------|----------------|--------------------------------|------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oskarshamn site investiga               | ation     | Test type:[1]                                |                |                                | CHir             |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lave                                    | mar -     | Test no:                                     |                |                                | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           |                                              |                |                                |                  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KLX                                     | 11A       | Test start:                                  |                |                                | 060715 08:16     |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 483.00-488.0                            |           | Responsible for test execution:              |                |                                | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.                                      | .076      | Responsible for test evaluation:             |                | Crist                          | tian Enachescu   |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |           | Flow period                                  |                | Recovery period                | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | Indata                                       |                | Indata                         |                  |
| 4750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 0.0                                   | 003       | p <sub>0</sub> (kPa) =                       | 4509           |                                |                  |
| KLX11A_483.00-488.00_060715_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P section P shove P below               | l         | p <sub>i</sub> (kPa ) =                      | NA             |                                |                  |
| 4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>†</b>                                | l         | $p_p(kPa) =$                                 | NA             | p <sub>F</sub> (kPa ) =        | NA               |
| 4650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                                       |           | $Q_p (m^3/s) =$                              | NA             | , ,                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 100                                   | - 6       | tp (s) =                                     | NA             | t <sub>F</sub> (s) =           | NA               |
| Tead of works and a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of a deposit of | ·,                                      | - S       | S el S <sup>*</sup> (-)=                     | NA             | S el S <sup>*</sup> (-)=       | NA               |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *************************************** | jection R | EC <sub>w</sub> (mS/m)=                      |                | 3 61 3 (-)-                    | 1                |
| 4550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |           | Temp <sub>w</sub> (gr C)=                    | 13.8           |                                | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                             | L         | Derivative fact.=                            |                | Derivative fact.=              | NA               |
| 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | ŀ         | Derivative lact                              | INA            | Derivative lact                | INA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                       | ŀ         |                                              |                |                                |                  |
| 4450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50 0.60 0.70 0.80 0.90                | 000       | Results                                      |                | Results                        |                  |
| Elspsed Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |           |                                              | NIA            | Results                        | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | $Q/s (m^2/s) =$                              | NA             |                                |                  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ow perioa                               |           | T <sub>M</sub> (m <sup>2</sup> /s)=          | NA             |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | Flow regime:                                 | transient      | Flow regime:                   | transient        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | -         | $dt_1 (min) =$                               | NA             | $dt_1 (min) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | $dt_2 (min) =$                               | NA             | $dt_2$ (min) =                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | $T (m^2/s) =$                                | NA             | $T (m^2/s) =$                  | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | S (-) =                                      | NA             | S (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | $K_s (m/s) =$                                | NA             | $K_s (m/s) =$                  | NA               |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alvead                                  | L         | S <sub>s</sub> (1/m) =                       | NA             | $S_s(1/m) =$                   | NA               |
| Not All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | arysea                                  | •         | C (m³/Pa) =                                  | NA             | $C (m^3/Pa) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | C <sub>D</sub> (-) =                         | NA             | $C_D(-) =$                     | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ä         | ξ(-) =                                       | NA             | ξ (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           |                                              |                |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | $T_{GRF}(m^2/s) =$                           | NA             | $T_{GRF}(m^2/s) =$             | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | S <sub>GRF</sub> (-) =                       | NA             | $S_{GRF}(-) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | D <sub>GRF</sub> (-) =                       | NA             | $D_{GRF}$ (-) =                | NA               |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | recovery period                         |           | Selected represe                             | entative paran | neters.                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | L         | dt <sub>1</sub> (min) =                      | NA             | $C (m^3/Pa) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | $dt_2$ (min) =                               | NA             | $C_D(-) =$                     | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ſ         | $T_T (m^2/s) =$                              | NA             | ξ (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | Ī         | S (-) =                                      | NA             |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ſ         | $K_s (m/s) =$                                | NA             |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | $S_s (1/m) =$                                | NA             |                                |                  |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alysed                                  | Ī         | Comments:                                    |                |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |           | Based on the test re<br>transmissivity is lo |                | ged packer complian<br>I m2/s. | ce) the interval |

| Project:   Oskarshamn site investigation   Test type.[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | Test S                                | limi       | nary Sheet           |                    |                         |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|------------|----------------------|--------------------|-------------------------|--------------------------------------------------|
| Borehole ID:   KLX11A   Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project:                                       | Oskarshamn site investi               | gation     | Test type:[1]        |                    |                         | CHi                                              |
| Borehole ID:   KLX11A   Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A                                              | 1                                     |            | T 1                  |                    |                         |                                                  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Area:                                          | Lax                                   | xemai      | rest no:             |                    |                         |                                                  |
| Section diameter, $2\tau_w$ (m):  0.076 Responsible for test evaluation:  Cinear plot Q and p  Flow period Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indata  Indat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Borehole ID:                                   | KL                                    | X11A       | Test start:          | 060715 09:29       |                         |                                                  |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test section from - to (m):                    | 488.00-493                            | 3.00 m     |                      | Stephan Rohs       |                         |                                                  |
| Flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section diameter, 2·r <sub>w</sub> (m):        |                                       | 0.076      | Responsible for      | Cristian Enachescu |                         |                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Linear plot Q and p                            |                                       |            |                      |                    | Recovery period         | <b>Y</b>                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zmodi prot d dila p                            |                                       |            |                      |                    |                         |                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4850<br>KLX11A 488.00-493.00 060715 1 CHir Q r |                                       | 0.003      |                      | 455                |                         | 1                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                | <sup>≜</sup> P above                  |            |                      |                    |                         |                                                  |
| Q <sub>0</sub> (m³/s)= NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4750                                           |                                       |            |                      |                    | p <sub>F</sub> (kPa ) = | NA                                               |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                                       |            | •                    |                    | F1 ( - /                |                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                | :                                     |            |                      |                    | t <sub>r</sub> (s) =    | NA                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 4650 ·                                       |                                       | ate [l/mir |                      |                    |                         |                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 4600 ·                                       |                                       | jection R  |                      | 177                | S €1 S (-)=             |                                                  |
| Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Derivative fact. NA Deriv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                | ·                                     | -          |                      | 12                 | 9                       | 1                                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                | :                                     | 1          |                      |                    |                         | NΔ                                               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4500                                           | •                                     |            | Derivative fact      | · INA              | Derivative lact.=       | INA                                              |
| Results Results $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = NA$ $O/S (m^2/S) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4450 -                                         | :                                     |            |                      |                    |                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | · · · · · · · · · · · · · · · · · · · |            | Decelle              |                    | Describe                |                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                                       | 0.90       |                      | Tana               | Results                 |                                                  |
| Flow regime: transient Flow regime: transient $dt_1 \text{ (min)} = NA $ $dt_1 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $ $dt_2 \text{ (min)} = NA $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                       |            |                      |                    |                         |                                                  |
| $ \frac{dt_1  (\text{min}) = NA}{dt_2  (\text{min}) = NA}  \frac{dt_1  (\text{min}) = NA}{dt_2  (\text{min}) = NA} $ $ \frac{dt_2  (\text{min}) = NA}{dt_2  (\text{min}) = NA}  \frac{dt_2  (\text{min}) = NA}{dt_2  (\text{min}) = NA} $ $ \frac{dt_2  (\text{min}) = NA}{T  (m^2/s) = NA}  \frac{NA}{T  (m^2/s) = NA} $ $ \frac{S  (\cdot) = NA}{S  (\cdot) = NA}  \frac{S  (\cdot) = NA}{S  (\text{m/s}) = NA} $ $ \frac{S_{s}  (1/m) = NA}{S_{s}  (1/m) = NA}  \frac{S_{s}  (1/m) = NA}{S_{s}  (1/m) = NA} $ $ \frac{C  (m^3/Pa) = NA}{C_{D}  (\cdot) = NA}  \frac{S_{s}  (1/m) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $ $ \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA}  \frac{S_{GRF}  (\cdot) = NA}{S_{GRF}  (\cdot) = NA} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Log-Log plot incl. derivates-                  | flow period                           |            |                      |                    |                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                       |            | _                    |                    | _                       | transient                                        |
| Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed  Not Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                       |            | ` ,                  |                    | ` '                     |                                                  |
| $S(\cdot) = NA \qquad S(\cdot) = NA \\ K_s(m/s) = NA \qquad K_s(m/s) = NA \\ K_s(m/s) = NA \qquad K_s(m/s) = NA \\ C(m^3/Pa) = NA \qquad C(m^3/Pa) = NA \\ C_D(\cdot) = NA \qquad C_D(\cdot) = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \\ \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA $ $\frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA $ $\frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA $ $\frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac{\xi(\cdot)}{\xi(\cdot)} = NA \qquad \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                       |            |                      |                    | $dt_2$ (min) =          |                                                  |
| $Not \ Analysed \  \  \  K_s \ (m/s) \ = \ NA \ K_s \ (m/s) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ NA \ S_s \ (1/m) \ = \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ (1/m) \ ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                                       |            | $T (m^2/s) =$        | NA                 | $T (m^2/s) =$           | NA                                               |
| $S_{s}\left(1/m\right) = NA \qquad S_{s}\left(1/m\right) = NA \\ C\left(m^{3}/Pa\right) = NA \qquad C\left(m^{3}/Pa\right) = NA \\ C_{D}\left(-\right) = NA \qquad C_{D}\left(-\right) = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \\ \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA $ $\frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad \frac{\xi\left(-\right)}{\xi\left(-\right)} = NA \qquad $ |                                                |                                       |            | S (-) =              | NA                 | S (-) =                 | NA                                               |
| Not Analysed $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                       |            | $K_s (m/s) =$        | NA                 | $K_s (m/s) =$           | NA                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No.4 A                                         |                                       |            | $S_s(1/m) =$         | NA                 | $S_s(1/m) =$            | NA                                               |
| $\xi\left( \cdot \right) = NA \qquad \xi\left( \cdot \right) = NA$ $T_{GRF}(m^{2}/s) = NA \qquad T_{GRF}(m^{2}/s) = NA$ $S_{GRF}( \cdot ) = NA \qquad S_{GRF}( \cdot ) = NA$ $D_{GRF}\left( \cdot \right) = NA \qquad D_{GRF}\left( \cdot \right) = NA$ $Log-Log plot incl. derivatives- recovery period \frac{dt_{1}\left( \min \right)}{dt_{2}\left( \min \right)} = NA \qquad C\left( m^{3}/Pa \right) = NA dt_{2}\left( \min \right) = NA \qquad C_{D}\left( \cdot \right) = NA T_{T}\left( m^{2}/s \right) = NA \qquad \xi\left( \cdot \right) = NA T_{T}\left( m^{2}/s \right) = NA \qquad \xi\left( \cdot \right) = NA S\left( \cdot \right) = NA \qquad K_{s}\left( m/s \right) = NA \qquad S_{s}\left( 1/m \right) = NA Not Analysed Comments: Based on the test response (prolonged packer compliance) the interpretation of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not A                                          | marysed                               |            | $C (m^3/Pa) =$       | NA                 | $C (m^3/Pa) =$          | NA                                               |
| $T_{GRF}(m^2/s) = NA \qquad T_{GRF}(m^2/s) = NA$ $S_{GRF}(-) = NA \qquad S_{GRF}(-) = NA$ $D_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $Log-Log plot incl. derivatives- recovery period  \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                       |            | C <sub>D</sub> (-) = | NA                 | C <sub>D</sub> (-) =    | NA                                               |
| $T_{GRF}(m^2/s) = NA \qquad T_{GRF}(m^2/s) = NA$ $S_{GRF}(-) = NA \qquad S_{GRF}(-) = NA$ $D_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $Log-Log plot incl. derivatives- recovery period  \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                       |            | ξ(-) =               | NA                 | ξ (-) =                 | NA                                               |
| $S_{GRF}(-) = NA \qquad S_{GRF}(-) = NA$ $D_{GRF}(-) = NA \qquad D_{GRF}(-) = NA$ $Log-Log plot incl. derivatives- recovery period  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                       |            |                      |                    |                         | 1                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                       |            | $T_{GRF}(m^2/s) =$   | NA                 | $T_{GRF}(m^2/s) =$      | NA                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                       |            |                      | NA                 |                         | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                       |            |                      | NA                 |                         | NA                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Log-Log plot incl. derivatives                 | - recovery period                     |            |                      | entative para      |                         |                                                  |
| $ dt_2 \text{ (min)} = NA \qquad C_D \text{ (-)} = NA $ $ T_T \text{ (m}^2 \text{/s)} = NA \qquad \xi \text{ (-)} = NA $ $ S \text{ (-)} = NA \qquad \qquad \xi \text{ (-)} = NA $ $ S \text{ (-)} = NA \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                | <u>-</u>                              |            |                      |                    |                         | NA                                               |
| $T_{T} (m^{2}/s) = NA \qquad \xi (-) = NA$ $S (-) = NA$ $K_{s} (m/s) = NA$ $S_{s} (1/m) = NA$ Not Analysed $Comments:$ Based on the test response (prolonged packer compliance) the integral of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                       |            |                      |                    |                         |                                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                                       |            |                      |                    |                         |                                                  |
| $K_{s} (m/s) = NA$ $S_{s} (1/m) = NA$ Not Analysed  Comments:  Based on the test response (prolonged packer compliance) the interpretation of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                                       |            |                      |                    | - ( /                   | <del>                                     </del> |
| $S_{s} (1/m) = NA$ Not Analysed  Comments:  Based on the test response (prolonged packer compliance) the integral of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the process of the proc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                                       |            |                      |                    |                         | †                                                |
| Not Analysed  Comments:  Based on the test response (prolonged packer compliance) the interpretation of the compliance of the interpretation of the compliance of the compliance of the interpretation of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the compliance of the comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                                       |            |                      |                    |                         | <del> </del>                                     |
| Based on the test response (prolonged packer compliance) the int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NI at A                                        | nalwad                                |            |                      | 1                  |                         | <u> </u>                                         |
| transmissivity is lower than 1.0E-11 m2/s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TVOL 23                                        | marysed                               |            |                      |                    |                         | ice) the interval                                |

|                                                 | Test Sum                      | mary Sheet                           |                    |                          |                 |
|-------------------------------------------------|-------------------------------|--------------------------------------|--------------------|--------------------------|-----------------|
| Project:                                        | Oskarshamn site investigation | n Test type:[1]                      |                    |                          | Р               |
| Area:                                           | Laxema                        | ar Test no:                          |                    |                          |                 |
| Borehole ID:                                    | KI V11                        | A Test start:                        |                    |                          | 060715 10:47    |
| Borenole ID.                                    | KLXTT                         | A Test start.                        |                    |                          | 00071510.47     |
| Test section from - to (m):                     | 493.00-498.00 r               | n Responsible for<br>test execution: |                    |                          | Stephan Rohs    |
| Section diameter, 2·r <sub>w</sub> (m):         | 0.07                          | 6 Responsible for test evaluation:   |                    | Crist                    | ian Enachescı   |
| Linear plot Q and p                             |                               | Flow period                          |                    | Recovery period          | 1               |
|                                                 |                               | Indata                               |                    | Indata                   |                 |
| KLX11A_493.00-498.00_060715_1_P                 | 0.003                         | p <sub>0</sub> (kPa) =               | 4605               |                          |                 |
| 4850                                            | Pabove<br>Pbelow<br>Q         | p <sub>i</sub> (kPa ) =              | 4613               |                          |                 |
|                                                 | ,                             | $p_p(kPa) =$                         | 4839               | p <sub>F</sub> (kPa ) =  | 461             |
| 4800                                            | • 0002                        | $Q_p (m^3/s) =$                      | NA                 |                          |                 |
| e                                               | •                             | tp (s) =                             | 10                 | t <sub>F</sub> (s) =     | 150             |
| e 4750 -<br>156 e                               | e                             | S el S <sup>*</sup> (-)=             |                    | S el S <sup>*</sup> (-)= | 1.00E-0         |
| 6.<br>9.<br>9.<br>14700 -                       | - u                           | EC <sub>w</sub> (mS/m)=              |                    | 3 61 3 (-)-              |                 |
| 88                                              | . 0001                        | Temp <sub>w</sub> (gr C)=            | 14.0               |                          |                 |
| 4650 -                                          |                               |                                      |                    |                          | 0.0             |
|                                                 |                               | Derivative fact.=                    | NA                 | Derivative fact.=        | 0.0             |
| 4600                                            |                               |                                      |                    |                          |                 |
| 4550<br>0.00 0.50 1.00 1.50                     | 0,000                         | Results                              |                    | Results                  |                 |
| Elapsed T                                       |                               |                                      | NA                 | Results                  |                 |
| landan matimal demissates fl                    | lann mania d                  | Q/s $(m^2/s)=$                       | NA<br>NA           |                          |                 |
| Log-Log plot incl. derivates- fl                | low period                    | $T_{\rm M}  ({\rm m}^2/{\rm s}) =$   |                    |                          |                 |
|                                                 |                               | Flow regime:                         | transient          | Flow regime:             | transient       |
|                                                 |                               | $dt_1$ (min) =                       | NA                 | $dt_1 (min) =$           | 0.4             |
|                                                 |                               | $dt_2$ (min) =                       | NA                 | $dt_2$ (min) =           | 23.0            |
|                                                 |                               | $T (m^2/s) =$                        | NA                 | $T (m^2/s) =$            | 2.6E-10         |
|                                                 |                               | S (-) =                              | NA                 | S (-) =                  | 1.0E-0          |
|                                                 |                               | $K_s (m/s) =$                        | NA                 | $K_s (m/s) =$            | 5.2E-1          |
|                                                 |                               | $S_s(1/m) =$                         | NA                 | $S_s(1/m) =$             | 2.0E-0          |
| Not A                                           | nalysed                       | $C (m^3/Pa) =$                       | NA                 | $C (m^3/Pa) =$           | 1.2E-1          |
|                                                 |                               | $C_D(-) =$                           | NA                 | $C_D(-) =$               | 1.3E-0          |
|                                                 |                               | ξ(-) =                               | NA                 | ξ(-) =                   | 1.52 0.         |
|                                                 |                               | ς (-) -                              | 14/-1              | ς (-) –                  | 1.              |
|                                                 |                               | $T_{GRF}(m^2/s) =$                   | NA                 | $T_{GRF}(m^2/s) =$       | NA              |
|                                                 |                               | $S_{GRF}(-) =$                       | NA                 | $S_{GRF}(-) =$           | NA              |
|                                                 |                               | $D_{GRF}(-) =$                       | NA                 | $D_{GRF}(\cdot) =$       | NA              |
| Log-Log plot incl. derivatives-                 | rocovery period               | Selected represe                     |                    |                          |                 |
| Log-Log plot mci. derivatives-                  | [h]                           |                                      |                    |                          | 1 105 1         |
| 10 <sup>-4</sup> 10 <sup>-3</sup> Enapsed tille | 102                           | dt <sub>1</sub> (min) =              | 0.47               | C (m <sup>3</sup> /Pa) = | 1.2E-1          |
| 1                                               | 10.1                          | $dt_2 (min) =$                       |                    | $C_D(-) =$               | 1.3E-0          |
|                                                 |                               | $T_T (m^2/s) =$                      | 2.6E-10            |                          | 1.              |
|                                                 | 0.03                          | S (-) =                              | 1.0E-06            |                          |                 |
| 10 0                                            |                               | $K_s (m/s) =$                        | 5.2E-11            |                          |                 |
|                                                 | 10 <sup>2</sup>               | $S_s (1/m) =$                        | 2.0E-07            |                          |                 |
|                                                 | 10                            | © Comments:                          |                    |                          |                 |
|                                                 | 0.003                         |                                      |                    | f 2.6E-10 m2/s was       |                 |
| 10-1                                            | 0.003                         | radial flow analysis                 | s of the Pi phase. | The confidence ran       |                 |
|                                                 | 10 <sup>-3</sup>              | interval transmissiv                 |                    |                          |                 |
| †                                               | 10                            |                                      |                    | pressure could not       | be extrapolated |
| 1                                               |                               |                                      |                    |                          |                 |
|                                                 | 3E-4                          | due to the very low                  | transmissivity.    |                          |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sumr                  | nary Sheet                      |                  |                                              |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|------------------|----------------------------------------------|---------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | igation               | Test type:[1]                   |                  |                                              | CHi           |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | xemar                 | Test no:                        |                  |                                              |               |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I <b>Χ</b> 11Δ        | Test start:                     |                  |                                              | 060715 14:04  |
| borenoie ib.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                  |                                              |               |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 498.00-503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.00 m                | Responsible for test execution: |                  |                                              | Stephan Roh   |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                 | Responsible for                 |                  | Crist                                        | ian Enachesc  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | test evaluation:                |                  | Recovery period                              |               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Indata                          |                  | Indata                                       |               |
| 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010                 | p <sub>0</sub> (kPa) =          | 4655             |                                              |               |
| 4950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KLX11A_498.00-503.00_060715_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | p <sub>i</sub> (kPa ) =         | 4652             |                                              |               |
| 4900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.008                 | $p_p(kPa) =$                    | 4893             | p <sub>F</sub> (kPa ) =                      | 465           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $Q_p (m^3/s) =$                 | 8.33E-08         |                                              |               |
| 4850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | tp (s) =                        | 1200             | t <sub>F</sub> (s) =                         | 120           |
| To 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Injection Rate [Vmin] | S el S <sup>*</sup> (-)=        |                  | S el S <sup>*</sup> (-)=                     | 1.00E-0       |
| 8 4750 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P section     P above     P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ction Ra              | EC <sub>w</sub> (mS/m)=         |                  | 3 61 3 (-)-                                  |               |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.004 =               | Temp <sub>w</sub> (gr C)=       | 14.0             |                                              |               |
| 4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Derivative fact.=               |                  | Derivative fact.=                            | 0.0           |
| 4650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                 | Berivative raot.                | 0.10             | Derivative fact.                             | 0.0           |
| 4600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                 | +                |                                              |               |
| 4550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                 | Results                         |                  | Results                                      |               |
| 0.00 0.20 0.40 0.60 Elapsed Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.80 1.00 1.20 1.40 me [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                 | 2.45.00          |                                              |               |
| landan olak koaladank oakaa di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Q/s (m <sup>2</sup> /s)=        | 3.4E-09          |                                              |               |
| Log-Log plot incl. derivates- fle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | $T_M (m^2/s) =$                 | 2.8E-09          | E1                                           |               |
| 10, <sup>-4</sup> 10, <sup>-3</sup> Elapsed time [h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                     | Flow regime:                    | transient        | Flow regime:                                 | transient     |
| 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $dt_1 (min) =$                  |                  | $dt_1 (min) =$                               | NA            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>3</sup>       | $dt_2 (min) =$                  |                  | $dt_2 (min) =$                               | NA            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $T (m^2/s) =$                   |                  | $T (m^2/s) =$                                | 2.5E-0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                   | S (-) =                         | 1.0E-06          |                                              | 1.0E-0        |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE | 1                     | $K_s$ (m/s) =                   | 7.5E-10          | $K_s$ (m/s) =                                | 5.1E-1        |
| ((db/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>       | $S_s(1/m) =$                    | 2.0E-07          | $S_s(1/m) =$                                 | 2.0E-0        |
| /qD/ (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/q)* [m              | $C (m^3/Pa) =$                  | NA               | C (m³/Pa) =                                  | 2.2E-1        |
| 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br>1/q.(           | $C_D(-) =$                      | NA               | C <sub>D</sub> (-) =                         | 2.4E-0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er e e<br>gantare de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | ξ (-) =                         | 2.8              | ξ (-) =                                      | 1.0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 <sup>1</sup>       |                                 |                  |                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And the transfer of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | $T_{GRF}(m^2/s) =$              | NA               | $T_{GRF}(m^2/s) =$                           | NA            |
| 10 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 <sup>5</sup> 10 <sup>6</sup> 10 <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                    | $S_{GRF}(-) =$                  | NA               | $S_{GRF}(-) =$                               | NA            |
| 10 <sup>3</sup> 10 <sup>4</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10° 10° 10′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | D <sub>GRF</sub> (-) =          | NA               | D <sub>GRF</sub> (-) =                       | NA            |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Selected repres                 | sentative paran  |                                              |               |
| 10, <sup>3</sup> 10, <sup>2</sup> Elapsed time [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | dt <sub>1</sub> (min) =         | NA               | C (m <sup>3</sup> /Pa) =                     | 2.2E-1        |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                     | $dt_2 \text{ (min)} =$          | NA               | $C_D(-) =$                                   | 2.4E-0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                   | $T_T (m^2/s) =$                 | 2.5E-09          |                                              | 1.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | S (-) =                         | 1.0E-06          |                                              | ]<br>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>       | $K_s (m/s) =$                   | 5.0E-10          |                                              |               |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $S_s(11/s) =$ $S_s(1/m) =$      | 2.0E-07          |                                              |               |
| \(\frac{1}{2}\).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 2                  |                                 | 2.0L-07          |                                              |               |
| ad of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·p0)* [kF             | The recommends.                 | 1 transmissi-it- | F2 5E 0 m2/a 1                               | arized from 4 |
| // :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 10 1KPal           | radial flow analysis            |                  | f 2.5E-9 m2/s was do<br>se (inner zone), whi |               |
| 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | å                     | radiai iron anaryo              |                  | he confidence range                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                     |                                 |                  | E-10 to 5.0E-09 m <sup>2</sup>               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                  | oth, was derived from                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                  |                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>0</sup>       |                                 |                  | on in the Horner plo                         |               |

|                                                                    | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sumi                   | mary Sheet                          |                     |                                   |                   |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------|---------------------|-----------------------------------|-------------------|
| Project:                                                           | Oskarshamn site inves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stigatior              | Test type:[1]                       |                     |                                   | CHi               |
| Area:                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _axemaı                | Test no:                            |                     |                                   |                   |
| Borehole ID:                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KLX11A                 | Test start:                         |                     |                                   | 060715 15:53      |
| Test section from - to (m):                                        | 503.00-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08 00 m                | Responsible for                     |                     |                                   | Stephan Rohs      |
| . ,                                                                | 303.00-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | test execution:                     |                     |                                   | ·                 |
| Section diameter, 2·r <sub>w</sub> (m):                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                  | Responsible for<br>test evaluation: |                     | Crist                             | ian Enachescı     |
| Linear plot Q and p                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Flow period                         |                     | Recovery period                   |                   |
| 5000 T                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 0.050                | Indata                              |                     | Indata                            |                   |
| KLX11A_503.00-508.00_060715_1_CHir_Q_r                             | P section P above P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | p <sub>0</sub> (kPa) =              | 4700                |                                   |                   |
| 4950                                                               | • Pbelov<br>• Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | p <sub>i</sub> (kPa ) =             | 4705                |                                   |                   |
| 4900 -                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.040                  | $p_p(kPa) =$                        |                     | p <sub>F</sub> (kPa ) =           | 473               |
|                                                                    | : "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | $Q_p (m^3/s) =$                     | 2.83E-07            |                                   |                   |
| 중 4850 -<br>소<br>조                                                 | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.030 E                | tp (s) =                            | 1200                | $t_F$ (s) =                       | 120               |
| 2 de de de de de de de de de de de de de                           | <u>i</u> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Injection Rate [limin] | S el S <sup>*</sup> (-)=            | 1.00E-06            | S el S* (-)=                      | 1.00E-0           |
| Q 4750.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.000<br>= 0.000 =   | $EC_w (mS/m)=$                      |                     |                                   |                   |
| - 4/50                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>,</b>               | Temp <sub>w</sub> (gr C)=           | 14.1                |                                   |                   |
| 4700                                                               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.010                  | Derivative fact.                    | = 0.1               | Derivative fact.=                 | 0.0               |
| 4850                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                      |                                     |                     |                                   |                   |
| 4600 .00 0.20 0.40 0.80 0.80 1.00                                  | 120 1.40 1.60 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                  | Results                             |                     | Results                           |                   |
| Elapsed Time                                                       | s (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Q/s $(m^2/s)=$                      | 1.5E-08             |                                   |                   |
| Log-Log plot incl. derivates- flo                                  | w period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | $T_M (m^2/s) =$                     | 1.3E-08             |                                   |                   |
| Element time (h)                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Flow regime:                        | transient           | Flow regime:                      | transient         |
| 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>2</sup> Elapsed unite [ii] | ·1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | $dt_1 (min) =$                      | 1.76                | $dt_1 (min) =$                    | NA                |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $dt_2 (min) =$                      |                     | $dt_2 \text{ (min)} =$            | NA                |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                    | $T (m^2/s) =$                       |                     | $T (m^2/s) =$                     | 1.1E-0            |
|                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | S (-) =                             | 1.0E-06             | ` '                               | 1.0E-0            |
| 10 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>        | $K_s (m/s) =$                       |                     | $K_s(m/s) =$                      | 2.2E-0            |
| · · · · · · · · · · · · · · · · · · ·                              | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |                        | $S_s(1/m) =$                        | -                   | $S_s(11/s) = S_s(1/m) = S_s(1/m)$ | 2.2L-0<br>2.0E-0  |
| indp. (14t D)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                     |                                     |                     | . , ,                             |                   |
| J <sup>d</sup> D                                                   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . (1/a)                | $C (m^3/Pa) =$                      | NA                  | C (m <sup>3</sup> /Pa) =          | 7.7E-1            |
| 10 0                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 <sup>1</sup>        | $C_D(-) =$                          | NA 1.0              | $C_D(-) =$                        | 8.5E-0            |
| • • •                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                      | ξ (-) =                             | 1.3                 | ξ (-) =                           | 1.:               |
|                                                                    | .*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                      | 2                                   | 7.05.00             | 2                                 |                   |
|                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | $T_{GRF}(m^2/s) =$                  | 7.9E-09             | GRE(III 70)                       | NA                |
| 10 <sup>3</sup> 10 <sup>4</sup>                                    | 10 10 10 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107                    | $S_{GRF}(-) =$                      | 1.0E-06             |                                   | NA                |
| ·                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $D_{GRF}$ (-) =                     |                     | D <sub>GRF</sub> (-) =            | NA                |
| Log-Log plot incl. derivatives- ı                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                     | sentative paran     |                                   |                   |
| Bapsed time (h)                                                    | 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>            | $dt_1$ (min) =                      | NA                  | C (m³/Pa) =                       | 7.7E-1            |
| 10"                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                    | $dt_2$ (min) =                      | NA                  | $C_D(-) =$                        | 8.5E-0            |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $T_T (m^2/s) =$                     | 1.1E-08             |                                   | 1.3               |
| · ·                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>        | S (-) =                             | 1.0E-06             |                                   |                   |
| 10 °                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ī                      | $K_s$ (m/s) =                       | 2.2E-09             |                                   |                   |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                     | $S_s (1/m) =$                       | 2.0E-07             |                                   |                   |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , KPa                  | Comments:                           | •                   | -                                 |                   |
| -   *****                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 6                  | The recommende                      | d transmissivity of | f 1.1E-08 m2/s was                | derived from th   |
| 10-11                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 00-0                 | radial flow analys                  | sis of the CHir pha | se, which shows the               | better data and   |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                      |                                     |                     | range for the interva             |                   |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                     |                     | 08 m2/s. The static p             |                   |
| +                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10°                    |                                     |                     | derived from the CH               |                   |
| <u> </u>                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | straight line extra                 | polation in the Ho  | rner plot to a value              | 01 4,08 / .3 KPa. |
| 10 <sup>6</sup> 10 <sup>1</sup> tD/CD                              | 10 <sup>2</sup> 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104                    | I                                   |                     |                                   |                   |

|                                                                       | Test Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ımı                     | mary Sheet                       |                   |                         |                 |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|-------------------|-------------------------|-----------------|
| Project:                                                              | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atior                   | Test type:[1]                    |                   |                         | CHi             |
| Area:                                                                 | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ema                     | Test no:                         |                   |                         |                 |
| Borehole ID:                                                          | KL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X11A                    | Test start:                      |                   |                         | 060715 18:09    |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |                   |                         |                 |
| Test section from - to (m):                                           | 508.00-513.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 m                    | Responsible for test execution:  |                   |                         | Stephan Roh     |
| Section diameter, 2·r <sub>w</sub> (m):                               | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.076                   | Responsible for test evaluation: |                   | Crist                   | ian Enachescı   |
| Linear plot Q and p                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Flow period                      |                   | Recovery period         |                 |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Indata                           |                   | Indata                  |                 |
| . KLX11A_508.0                                                        | 0-513.00_060715_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                    | p <sub>0</sub> (kPa) =           | 4747              |                         |                 |
| 4950                                                                  | P below<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | p <sub>i</sub> (kPa ) =          | 4751              |                         |                 |
| · : :                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04                    | $p_p(kPa) =$                     | 4950              | p <sub>F</sub> (kPa ) = | 4740            |
| 4900                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $Q_p (m^3/s) =$                  | 2.67E-07          |                         |                 |
| Te de de de de de de de de de de de de de                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03 E                  | tp (s) =                         | 1200              | t <sub>F</sub> (s) =    | 720             |
| 2 9999                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rate []/m               | S el S <sup>*</sup> (-)=         |                   | S el S* (-)=            | 1.00E-0         |
| 4800 -                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | njection Rate           | EC <sub>w</sub> (mS/m)=          |                   | 3 61 3 (-)-             |                 |
| å line                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02 -                  | Temp <sub>w</sub> (gr C)=        | 14.2              |                         |                 |
| 4750                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Derivative fact.=                | -                 | Derivative fact.=       | 0.0             |
| 4700                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                    | Derivative lact.                 | 0.1               | Derivative fact.        | 0.0             |
|                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                  |                   |                         |                 |
| 0.00 0.50 1.00 1.50 Elapsed                                           | 200 250 3.00<br>Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                    | Results                          | •                 | Results                 | •               |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Q/s $(m^2/s)=$                   | 1.3E-08           |                         |                 |
| Log-Log plot incl. derivates- f                                       | low period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | $T_{\rm M} (m^2/s) =$            | 1.1E-08           |                         |                 |
| _ Elapsed time                                                        | (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | Flow regime:                     | transient         | Flow regime:            | transient       |
| 101 1013 1012                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $dt_1 (min) =$                   | 1.68              | $dt_1$ (min) =          | 0.7             |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 <sup>2</sup>          | $dt_2 \text{ (min)} =$           |                   | $dt_2 \text{ (min)} =$  | 2.0             |
| _                                                                     | Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of th |                         | $T (m^2/s) =$                    |                   | $T (m^2/s) =$           | 1.3E-0          |
| · · · · · · · · · · · · · · · · · · ·                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                      | S (-) =                          | 1.0E-06           | . , ,                   | 1.0E-0          |
| 100                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | $K_s (m/s) =$                    |                   | $K_s(m/s) =$            | 2.6E-0          |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>1</sup>         | - ,                              |                   |                         |                 |
| (1)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | min/II                  | $S_s(1/m) =$                     |                   | $S_s (1/m) =$           | 2.0E-0          |
| 1,40                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,(9).                  | $C (m^3/Pa) =$                   | NA                | $C (m^3/Pa) =$          | 1.8E-1          |
| 10-1                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/0                     | $C_D(-) =$                       | NA                | $C_D(-) =$              | 2.0E-0          |
|                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 <sup>0</sup>          | ξ (-) =                          | -1.5              | ξ (-) =                 | -0.3            |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |                   |                         |                 |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).3                     | $T_{GRF}(m^2/s) =$               |                   | $T_{GRF}(m^2/s) =$      | 1.3E-0          |
| 100 101                                                               | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $S_{GRF}(-) =$                   | 1.0E-06           | $S_{GRF}(-) =$          | 1.0E-0          |
| 1C                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $D_{GRF}$ (-) =                  | 1.9               | $D_{GRF}$ (-) =         | 1.80            |
| Log-Log plot incl. derivatives                                        | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Selected repres                  | entative paran    | neters.                 |                 |
| Elapsed time   10, <sup>4</sup> , 10, <sup>3</sup> , 10, <sup>2</sup> | h]10 <sup>-1</sup> 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | $dt_1$ (min) =                   | 0.70              | C (m³/Pa) =             | 1.8E-1          |
| 10 4                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                      | $dt_2$ (min) =                   | 2.08              | C <sub>D</sub> (-) =    | 2.0E-0          |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $T_T (m^2/s) =$                  | 1.3E-08           | ξ(-) =                  | -0.             |
|                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                       | S (-) =                          | 1.0E-06           |                         |                 |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $K_s (m/s) =$                    | 2.6E-09           |                         |                 |
| 10 1                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                       | $S_s(1/m) =$                     | 2.0E-07           |                         |                 |
| a ]                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŘΡaj                    |                                  | 0,                |                         |                 |
| a .                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∞<br>p-p0, (p-p0)' [kPa | The recommender                  | transmissivity o  | f 1.3E-08 m2/s was      | derived from th |
| poere                                                                 | in the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p-p0, (                 | radial flow analys               |                   | se, which shows the     |                 |
| 10                                                                    | 30 A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                  |                   | ange for the interval   |                 |
| .//.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | is estimated to be               | 7.0E-09 to 3.0E-0 | 08 m2/s (this range i   | ncludes the     |
|                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                       | derived transmissi               | vity from the CH  | i phase). The static p  | oressure        |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |                   | derived from the CH     |                 |
| 100 101                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |                   | rner plot to a value    |                 |

|                                                                                                                                | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | umr                                                     | nary Sheet                                                                                                                                                 |                                                                                                                   |                                                               |                                                          |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|
| Project:                                                                                                                       | Oskarshamn site investi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gation                                                  | Test type:[1]                                                                                                                                              |                                                                                                                   |                                                               | CHi                                                      |
| Area:                                                                                                                          | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cemar                                                   | Test no:                                                                                                                                                   |                                                                                                                   |                                                               | 3                                                        |
| Borehole ID:                                                                                                                   | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X11A                                                    | Test start:                                                                                                                                                |                                                                                                                   |                                                               | 060808 15:30                                             |
| Test section from - to (m):                                                                                                    | 513.00-518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .00 m                                                   | Responsible for                                                                                                                                            |                                                                                                                   |                                                               | Stephan Rohs                                             |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 076                                                   | test execution:<br>Responsible for                                                                                                                         |                                                                                                                   | Criet                                                         | ian Enachescu                                            |
| Section diameter, 21 <sub>w</sub> (III).                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.076                                                   | test evaluation:                                                                                                                                           |                                                                                                                   | Crist                                                         | ian Enachesci                                            |
| Linear plot Q and p                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | Flow period                                                                                                                                                |                                                                                                                   | Recovery period                                               |                                                          |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | Indata                                                                                                                                                     |                                                                                                                   | Indata                                                        |                                                          |
| 5100                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T 2.0                                                   | p <sub>0</sub> (kPa) =                                                                                                                                     | 4797                                                                                                              |                                                               |                                                          |
| : KLX11A_513.00-518.00                                                                                                         | ₄ P above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8                                                     | p <sub>i</sub> (kPa ) =                                                                                                                                    | 4795                                                                                                              |                                                               |                                                          |
|                                                                                                                                | P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                     | $p_p(kPa) =$                                                                                                                                               | 4996                                                                                                              | p <sub>F</sub> (kPa ) =                                       | 479                                                      |
| 5000 -                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1.4                                                   | $Q_p (m^3/s) =$                                                                                                                                            | 1.93E-05                                                                                                          |                                                               |                                                          |
| [편<br>보 4950 -                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2 =                                                   | tp (s) =                                                                                                                                                   | 1200                                                                                                              | t <sub>F</sub> (s) =                                          | 120                                                      |
| P ress                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0 R                                                   | S el S <sup>*</sup> (-)=                                                                                                                                   |                                                                                                                   | S el S <sup>*</sup> (-)=                                      | 1.00E-0                                                  |
| 9                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2 1.2 1.2 1.2 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | EC <sub>w</sub> (mS/m)=                                                                                                                                    | 1.002 00                                                                                                          | 3 61 3 (-)=                                                   | 1.002 0                                                  |
| 4850 -                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6                                                     | Temp <sub>w</sub> (gr C)=                                                                                                                                  | 14.3                                                                                                              |                                                               |                                                          |
| 4800                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 0.4                                                   | Derivative fact.=                                                                                                                                          |                                                                                                                   | Derivative fact.=                                             | 0.0                                                      |
| 4750                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2                                                     | Derivative fact.                                                                                                                                           | 0.02                                                                                                              | Derivative lact.                                              | 0.0                                                      |
| 0.00 0.20 0.40 0.60 0.80                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.80                                                    |                                                                                                                                                            |                                                                                                                   |                                                               |                                                          |
| Elapsed                                                                                                                        | fTime [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | Results                                                                                                                                                    |                                                                                                                   | Results                                                       |                                                          |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | $Q/s (m^2/s) =$                                                                                                                                            | 9.4E-07                                                                                                           |                                                               |                                                          |
| Log-Log plot incl. derivates- f                                                                                                | low period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | $T_M (m^2/s) =$                                                                                                                                            | 7.8E-07                                                                                                           |                                                               |                                                          |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | Flow regime:                                                                                                                                               | transient                                                                                                         | Flow regime:                                                  | transient                                                |
| 10, <sup>-4</sup> 10, <sup>-3</sup> Bapsed tim                                                                                 | 10,-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                       | $dt_1$ (min) =                                                                                                                                             | 0.64                                                                                                              | $dt_1$ (min) =                                                | 1.1                                                      |
| SKB Laxemar / KLX11A<br>513.00-518.00 / CH                                                                                     | Flow Dm Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         | $dt_2 (min) =$                                                                                                                                             | 16.82                                                                                                             | $dt_2 (min) =$                                                | 8.73                                                     |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | $T (m^2/s) =$                                                                                                                                              | 1.5E-06                                                                                                           | $T (m^2/s) =$                                                 | 4.0E-0                                                   |
| 101                                                                                                                            | 0 000 00 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10°                                                     | S (-) =                                                                                                                                                    | 1.0E-06                                                                                                           | ` '                                                           | 1.0E-0                                                   |
|                                                                                                                                | :<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | $K_s (m/s) =$                                                                                                                                              |                                                                                                                   | $K_s (m/s) =$                                                 | 8.0E-0                                                   |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | S <sub>s</sub> (1/m) =                                                                                                                                     |                                                                                                                   | S <sub>s</sub> (1/m) =                                        | 2.0E-0                                                   |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>-1</sup> [[wim] (b/t)                           | C (m <sup>3</sup> /Pa) =                                                                                                                                   | NA                                                                                                                | C (m <sup>3</sup> /Pa) =                                      | 4.9E-10                                                  |
| 1/dD                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/4, (1/4)                                              | $C_D(-) =$                                                                                                                                                 | NA                                                                                                                | $C_D(-) =$                                                    | 5.4E-0                                                   |
|                                                                                                                                | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |                                                                                                                                                            |                                                                                                                   |                                                               | 19.                                                      |
| 10 <sup>-1</sup>                                                                                                               | T= 1.48E-06 m2/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-2                                                    | ξ (-) =                                                                                                                                                    | 2.0                                                                                                               | ξ (-) =                                                       | 19.                                                      |
| FLOWMODEL: Homogeneous BOUNDARY CONDITIONS Constant pressure WELL TYPE SUPER-OSITION TYPE: No superposition RLOT TYPE: Liggleg | S= 1.00E-06 -<br>n= 2.00E+00 -<br>s= 2.59E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | $T_{GRF}(m^2/s) =$                                                                                                                                         | NA                                                                                                                | $T_{GRF}(m^2/s) =$                                            | NA                                                       |
| 10.5 10.6                                                                                                                      | 10 <sup>7</sup> 10 <sup>8</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-3                                                    | $S_{GRF}(-) =$                                                                                                                                             | NA                                                                                                                | $S_{GRF}(-) =$                                                | NA                                                       |
| t                                                                                                                              | D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | D <sub>GRF</sub> (-) =                                                                                                                                     | NA                                                                                                                | D <sub>GRF</sub> (-) =                                        | NA                                                       |
| Log-Log plot incl. derivatives                                                                                                 | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | Selected represe                                                                                                                                           |                                                                                                                   |                                                               |                                                          |
| 0 01                                                                                                                           | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | dt₁ (min) =                                                                                                                                                |                                                                                                                   | $C (m^3/Pa) =$                                                | 4.9E-10                                                  |
| Elapsed time 10,-3 10,-2                                                                                                       | [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         | $dt_2 \text{ (min)} =$                                                                                                                                     |                                                                                                                   | $C_D(-) =$                                                    | 5.4E-0                                                   |
| 10 <sup>2</sup> SKB Laxemar / KLX11A<br>513.00-518.00 / OHir                                                                   | Flow Dim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                            | 4.0E-06                                                                                                           |                                                               | 19.9                                                     |
| 1                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300                                                     | $T_{T} (m^{2}/s) = S (-) =$                                                                                                                                | 4.0E-06                                                                                                           |                                                               | 19.3                                                     |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | <b>■</b> (2)(-) =                                                                                                                                          | ■ LUE-UN                                                                                                          |                                                               |                                                          |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                            |                                                                                                                   |                                                               |                                                          |
| 101                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>2</sup>                                         | K <sub>s</sub> (m/s) =                                                                                                                                     | 8.0E-07                                                                                                           |                                                               |                                                          |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>2</sup>                                         | $K_s (m/s) = S_s (1/m) =$                                                                                                                                  |                                                                                                                   |                                                               |                                                          |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | K <sub>s</sub> (m/s) =<br>S <sub>s</sub> (1/m) =<br>Comments:                                                                                              | 8.0E-07<br>2.0E-07                                                                                                |                                                               |                                                          |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>2</sup>                                         | $K_s (m/s) = S_s (1/m) = Comments:$ The recommended                                                                                                        | 8.0E-07 2.0E-07 transmissivity of                                                                                 | f 4.0•10-6 m2/s was                                           |                                                          |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10° [6-b] (04-d) (                                      | $K_s$ (m/s) = $S_s$ (1/m) = $Comments$ : The recommended the radial flow anal                                                                              | 8.0E-07 2.0E-07 transmissivity of ysis of the CHir                                                                | phase, because it sh                                          | ows the most                                             |
| 10 <sup>3</sup> RLOWMODEL : Homogeneous                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10° [6-b] (04-d) (                                      | K <sub>s</sub> (m/s) = S <sub>s</sub> (1/m) = Comments: The recommended the radial flow anal clear derivative stal                                         | 8.0E-07 2.0E-07 transmissivity of ysis of the CHir bilization. The c                                              | phase, because it sh<br>onfidence range for                   | ows the most<br>the interval                             |
| 10 <sup>-7</sup>                                                                                                               | \$2 488E18 ms/bs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10° [6-b] (04-d) (                                      | K <sub>s</sub> (m/s) = S <sub>s</sub> (1/m) = Comments: The recommended the radial flow anal clear derivative stal transmissivity is est                   | 8.0E-07 2.0E-07 transmissivity of ysis of the CHir bilization. The ctimated to be 2.0                             | phase, because it shoonfidence range for DE-6 to 6.0E-6 m2/s. | ows the most<br>the interval<br>The static               |
| 10 <sup>3</sup> RLOW MODEL : Homogeneous                                                                                       | \$\frac{1}{2} \frac{1}{2} \frac | 10 <sup>2</sup> Real.(00-0) odd                         | K <sub>s</sub> (m/s) = S <sub>s</sub> (1/m) = Comments: The recommended the radial flow anal clear derivative stal transmissivity is est pressure measured | 8.0E-07 2.0E-07 transmissivity of ysis of the CHir bilization. The c timated to be 2.0 at transducer departments. | phase, because it sh<br>onfidence range for                   | ows the most<br>the interval<br>The static<br>m the CHir |

|                 |                                                                                                                                        | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sumr                                           | nary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                                                             |                                                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|
| Pro             | ject:                                                                                                                                  | Oskarshamn site invest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | igation                                        | Test type:[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      |                                                                             | CHi                                                    |
| Are             | a:                                                                                                                                     | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | xemar                                          | Test no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      |                                                                             |                                                        |
| Bor             | rehole ID:                                                                                                                             | KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LX11A                                          | Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                             | 060808 17:47                                           |
| Tes             | st section from - to (m):                                                                                                              | 518.00-523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.00 m                                         | Responsible for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                    |                                                                             | Stephan Rohs                                           |
| Sec             | ction diameter, 2·r <sub>w</sub> (m):                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                                          | test execution:<br>Responsible for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      | Criet                                                                       | ian Enachescu                                          |
|                 | ` ,                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.070                                          | test evaluation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | Onst                                                                        | Idii Endenesee                                         |
| Lin             | ear plot Q and p                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | Recovery period                                                             |                                                        |
|                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | Indata                                                                      |                                                        |
| 5100            | KLX11A_518.00-523.00_060808_1_CHir_Q_r                                                                                                 | • P sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | etion 8                                        | p <sub>0</sub> (kPa) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4844                                                                                                 |                                                                             |                                                        |
| 5050            |                                                                                                                                        | P abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | p <sub>i</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4842                                                                                                 |                                                                             |                                                        |
|                 |                                                                                                                                        | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                             | $p_p(kPa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | p <sub>F</sub> (kPa ) =                                                     | 484                                                    |
| 5000            | :                                                                                                                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | $Q_p (m^3/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.12E-05                                                                                             |                                                                             |                                                        |
| ante (KPa)      | . :                                                                                                                                    | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 5 [m]                                        | tp (s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1200                                                                                                 | $t_F$ (s) =                                                                 | 120                                                    |
| Pres            | •                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s                                              | S el S <sup>*</sup> (-)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00E-06                                                                                             | S el S <sup>*</sup> (-)=                                                    | 1.00E-0                                                |
| 90 4900<br>4900 | •                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | njectio                                        | EC <sub>w</sub> (mS/m)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                                                                             |                                                        |
| 4850            |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Temp <sub>w</sub> (gr C)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4                                                                                                 |                                                                             |                                                        |
|                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                              | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                                                                                                 | Derivative fact.=                                                           | 0.0                                                    |
| 4800            | -                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                             |                                                        |
| 4750<br>0       | :<br>0.00 0.20 0.40 0.60 0.80 1.00<br>Elapsed Tin                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00                                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | Results                                                                     |                                                        |
|                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.55.00                                                                                              |                                                                             | 1                                                      |
|                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Q/s $(m^2/s)=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5E-06                                                                                              |                                                                             |                                                        |
| LO              | g-Log plot incl. derivates- flo                                                                                                        | w perioa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | $T_{\rm M} ({\rm m}^2/{\rm s}) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1E-06                                                                                              |                                                                             |                                                        |
|                 | Bapsed time [h]                                                                                                                        | .10 <sup>-2</sup> 10 <sub>-</sub> <sup>-1</sup> 10 <sub>-</sub> <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                | Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | transient                                                                                            | Flow regime:                                                                | transient                                              |
| 10 <sup>2</sup> |                                                                                                                                        | .10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ь                                              | $dt_1 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      | $dt_1 (min) =$                                                              | 1.0                                                    |
| -               | 518.00-323.007 CH                                                                                                                      | (c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10°                                            | $dt_2 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      | $dt_2 (min) =$                                                              | 9.1                                                    |
| - 1             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      | $T (m^2/s) =$                                                               | 4.7E-0                                                 |
|                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                            | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0E-06                                                                                              |                                                                             | 1.0E-0                                                 |
| 10 <sup>1</sup> | •                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | $K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1E-06                                                                                              | $K_s (m/s) =$                                                               | 9.4E-0                                                 |
| ja l            |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-1</sup> =                             | $S_s (1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0E-07                                                                                              | $S_s (1/m) =$                                                               | 2.0E-0                                                 |
| (db)            |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1/q)' [min/]                                  | $C (m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                   | $C (m^3/Pa) =$                                                              | 1.2E-0                                                 |
| 100             | • •                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03 🕏                                         | $C_D(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                   | $C_D(-) =$                                                                  | 1.3E-0                                                 |
|                 | -                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | ξ(-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.4                                                                                                  | ξ(-) =                                                                      | 3.3                                                    |
| 1               | FLOW MODEL : Homogeneous POLINDARY CONDITIONS: Constant pressure                                                                       | T= 5405.06 mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>-2</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                             |                                                        |
| ł               | FLOW MODEL : Horrogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE: Source SUFFERSTRONTYPE: No superposition FLOTTYPE: Log-log | T= 5.40E-06 m2/<br>S= 1.00E-06 -<br>n= 2.00E+00 -<br>s= 5.40E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                              | $T_{GRF}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                   | $T_{GRF}(m^2/s) =$                                                          | NA                                                     |
| 1               | 10 <sup>8</sup> 10 <sup>9</sup>                                                                                                        | 10 <sup>10</sup> 10 <sup>11</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.003                                          | $S_{GRF}(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                   | $S_{GRF}(-) =$                                                              | NA                                                     |
|                 | tD                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | D <sub>GRF</sub> (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                   | D <sub>GRF</sub> (-) =                                                      | NA                                                     |
|                 | g-Log plot incl. derivatives- r                                                                                                        | ecovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | Selected represe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                             |                                                        |
| Loc             | , 3 p                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | $dt_1$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.04                                                                                                 | C (m <sup>3</sup> /Pa) =                                                    | 1.2E-0                                                 |
| Log             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.54                                                                                                 | ,                                                                           | 1.3E-0                                                 |
| Log             | 10,-4 Bapsed time [h]                                                                                                                  | 10;-210;-110;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ື່<br>ປ້                                       | $dt_a$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q 11                                                                                                 | ( ( - ) =                                                                   | ∪∟∪                                                    |
| 10 <sup>2</sup> | Bapsed time [h]                                                                                                                        | 10; <sup>-2</sup> 10; <sup>-1</sup> 10;<br>Flow Dim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103                                            | $dt_2 (min) =$ $T_{-}(m^2/n) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.11<br>4.7F-06                                                                                      | D ( )                                                                       | 2                                                      |
| 10 <sup>2</sup> |                                                                                                                                        | 10; <sup>2</sup> 10; <sup>1</sup> 10<br>Flow Dim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103                                            | $T_T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7E-06                                                                                              | ξ (-) =                                                                     | 3.                                                     |
| 10 <sup>2</sup> |                                                                                                                                        | . 10-2 10-1 10. 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103                                            | $T_T (m^2/s) = S (-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.7E-06<br>1.0E-06                                                                                   | ξ (-) =                                                                     | 3.                                                     |
| 10 <sup>2</sup> | . 10," . 10," . 10," . 5KB Laxemer /KLX11A . 518.00-523.00 / CHr                                                                       | .10-2 10-1 10 Play Dan Version 2.14b (c) Colder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300                                            | $T_T (m^2/s) = S (-) = K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.7E-06<br>1.0E-06<br>9.4E-07                                                                        | ξ (-) =                                                                     | 3.3                                                    |
| 10 2            | . 10," . 10," . 10," . 5KB Laxemer /KLX11A . 518.00-523.00 / CHr                                                                       | 10; <sup>2</sup> 10; <sup>3</sup> 10 Plow Den Version 2146 (c) Galder Association                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300<br>10 <sup>2</sup>                         | $T_T (m^2/s) = S (-) = K_s (m/s) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1/m) = S_s (1$ | 4.7E-06<br>1.0E-06                                                                                   | ξ (-) =                                                                     | 3.3                                                    |
| 10 2            | . 10," . 10," . 10," . 5KB Laxemer /KLX11A . 518.00-523.00 / CHr                                                                       | 10-2 10-1 10. Row Den Version 2.14b (c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300<br>110 <sup>2</sup> [e <sub>2</sub> ] (004 | $T_T (m^2/s) = S (-) = K_s (m/s) = S_s (1/m) = Comments:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7E-06<br>1.0E-06<br>9.4E-07<br>2.0E-07                                                             | ξ (-) =                                                                     |                                                        |
| 10 <sup>2</sup> | . 10," . 10," . 10," . 5KB Laxemer /KLX11A . 518.00-523.00 / CHr                                                                       | 10-2 10-1 10. Row Den Version 2.14b (c) Codder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300<br>10 <sup>2</sup>                         | $T_T (m^2/s) =$ $S (-) =$ $K_s (m/s) =$ $S_s (1/m) =$ Comments: The recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7E-06<br>1.0E-06<br>9.4E-07<br>2.0E-07                                                             | ξ (-) = f 4.7E-6 m2/s was do                                                | erived from the                                        |
| 10 2            | SKB Laxemer (KLX11A<br>518.00-523.00 / CHF                                                                                             | 100-2 100-1 10 Row Dm Version 2.14b (c) Colder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300<br>110 <sup>2</sup> [e <sub>2</sub> ] (004 | $T_T (m^2/s) =$ $S (-) =$ $K_s (m/s) =$ $S_s (1/m) =$ <b>Comments:</b> The recommended radial flow analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.7E-06 1.0E-06 9.4E-07 2.0E-07 transmissivity of of the CHir pha                                    | $\xi$ (-) = f 4.7E-6 m2/s was do use, which shows the                       | erived from the                                        |
| 10 <sup>2</sup> | SKB Laxemer (KLX11A<br>518.00-523.00 / CHF                                                                                             | And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | 300 [kg/] (0d-d) 0d-d                          | $T_T (m^2/s) =$ $S (-) =$ $K_s (m/s) =$ $S_s (1/m) =$ <b>Comments:</b> The recommended radial flow analysis derivative quality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7E-06 1.0E-06 9.4E-07 2.0E-07 transmissivity of of the CHir pha                                    | $\xi$ (-) = f 4.7E-6 m2/s was do use, which shows the range for the interva | erived from the<br>better data and<br>I transmissivity |
| 10 <sup>2</sup> | . 10," . 10," . 10," . 5KB Laxemer /KLX11A . 518.00-523.00 / CHr                                                                       | And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | 300 [kg/] (0d-d) 0d-d                          | $T_T (m^2/s) =$ $S (-) =$ $K_s (m/s) =$ $S_s (1/m) =$ <b>Comments:</b> The recommended radial flow analysis derivative quality. is estimated to be 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7E-06 1.0E-06 9.4E-07 2.0E-07 transmissivity of of the CHir pha The confidence is 0.0E-6 to 7.0E-6 | $\xi$ (-) = f 4.7E-6 m2/s was do use, which shows the                       | better data and<br>I transmissivity<br>ssure measured  |

|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mary Sheet                       |                              |                                          |                                         |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|------------------------------------------|-----------------------------------------|
| Project:                                                                                                                       | Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                              |                                          | CHi                                     |
| Area:                                                                                                                          | Laxema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r Test no:                       |                              |                                          |                                         |
| Borehole ID:                                                                                                                   | IZI V447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Took otomb                       |                              |                                          | 000000 00.00                            |
| Rotenole ID:                                                                                                                   | KLX11 <i>I</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test start:                      |                              |                                          | 060809 08:08                            |
| Test section from - to (m):                                                                                                    | 523.00-528.00 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsible for test execution:  |                              |                                          | Stephan Roh                             |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                        | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsible for test evaluation: |                              | Crist                                    | ian Enachescı                           |
| Linear plot Q and p                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow period                      |                              | Recovery period                          |                                         |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                           |                              | Indata                                   | · ; · ; · ; · ; · ; · ; · ; · ; · ; · ; |
| 5200 T                                                                                                                         | - Passing ▼ 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p <sub>0</sub> (kPa) =           | 4884                         |                                          |                                         |
| KLX11A_523.00-528.00_060809_1_CHir_Q_r                                                                                         | ▲ P above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p <sub>i</sub> (kPa ) =          | 4885                         |                                          |                                         |
| 5150 -                                                                                                                         | • P below<br>• Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_p(kPa) =$                     | 5086                         | p <sub>F</sub> (kPa ) =                  | 488                                     |
| 5100 ·                                                                                                                         | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Q_p (m^3/s) =$                  | 1.43E-07                     | , , ,                                    |                                         |
| 포<br>물 5050 -                                                                                                                  | · [i/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\operatorname{tp}(s) =$         | 1200                         | t <sub>F</sub> (s) =                     | 120                                     |
| 2 5000 -                                                                                                                       | - 0.010 A Rate (//min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S el S <sup>*</sup> (-)=         |                              | S el S <sup>*</sup> (-)=                 | 1.00E-0                                 |
| Fe d 5050                                                                                                                      | nijection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EC <sub>w</sub> (mS/m)=          | 1.002 00                     | 3 61 3 (-)-                              | 1.002 0                                 |
| 200 PM                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp <sub>w</sub> (gr C)=        | 14.5                         |                                          |                                         |
| 4900                                                                                                                           | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Derivative fact.=                |                              | Derivative fact.=                        | 0.0                                     |
| 4850                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Delivative lact.                 | 0.12                         | Derivative fact.                         | 0.0                                     |
| 0.00 0.20 0.40 0.60 0.80                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                                          |                                         |
| Elapsed T                                                                                                                      | ime [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Results                          |                              | Results                                  |                                         |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q/s $(m^2/s)=$                   | 7.0E-09                      |                                          |                                         |
| Log-Log plot incl. derivates- fl                                                                                               | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T_{\rm M} (m^2/s) =$            | 5.8E-09                      |                                          |                                         |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                     | transient                    | Flow regime:                             | transient                               |
| 10 <sup>-2</sup> 10 <sup>-3</sup> Bapsed time [t                                                                               | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $dt_1$ (min) =                   | 2.47                         | $dt_1$ (min) =                           | NA                                      |
| SKB Laxemar / KLX11A<br>523.00-528.00 / CH                                                                                     | Flow Dim Version 2.14b (c) Golder Associates 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $dt_2 \text{ (min)} =$           |                              | $dt_2 \text{ (min)} =$                   | NA                                      |
|                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $T (m^2/s) =$                    |                              | $T (m^2/s) =$                            | 4.2E-0                                  |
| <u> </u>                                                                                                                       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S (-) =                          | 1.0E-06                      | ` '                                      | 1.0E-0                                  |
| 101                                                                                                                            | Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Consti | $K_s (m/s) =$                    |                              | $K_s(m/s) =$                             | 8.4E-0                                  |
|                                                                                                                                | 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                                          |                                         |
| ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $S_s(1/m) =$                     |                              | $S_s(1/m) =$                             | 2.0E-0                                  |
| 144                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C (m^3/Pa) =$                   | NA                           | $C (m^3/Pa) =$                           | 4.6E-1                                  |
| 100                                                                                                                            | -10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_D(-) =$                       | NA                           | $C_D(-) =$                               | 5.1E-0                                  |
| FLOWMODEL : Homogeneous                                                                                                        | T= 9.07E.09 m2/s<br>S= 1.00E.06 m2/s<br>n= 2.00E-00 -<br>s= 3.7Fe.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ξ (-) =                          | 3.8                          | ξ (-) =                                  | 32.                                     |
| F.OWNCOEL : Harageneous BOANARY CONDITIONS Constaint pressure WELTYFE SUBBROSTION TYPE: No superposition FLOTTYFE : Log-log    | n= 200E+00 -<br>s= 3.77E+00 -<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T (==2/=)                        | NA                           | T (==2/=)                                | NA                                      |
| 10 <sup>4</sup> 10 <sup>5</sup>                                                                                                | 10 <sup>6</sup> 10 <sup>7</sup> 10 <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{GRF}(m^2/s) = S_{GPF}(-) =$  | NA                           | $T_{GRF}(m^2/s) =$ $S_{GPF}(-) =$        | NA                                      |
| tD                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - SIRI ( )                       | NA                           | -014 ( )                                 | NA                                      |
|                                                                                                                                | was a superior d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DGRF ( )                         |                              | D <sub>GRF</sub> (-) =                   | INA                                     |
| Log-Log plot incl. derivatives-                                                                                                | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected represe                 | 2+2+2+2+2+2+2+2+272+2+2+2+2+ |                                          | 1054                                    |
| Eapsed time [                                                                                                                  | h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dt <sub>1</sub> (min) =          | NA                           | C (m <sup>3</sup> /Pa) =                 | 4.6E-1                                  |
| 10 <sup>2</sup> SKB Laxemar / KLX11A 523.00-528.00 / CHr                                                                       | Flow Dim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2 (min) =$                   | NA                           | C <sub>D</sub> (-) =                     | 5.1E-0                                  |
|                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_T (m^2/s) =$                  | 4.2E-08                      |                                          | 32.                                     |
|                                                                                                                                | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S (-) =                          | 1.0E-06                      |                                          |                                         |
| 10 <sup>-1</sup>                                                                                                               | No. of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of | $K_s (m/s) =$                    | 8.4E-09                      |                                          |                                         |
| · *//.                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S_s (1/m) =$                    | 2.0E-07                      |                                          |                                         |
| od od                                                                                                                          | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments:                        |                              |                                          |                                         |
| ;/                                                                                                                             | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                              | f 4.2E-8 m2/s was d                      |                                         |
| 100                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              | ise, which shows the                     |                                         |
|                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                              | range for the interva                    |                                         |
| T OWNED TO                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | DEXto70EQ                    | m //c The static nre                     | ssure measured                          |
| FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant rate WELL TYPE : Source SUPERPOSITION TYPE: Ananwal time                | C= 4.63E.11 mg/Pa<br>T= 4.24E.08 m2/s<br>S= 1.00E.06 -<br>s= 3.26E+01 - 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is estimated to be 1             |                              |                                          |                                         |
| FLOWINCOE : Homogeneous PROMAINE CONTINUES Constant rate WELL TYPE: Some SUFFERS SITE of TYPE: Agarwal time RLOT TYPE: Log-log | C= 4.63E-11 m8PB<br>T= 4.24E-80 m2/s<br>S= 12.8E-01 - 10.0<br>m = 2.00E+00 - 10.0<br>m = 2.00E+00 - 10.0<br>m = 2.00E+00 - 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at transducer depth,             | was derived fro              | om the CHir phase ut to a value of 4,881 | sing straight                           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mary Sheet                                                                                 |                                                                                  |                                                                                             |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investigatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Test type:[1]                                                                            |                                                                                  |                                                                                             | CHi                                                       |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r Test no:                                                                                 |                                                                                  |                                                                                             | 1                                                         |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A Test start:                                                                              |                                                                                  |                                                                                             | 060809 10:08                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  |                                                                                             |                                                           |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 528.00-533.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 Responsible for<br>test execution:                                                       |                                                                                  |                                                                                             | Stephan Rohs                                              |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 Responsible for                                                                          |                                                                                  | Crist                                                                                       | ian Enachescu                                             |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | test evaluation: Flow period                                                               |                                                                                  | Recovery period                                                                             |                                                           |
| Emour plot & una p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                                                                                     |                                                                                  | Indata                                                                                      |                                                           |
| 5200 KLX11A_528.00-533.00_060809_1_CHir_Q_r •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10<br>• P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p <sub>0</sub> (kPa) =                                                                     | 4931                                                                             | maata                                                                                       |                                                           |
| 5150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pabove Pelow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_0(kl a) =$<br>$p_i(kPa) =$                                                              | 4932                                                                             |                                                                                             |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Q 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                  | - (I-D- )                                                                                   | 402                                                       |
| 5100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p_p(kPa) =$                                                                               |                                                                                  | p <sub>F</sub> (kPa ) =                                                                     | 493                                                       |
| 호 5050 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Q_p (m^3/s) =$                                                                            | 7.83E-07                                                                         |                                                                                             |                                                           |
| 5 5000 · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tp (s) =                                                                                   |                                                                                  | $t_F$ (s) =                                                                                 | 1200                                                      |
| e :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nip et lon nip et long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S el S* (-)=                                                                               | 1.00E-06                                                                         | S el S <sup>*</sup> (-)=                                                                    | 1.00E-0                                                   |
| 4950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.04 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC <sub>w</sub> (mS/m)=                                                                    |                                                                                  |                                                                                             |                                                           |
| 4900 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temp <sub>w</sub> (gr C)=                                                                  | 14.6                                                                             |                                                                                             | 1                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Derivative fact.=                                                                          | 0.10                                                                             | Derivative fact.=                                                                           | 0.0                                                       |
| 4850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  |                                                                                             |                                                           |
| 4800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.80 1.00 1.20 1.40 Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                                                                  |                                                                                             |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                                                                                    |                                                                                  | Results                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q/s $(m^2/s)=$                                                                             | 3.8E-08                                                                          |                                                                                             |                                                           |
| Log-Log plot incl. derivates- f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | low period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T_M (m^2/s) =$                                                                            | 3.2E-08                                                                          |                                                                                             |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                                                                               | transient                                                                        | Flow regime:                                                                                | transient                                                 |
| Elapsed time [t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]<br>p, <sup>2</sup> , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $dt_1$ (min) =                                                                             | 1.09                                                                             | $dt_1$ (min) =                                                                              | 0.53                                                      |
| 10 <sup>2</sup><br>SKB Laxermar / KLX11A<br>528.00-533.00 / CHi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FlowDim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $dt_2 (min) =$                                                                             |                                                                                  | $dt_2 \text{ (min)} =$                                                                      | 1.72                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                  | , ,                                                                                         | 6.8E-0                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $T (m^2/s) =$                                                                              |                                                                                  | $T (m^2/s) =$                                                                               |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S (-) =                                                                                    | 1.0E-06                                                                          | , ,                                                                                         | 1.0E-0                                                    |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s$ (m/s) =                                                                              |                                                                                  | $K_s (m/s) =$                                                                               | 1.4E-0                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_s(1/m) =$                                                                               | 2.0E-07                                                                          | $S_s(1/m) =$                                                                                | 2.0E-0                                                    |
| (db)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $C (m^3/Pa) =$                                                                             | NA                                                                               | $C (m^3/Pa) =$                                                                              | 2.3E-1                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>(a)</sup> C <sub>D</sub> (-) =                                                        | NA                                                                               | $C_D(-) =$                                                                                  | 2.5E-03                                                   |
| 10 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ξ(-) =                                                                                     | 5.0                                                                              | ξ(-) =                                                                                      | 5.3                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                  |                                                                                             |                                                           |
| FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T= 6.70E-08 m2/s<br>S= 1.00E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{GRF}(m^2/s) =$                                                                         | NA                                                                               | $T_{GRF}(m^2/s) =$                                                                          | 3.1E-0                                                    |
| PLOT TYPE : Log-log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n= 2.00E+00 - 0.3<br>s= 5.03E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S_{GRF}(-) =$                                                                             | NA                                                                               | $S_{GRF}(-) =$                                                                              | 1.0E-0                                                    |
| 10 <sup>8</sup> 10 <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>8</sup> 10 <sup>9</sup> 10 <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D <sub>GRF</sub> (-) =                                                                     | NA                                                                               | D <sub>GRF</sub> (-) =                                                                      | 3.0                                                       |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected represe                                                                           |                                                                                  | , ,                                                                                         |                                                           |
| gg p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | у решен                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $dt_1$ (min) =                                                                             | 1.09                                                                             |                                                                                             | 2.3E-1                                                    |
| Elapsed time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . ,                                                                                        |                                                                                  |                                                                                             |                                                           |
| 10 SKB Laxemar / KLX11A<br>528.00-533.00 / CHir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FlowDim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                  | -0()                                                                                        | 2.5E-03                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_T (m^2/s) =$                                                                            | 6.7E-08                                                                          |                                                                                             | 5.0                                                       |
| ا<br>ممعور                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                                                                                    | 1.0E-06                                                                          |                                                                                             |                                                           |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $K_s (m/s) =$                                                                              | 1.3E-08                                                                          |                                                                                             |                                                           |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_s(1/m) =$                                                                               | 2.0E-07                                                                          |                                                                                             |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments:                                                                                  | •                                                                                |                                                                                             |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                  | C (7-10 0 2/2 2                                                                             | derived from                                              |
| R 10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The recommended                                                                            | transmissivity of                                                                | 1 0. /•10-8 mz/s was                                                                        |                                                           |
| B 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The recommended the radial flow anal                                                       |                                                                                  | phase, which shows                                                                          |                                                           |
| B 10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the radial flow anal                                                                       | ysis of the CHir                                                                 |                                                                                             | the better data                                           |
| 10 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T 6.825-00 m2/s<br>S 1.006-00 m2/s<br>C 2.286-11 m3/Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the radial flow anal and derivative qual                                                   | ysis of the CHir<br>ity. The confiden                                            | phase, which shows                                                                          | the better data<br>erval                                  |
| TLOW MODEL: Two shell composite GUNDARY COMDITIONS Constant the SUPERPOSITION FOR Expansed in the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposition NYPE : Rayment from the Superposit | T 6,805-00 m2/s<br>S 100-00 m2/s<br>C 2,005-11 m3/Ps<br>rd 2,005-00 - 100 n3/Ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the radial flow anal<br>and derivative qual-<br>transmissivity is est<br>pressure measured | ysis of the CHir<br>ity. The confident<br>simated to be 3.0<br>at transducer dep | phase, which shows<br>nee range for the inte<br>10-8 to 9.0•10-8 m<br>oth, was derived from | the better data<br>erval<br>2/s. The static<br>m the CHir |
| TO TO TWO MODEL. Two shell composite BOUMDARY CONDITIONS Constant rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T 6.825-08 m2/s S 1.005-00 - 2/s S 1.005-00 - 2 C 2.265-11 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-10 mSP-9 2 2.055-1 | the radial flow anal<br>and derivative qual-<br>transmissivity is est<br>pressure measured | ysis of the CHir<br>ity. The confident<br>simated to be 3.0<br>at transducer dep | phase, which shows<br>nee range for the inter-<br>10-8 to 9.0•10-8 m                        | the better data<br>erval<br>2/s. The static<br>m the CHir |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mn                      | nary Sheet                                    |                   |                                          |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------|-------------------|------------------------------------------|-----------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation                   | Test type:[1]                                 |                   |                                          | CHi             |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mar                     | Test no:                                      |                   |                                          |                 |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KI X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11A                     | Test start:                                   |                   |                                          | 060809 12:4     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                               |                   |                                          |                 |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 533.00-538.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | Responsible for test execution:               |                   |                                          | Stephan Roh     |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .076                    | Responsible for                               |                   | Crist                                    | ian Enachesc    |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | test evaluation: Flow period                  |                   | Recovery period                          |                 |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Indata                                        |                   | Indata                                   |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | p <sub>0</sub> (kPa) =                        | 4983              |                                          |                 |
| 5250 KLX11A_533.00-538.00_060809_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • P section 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | p <sub>i</sub> (kPa ) =                       | 4981              |                                          |                 |
| 5200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • P below • Q 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | $p_p(kPa) =$                                  | 5180              | p <sub>F</sub> (kPa ) =                  | 498             |
| = 5150 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                       | $Q_p (m^3/s) =$                               | 1.67E-06          | ,                                        |                 |
| e jk Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • 0.1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | min.                    | tp (s) =                                      |                   | t <sub>F</sub> (s) =                     | 120             |
| F 5150 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rate [l/min]            | S el S <sup>*</sup> (-)=                      |                   | S el S <sup>*</sup> (-)=                 | 1.00E-0         |
| 5050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mjection F              | EC <sub>w</sub> (mS/m)=                       | 1.002 00          | 3 61 3 (-)-                              | 1.002 0         |
| 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e<br>Inje               | Temp <sub>w</sub> (gr C)=                     | 14.6              |                                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                       | Derivative fact.=                             |                   | Derivative fact.=                        | 0.0             |
| 4950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                       | Derivative lact.                              | 0.07              | Derivative fact.                         | 0.0             |
| 0.00 0.20 0.40 0.60 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00 1.20 1.40 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                       |                                               |                   |                                          |                 |
| Elapsed Til                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Results                                       |                   | Results                                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Q/s $(m^2/s)=$                                | 8.2E-08           |                                          |                 |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | $T_{\rm M} (m^2/s) =$                         | 6.8E-08           |                                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | Flow regime:                                  | transient         | Flow regime:                             | transient       |
| Bapsed time (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | dt <sub>1</sub> (min) =                       |                   | dt <sub>1</sub> (min) =                  | NA              |
| SKB Laxemar / KLX11A<br>533.00-538.00 / CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flow Dim Version 2 14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $dt_2 (min) =$                                |                   | $dt_2 \text{ (min)} =$                   | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                       | 3                                             |                   | $T (m^2/s) =$                            | 3.7E-0          |
| •• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1                      | T (m2/s) = S (-) =                            | 1.0E-06           | ` '                                      | 1.0E-0          |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                       | $K_s (m/s) =$                                 |                   | $K_s(m/s) =$                             | 7.4E-0          |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                               |                   |                                          |                 |
| days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o<br>'q. (1/q)" [min/l] | $S_s(1/m) =$                                  |                   | S <sub>s</sub> (1/m) =                   | 2.0E-0          |
| ž ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/q, (1/k               | C (m <sup>3</sup> /Pa) =                      | NA                | $C (m^3/Pa) =$                           | 3.0E-1          |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | C <sub>D</sub> (-) =                          | NA o =            | C <sub>D</sub> (-) =                     | 3.3E-0          |
| FLOW MODEL : Homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T= 1.68E.07 m2/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                       | ξ (-) =                                       | 6.5               | ξ (-) =                                  | 21.             |
| FLOWMODEL: Homogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE SUFFEY: No superposition FLOT TYPE: Log bg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T= 1.68E,07 m2/s<br>S= 1.00E,00 -<br>n= 2.00E,00 -<br>s= 6.45E,00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .d                      | $T_{GRF}(m^2/s) =$                            | 2 8F-08           | $T_{GRF}(m^2/s) =$                       | NA              |
| 10 <sup>8</sup> 10 <sup>9</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 10 10 11 10 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>'</i>                | $S_{GRF}(-) =$                                | 1.0E-06           |                                          | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | D <sub>GRF</sub> (-) =                        |                   | D <sub>GRF</sub> (-) =                   | NA              |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Selected represe                              |                   |                                          |                 |
| Log Log plot mon denvanves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ecovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | $dt_1$ (min) =                                | NA                |                                          | 3.0E-1          |
| 10.21 Bapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA                | $C (m^3/Pa) = C_D (-) =$                 | 3.3E-0          |
| SKB Laxemar / KLX11A<br>533.00-538.00 / CHr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flow Dim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 2                                             | 3.7E-07           |                                          | 21.             |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | $T_T (m^2/s) = $ $S (-) = $                   | 1.0E-06           |                                          |                 |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $K_s (m/s) =$                                 | 7.4E-08           |                                          | 1               |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $S_s(11/s) =$ $S_s(1/m) =$                    | 2.0E-07           |                                          | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>[</u>                | Comments:                                     | 2.UL-U/           |                                          | <u>I</u>        |
| £   /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >p0. (pp0)' [kPa]       |                                               | tronomissit       | f 2 7E 7 m2/== 1                         | arived from 4 - |
| 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p-pc                    |                                               |                   | f 3.7E-7 m2/s was do se, which shows the |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                         |                                               |                   | ange for the interva                     |                 |
| FLOW MODEL: Homogeneous BOUNDARY CONDITIONS: Constant rate WELLTYFE Source SUFFENCION TYPE: Again wal time PLOT TYPE: Log-log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C= 2.96E-11 m3/Pa<br>T= 3.74E-07 m2/s<br>S= 1.00E-06 =<br>s= 2.13E-01 =<br>n= 2.00E-00 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                               |                   | m2/s. The static pre-                    |                 |
| PLOTTYPE : Log-log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s= 2.13E+01 -<br>n= 2.00E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                       | at transducer depth,                          | , was derived fro | m the CHir phase u                       | sing straight   |
| 10 <sup>1</sup> 10 <sup>2</sup> tD(CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103 104 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | line extrapolation in                         | n the Horner plo  | t to a value of 4,980                    | .7 kPa.         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                               |                   |                                          |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                        | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sumr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       | Oskarsham                              | ın site invest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test type:[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СН                                                                                                                                              |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                       |                                        | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | axemar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| Borehole ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                                                                                                                                                                                     |                                        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LX11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 060809 14:4                                                                                                                                     |
| Test section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | from - to (m):                                                                                                                                                                        |                                        | 538.00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 543.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Responsible fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stephan Roh                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` ,                                                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | test execution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 |
| Section dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | neter, 2·r <sub>w</sub> (m):                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Responsible fo<br>test evaluation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Crist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ian Enachesc                                                                                                                                    |
| Linear plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q and p                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                 |
| 5300<br>KLX11A_538.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-543.00_060809_1_CHir_Q_r                                                                                                                                                            |                                        | P sectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.008<br>on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p_0$ (kPa) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| 5250 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                        | P above     P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p <sub>i</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| 5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                     |                                        | -Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $p_p(kPa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p <sub>F</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 503                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Q_p (m^3/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.33E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| 면<br>보 5150 ·<br>인                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | į                                                                                                                                                                                     | :                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l/m in ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tp (s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $t_F$ (s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120                                                                                                                                             |
| enses 5100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                       | :                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rate [//min]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S el S <sup>*</sup> (-)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S el S <sup>*</sup> (-)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00E-0                                                                                                                                         |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $EC_w (mS/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0.0 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                 |
| 5050<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp <sub>w</sub> (gr C)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| 5000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Derivative fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .= 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                             |
| 4950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | -÷.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2011144110 14041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                             |
| 4900 0.00 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.40 0.60 0.80                                                                                                                                                                        | 1.00 1.20                              | 1.40 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elapsed Ti                                                                                                                                                                            | me [h]                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q/s $(m^2/s)=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
| Log-Log pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ot incl. derivates- fl                                                                                                                                                                | ow period                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $T_M (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | transient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | transient                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bapsed time [h]                                                                                                                                                                       | 10,°                                   | 10,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $dt_1$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $dt_1$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                              |
| 10 <sup>2</sup><br>SKB Laxemar / KLX<br>538.00-543.00 / CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (11A                                                                                                                                                                                  | •                                      | Flow Dim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dt <sub>2</sub> (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $dt_2$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       | •                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ` , '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1E-0                                                                                                                                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       | <u>.</u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T (m^2/s) = S (-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T (m^2/s) = S (-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                       | ī                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0E-0                                                                                                                                          |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                       | ·                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $S(-) = K_s(m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0E-06<br>2.1E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $S(-)$ = $K_s(m/s)$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0E-0<br>8.1E-1                                                                                                                                |
| 1017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | ************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $S(-) = K_s(m/s) = S_s(1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0E-06<br>2.1E-10<br>2.0E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $S(-) = K_s(m/s) = S_s(1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0E-0<br>8.1E-1<br>2.0E-0                                                                                                                      |
| 10 <sup>1</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $S (-) = K_s (m/s) = S_s (1/m) = C (m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0E-06<br>2.1E-10<br>2.0E-07<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1                                                                                                            |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0E-06<br>2.1E-10<br>2.0E-07<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0                                                                                                  |
| (cha saha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300 [him]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S (-) = K_s (m/s) = S_s (1/m) = C (m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0E-06<br>2.1E-10<br>2.0E-07<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0                                                                                                  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                       | ************************************** | T= 1.055.09 m25<br>S= 1.005.60 - = 2.005.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300 [him]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0E-06<br>2.1E-10<br>2.0E-07<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0                                                                                                  |
| FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOWINGS  FOW | :Hornogeneous<br>DOS Zonstain pressure<br>DES: No superposition<br>.og-log                                                                                                            |                                        | S= 1.00E-06 -<br>n= 2.00E+00 -<br>s= 9.94E-01 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300 [Mail (Dir.) 2) 1<br>10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = T_{GRF}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0E-06<br>2.1E-10<br>2.0E-07<br>NA<br>NA<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = T_{GRF}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.                                                                                           |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :Homogeneous<br>DOX Zorbarn pressure<br>TE: No superposition                                                                                                                          | 104                                    | S= 1.00E-06 -<br>n= 2.00E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300 [Mail (Dir.) 2) 1<br>10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0E-06<br>2.1E-10<br>2.0E-07<br>NA<br>NA<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = T_{GRF}(m^2/s) = S_{GRF}(-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.                                                                                           |
| FOWNERS WILLIAMS SHEPSONION FLOT TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ; horrogeneous<br>Source retein pressure<br>Source (TE: No superposition<br>cg-log (10 <sup>2</sup> 10 <sup>3</sup> ID                                                                |                                        | S= 1.00E06 -<br>n= 200E00 -<br>s= 9.94E01 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300 [Mail (Dir.) 2) 1<br>10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = S_{GRF}(-)                                                                                                                                                                                               | 1.0E-06<br>2.1E-10<br>2.0E-07<br>NA<br>NA<br>1.0<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = S_{GRF}(-)           | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.                                                                                           |
| FOUNDER<br>BOUNDER<br>BUILTING<br>SUBTROSIENT<br>FLOT TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Homogeneous TIONS Constant pressure Source Source July 10 <sup>2</sup> 10 <sup>2</sup> 10 <sup>3</sup>                                                                                |                                        | S= 1.00E06 -<br>n= 200E00 -<br>s= 9.94E01 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300 [Mail (Dir.) 2) 1<br>10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}$                                                                                                                                                                                                 | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = S_{GRF}(-)           | 1.0E-C<br>8.1E-1<br>2.0E-C<br>1.9E-1<br>2.1E-C<br>10<br>NA<br>NA                                                                                |
| FOWNERS WILLIAMS SHEPSONION FLOT TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ; horrogeneous<br>Source retein pressure<br>Source (TE: No superposition<br>cg-log (10 <sup>2</sup> 10 <sup>3</sup> ID                                                                |                                        | S= 1.00E06 -<br>n= 200E00 -<br>s= 9.94E01 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300 [Mail (Dir.) 2) 1<br>10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = Selected repression dt_1(min) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S$                                                                                                                                                                                                 | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = C(m^3/Pa) = $             | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.<br>NA<br>NA<br>NA                                                                         |
| FLOWMODE<br>BOUNDARY COME<br>WELL TYPE<br>SUBSPROSE TO<br>FLOT TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Homopeneus IDNS Caretari présure Source FE. No superposition 10 <sup>2</sup> 10 <sup>3</sup> ID   of incl. derivatives-                                                               |                                        | \$= 100566 = 200500 = 9.94501 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300 loud (h)/ Yt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = dt_1(min) = dt_2(min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = C(m^3/Pa) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_$               | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.<br>NA<br>NA<br>NA<br>NA<br>1.9E-1<br>2.1E-0                                               |
| BOWNOTH BOWNARY CONDING WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING | Homopeneus IDNS Caretari présure Source FE. No superposition 10 <sup>2</sup> 10 <sup>3</sup> ID   of incl. derivatives-                                                               |                                        | \$= 100566 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200500 - re 200 | 300 [Mail (Dir.) 2) 1<br>10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_GRF(-) = S_GRF(-) = S_GRF(-) = S_GRF(-) = S_GRF(-) = S_GRF(-) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T($                                                                                                                                                                                                   | 1.0E-06 2.1E-10 2.0E-07 NA NA 1.0 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S(-) = K_s(m/s) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{$               | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.<br>NA<br>NA<br>NA<br>NA<br>1.9E-1<br>2.1E-0                                               |
| FLOWWORE BOUNDARY CONDING WELLTYFE SUFFECTIVE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Homopeneus IDNS Caretari présure Source FE. No superposition 10 <sup>2</sup> 10 <sup>3</sup> ID   of incl. derivatives-                                                               |                                        | \$= 100566 - r = 200500 - r = 200500 - r = 200500 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 0 | 300 loud (h)/ Yt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = S_{GRF}(-) = dt_1(min) = dt_2(min) = T_T(m^2/s) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-)$                                                                                                                                                                                                   | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(-) = D_{GRF}(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-)$               | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.<br>NA<br>NA<br>NA<br>NA<br>1.9E-1<br>2.1E-0                                               |
| BOWNOTH BOWNARY CONDING WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING PLOT WELL THE SHEPTCONING | Homopeneus IDNS Caretari présure Source FE. No superposition 10 <sup>2</sup> 10 <sup>3</sup> ID   of incl. derivatives-                                                               |                                        | \$= 100566 - r = 200500 - r = 200500 - r = 200500 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 0 | 300 [Joj.) Ye.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_GRF(-) = S_GRF(-) = S_GRF(-) = S_GRF(-) = S_GRF(-) = S_GRF(-) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T(m^2/s) = T_T($                                                                                                                                                                                                   | 1.0E-06 2.1E-10 2.0E-07 NA NA 1.0 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(-) = D_{GRF}(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-)$               | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.<br>NA<br>NA<br>NA<br>NA<br>1.9E-1<br>2.1E-0                                               |
| DOWNOTE BEAMARY COND WELL TYPE SUFFERCE INTO LOCATION OF THE SERVICE INTO LOCATION OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF THE SERVICE INTO SOCIETY OF  | Homopeneus IDNS Caretari présure Source FE. No superposition 10 <sup>2</sup> 10 <sup>3</sup> ID   of incl. derivatives-                                                               |                                        | \$= 100566 - r = 200500 - r = 200500 - r = 200500 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 0 | 300 July 101 721 102 300 102 102 102 102 102 102 102 102 102 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = S_{GRF}(-) = dt_1(min) = dt_2(min) = T_T(m^2/s) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-) = S(-)$                                                                                                                                                                                                   | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = C(m^3/Pa) = C_D(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_$               | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.<br>NA<br>NA<br>NA<br>NA<br>1.9E-1<br>2.1E-0                                               |
| E.OWNOTE. BOWNOTE. BO | Homopeneus IDNS Caretari présure Source FE. No superposition 10 <sup>2</sup> 10 <sup>3</sup> ID   of incl. derivatives-                                                               |                                        | \$= 100566 - r = 200500 - r = 200500 - r = 200500 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 0 | 300 July 101 721 102 300 102 102 102 102 102 102 102 102 102 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{lll} S \; (-) & = & \\ K_s \; (m/s) \; = & \\ S_s \; (1/m) \; = & \\ C \; (m^3/Pa) \; = & \\ C_D \; (-) & = & \\ \xi \; (-) & = & \\ \hline T_{GRF}(m^2/s) \; = & \\ S_{GRF}(-) \; = & \\ \hline D_{GRF} \; (-) \; = & \\ \hline Selected \; representation for the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expression of the expr$                                                                                                                                               | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S(-) = K_s(m/s) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = C(m^3/Pa) = C_D(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_$               | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.<br>NA<br>NA<br>NA<br>NA<br>1.9E-1<br>2.1E-0                                               |
| Log-Log ple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Homopeneus IDNS Caretari présure Source FE. No superposition 10 <sup>2</sup> 10 <sup>3</sup> ID   of incl. derivatives-                                                               |                                        | \$= 100566 - r = 200500 - r = 200500 - r = 200500 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 0 | 300 July 101 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102 July 102           | $\begin{array}{lll} S \; (\text{-}) & = & \\ K_s \; (\text{m/s}) \; = & \\ S_s \; (1/\text{m}) \; = & \\ C \; (\text{m}^3/\text{Pa}) \; = & \\ C_D \; (\text{-}) \; = & \\ \xi \; (\text{-}) \; = & \\ S_{GRF} \; (\text{-}) \; = & \\ S_{GRF} \; (\text{-}) \; = & \\ Selected \; \text{repreduced} \; \text{temperator} \; \text{dt}_1 \; (\text{min}) \; = & \\ \text{dt}_2 \; (\text{min}) \; = & \\ T_T \; (\text{m}^2/\text{s}) \; = & \\ S \; (\text{-}) \; = & \\ K_s \; (\text{m/s}) \; = & \\ S_s \; (1/\text{m}) \; = & \\ \textbf{Comments} \; : & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0E-06 2.1E-10 2.0E-07 NA NA NA 1.0 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $S(-) = K_s(m/s) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = S_{GRF}(m^2/s) = S_{GRF}(-) = D_{GRF}(-) = C(m^3/Pa) = C_D(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_C(-) = S_$               | 1.0E-0<br>8.1E-1<br>2.0E-0<br>1.9E-1<br>2.1E-0<br>10.<br>NA<br>NA<br>NA<br>NA<br>1.9E-1<br>2.1E-0                                               |
| Log-Log ple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Homopeneus IDNS Caretari présure Source FE. No superposition 10 <sup>2</sup> 10 <sup>3</sup> ID   of incl. derivatives-                                                               |                                        | \$= 100566 - r = 200500 - r = 200500 - r = 200500 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 0 | 10 <sup>3</sup> 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) $                                                                                                                                                                                                 | 1.0E-06 2.1E-10 2.0E-07 NA NA NA 1.0 NA NA NA NA NA NA NA NA NA NA NA Osentative paran NA NA 2.0E-06 8.2E-10 2.0E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GR}(-) = S_{G$             | 1.0E-0 8.1E-1 2.0E-0 1.9E-1 2.1E-0 10.  NA NA NA NA 1.9E-1 2.1E-0 10.                                                                           |
| Log-Log ple  SKG Laxemer / KD  SKG Laxemer / KD  SKG Laxemer / KD  SKG Laxemer / KD  SKG Laxemer / KD  SKG Laxemer / KD  SKG Laxemer / KD  SKG Laxemer / KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Homopropous TONS Constant pressure Source TONS Constant pressure Source 102 103 ID  Ottincl. derivatives-  Elapsed time [h]                                                           |                                        | \$= 100566 - r = 200500 - r = 200500 - r = 200500 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 000 - r = 0 | 300 July 101 721 102 300 102 102 102 102 102 102 102 102 102 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{lll} S (-) & = \\ K_s (m/s) & = \\ S_s (1/m) & = \\ C (m^3/Pa) & = \\ C_D (-) & = \\ \xi (-) & = \\ \end{array}$ $\begin{array}{lll} \xi (-) & = \\ T_{GRF}(m^2/s) & = \\ S_{GRF}(-) & = \\ D_{GRF} (-) & = \\ \end{array}$ $\begin{array}{lll} Selected\ represent \\ dt_1 (min) & = \\ dt_2 (min) & = \\ T_T (m^2/s) & = \\ S (-) & = \\ K_s (m/s) & = \\ S_s (1/m) & = \\ \end{array}$ $\begin{array}{lll} Comments: \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ derivative\ quality \\ The\ recommend radial\ flow\ analy\ quality \\ The\ recommend radial\ flow\ analy\ quality \\ The\ recommend radial\ flow\ analy\ quality \\ The\ recommend radial\ flow\ analy\ quality \\ The\ recommend radial\ flow\ analy\ quality \\ The\ recommend radial\ flow\ analy\ quality \\ The\ recommend radial\ flow\ analy\ quality \\ The\ recommend radial\ flow\ analy\ quality \\ The\ recommend ra$                                                                | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA A.1E-09 1.0E-06 8.2E-10 2.0E-07 ed transmissivity of sist of the CHir phay. The confidence is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(-) = D_{GRF}(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) $     | 1.0E-0 8.1E-1 2.0E-0 1.9E-1 2.1E-0 10.  NA NA NA NA 1.9E-1 2.1E-0 10.                                                                           |
| FOWNOTE BOUNDAY COND WELL THE SUMMAN COND WELL THE SUMMAN COND WELL THE SUMMAN COND WELL THE SUMMAN COND WELL THE SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND  | H-temperature TONS Constant pressure Source TONS Constant pressure Source 10 <sup>2</sup> 10 <sup>3</sup> 10  Dot incl. derivatives-  Bapsed time [h]  110.2  LOW MODEL : Homogeneous |                                        | Se 100566 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 <sup>3</sup> 300   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf light   leaf l | $\begin{array}{lll} S (-) & = \\ K_s (m/s) & = \\ S_s (1/m) & = \\ C (m^3/Pa) & = \\ C_D (-) & = \\ \xi (-) & = \\ \end{array}$ $\begin{array}{lll} \xi (-) & = \\ S_{GRF} (m^2/s) & = \\ S_{GRF} (-) & = \\ \end{array}$ $\begin{array}{lll} S_{GRF} (-) & = \\ S_{GRF} (-) & = \\ S_{GRF} (-) & = \\ \end{array}$ $\begin{array}{lll} C_{GRF} (m^2/s) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF} (-) & = \\ C_{GRF}$ | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA A.1E-09 1.0E-06 8.2E-10 2.0E-07 ed transmissivity of sist of the CHir phay. The confidence reconfidence reconf | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = D_{GRF}(-) = D_{GRF}(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_$ | NA  1.9E-1  2.1E-0  10.  erived from the better data and I transmissivity ssure measured                                                        |
| FOWNOTE BOUNDAY COND WELL THE SUMMAN COND WELL THE SUMMAN COND WELL THE SUMMAN COND WELL THE SUMMAN COND WELL THE SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND SUMMAN COND  | Homopropous TONS Constant pressure Source TONS Constant pressure Source 102 103 ID  Ottincl. derivatives-  Elapsed time [h]                                                           | recovery per                           | Se 100566 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 <sup>3</sup> 10 <sup>3</sup> 10 <sup>2</sup> 10 <sup>2</sup> 10 <sup>2</sup> 10 <sup>3</sup> 300 10 <sup>2</sup> 10 <sup>3</sup> 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = S_{GRF}(-) = C_{GRF}(-) = S_{GRF}(-) $                                                                                                                                                                                                 | 1.0E-06 2.1E-10 2.0E-07 NA NA NA NA NA NA NA NA NA A.1E-09 1.0E-06 8.2E-10 2.0E-07 ed transmissivity or risis of the CHir phay. The confidence rie 1.0E-9 to 1.0E-8 oth, was derived from the control of the control of the confidence rie 1.0E-9 to 1.0E-8 oth, was derived from the control of the confidence rie 1.0E-9 to 1.0E-8 oth, was derived from the control of the confidence rie 1.0E-9 to 1.0E-8 oth, was derived from the control of the confidence rie 1.0E-9 to 1.0E-8 oth, was derived from the control of the control of the confidence rie 1.0E-9 to 1.0E-8 oth, was derived from the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro | $S(-) = K_s(m/s) = S_s(1/m) = C(m^3/Pa) = C_D(-) = \xi(-) = S_{GRF}(-) = D_{GRF}(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = \xi(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) = C_D(-) $     | 1.0E-0 8.1E-1 2.0E-0 1.9E-1 2.1E-0 10. NA NA NA 1.9E-1 2.1E-0 10. erived from the better data and I transmissivity ssure measured sing straight |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Su                                 | mn       | nary Sheet                                   |           |                                |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|----------------------------------------------|-----------|--------------------------------|------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oskarshamn site investiga               | ation    | Test type:[1]                                |           |                                | CHir             |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l ave                                   | mar      | Test no:                                     |           |                                | 1                |
| Alca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laxe                                    | illai    | 163(110.                                     |           |                                |                  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KLX                                     | (11A     | Test start:                                  |           |                                | 060809 16:59     |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 563.00-568.0                            |          | Responsible for test execution:              |           |                                | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.                                      | .076     | Responsible for test evaluation:             |           | Crist                          | ian Enachescu    |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |          | Flow period                                  |           | Recovery period                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | _        | Indata                                       |           | Indata                         |                  |
| 5500<br>KLX11A_563.00-568.00_060809_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00<br>• P section                     | 003      | p <sub>0</sub> (kPa) =                       | 5262      |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pabove     Pbelow                       | ľ        | p <sub>i</sub> (kPa ) =                      | NA        |                                |                  |
| 5450 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • · · · · · ·                           | ľ        | $p_p(kPa) =$                                 | NA        | p <sub>F</sub> (kPa ) =        | NA               |
| <b>≅</b> 5400 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • • • • • • • • • • • • • • • • • | 002      | $Q_p (m^3/s) =$                              | NA        |                                |                  |
| A N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                       | [/min]   | tp (s) =                                     | NA        | t <sub>F</sub> (s) =           | NA               |
| <b>8 9</b> 5350 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                       | ר Rate   | S el S <sup>*</sup> (-)=                     | NA        | S el S <sup>*</sup> (-)=       | NA               |
| 1 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - 4 d 2000 - |                                         | .0       | EC <sub>w</sub> (mS/m)=                      |           | ( )                            |                  |
| 5300 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                    | <u>⊆</u> | Temp <sub>w</sub> (gr C)=                    | 15.0      |                                |                  |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                       | ŀ        | Derivative fact.=                            | NA        | Derivative fact.=              | NA               |
| 5250 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                       | ŀ        | Domairo laci.                                |           | Donvativo lact.                | 1 10 1           |
| 5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                    | 100      |                                              |           |                                |                  |
| 0.00 0.10 0.20 0.30 0.40 0.50<br>Elapsed Tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.60 0.70 0.80 0.90 1.00                |          | Results                                      | l         | Results                        |                  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |          | NA                                           | Results   |                                |                  |
| Log Log plot incl. dorivetee. fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow nariad                               |          | Q/s $(m^2/s)=$                               | NA        |                                |                  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ow period                               |          | $T_M (m^2/s) =$                              |           | Flavy sa sissa y               | transiant        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | Flow regime:                                 | transient | Flow regime:                   | transient        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | dt <sub>1</sub> (min) =                      | NA        | $dt_1 (min) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $dt_2 (min) =$                               | NA        | $dt_2$ (min) =                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $T (m^2/s) =$                                | NA        | $T (m^2/s) =$                  | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | S (-) =                                      | NA        | S (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $K_s$ (m/s) =                                | NA        | $K_s (m/s) =$                  | NA               |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nalvsed                                 |          | $S_s(1/m) =$                                 | NA        | $S_s (1/m) =$                  | NA               |
| 1100111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ai y so a                               |          | $C (m^3/Pa) =$                               | NA        | $C (m^3/Pa) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $C_D(-) =$                                   | NA        | $C_D(-) =$                     | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | ξ(-) =                                       | NA        | ξ (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          |                                              |           |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $T_{GRF}(m^2/s) =$                           | NA        | $T_{GRF}(m^2/s) =$             | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $S_{GRF}(-) =$                               | NA        | $S_{GRF}(-) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $D_{GRF}$ (-) =                              | NA        | $D_{GRF}$ (-) =                | NA               |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | recovery period                         |          | Selected represe                             |           | neters.                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $dt_1 (min) =$                               | NA        | $C (m^3/Pa) =$                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | $dt_2$ (min) =                               | NA        | $C_D(-) =$                     | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ľ        | $T_T (m^2/s) =$                              | NA        | ξ (-) =                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | S (-) =                                      | NA        |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ľ        | K <sub>s</sub> (m/s) =                       | NA        |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ľ        | S <sub>s</sub> (1/m) =                       | NA        |                                |                  |
| Not An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nalysed                                 | ľ        | Comments:                                    |           |                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          | Based on the test re<br>transmissivity is lo |           | ged packer compilan<br>1 m2/s. | ce) the interval |

|                                                | Test S                  | limi                  | nary Sheet                        |           |                                |                  |
|------------------------------------------------|-------------------------|-----------------------|-----------------------------------|-----------|--------------------------------|------------------|
| Project:                                       | Oskarshamn site investi | gation                | Test type:[1]                     |           |                                | CHir             |
| Area:                                          | Lav                     | vomar                 | Test no:                          |           |                                | 1                |
| Area.                                          | La                      | xemai                 | rest no.                          |           |                                | ı                |
| Borehole ID:                                   | KL                      | _X11A                 | Test start:                       |           |                                | 060809 18:17     |
| Test section from - to (m):                    | 568.00-573              | 3.00 m                | Responsible for test execution:   |           |                                | Stephan Rohs     |
| Section diameter, 2·r <sub>w</sub> (m):        |                         | 0.076                 | Responsible for                   |           | Crist                          | ian Enachescu    |
| Linear plot Q and p                            |                         |                       | test evaluation: Flow period      |           | Recovery period                |                  |
|                                                |                         |                       | Indata                            |           | Indata                         |                  |
| 5500<br>KLX11A_568.00-573.00_060809_1_CHir_Q_r | • P section             | 0.003                 | p <sub>0</sub> (kPa) =            | 5308      |                                |                  |
| 5450 -                                         | P above                 |                       | p <sub>i</sub> (kPa ) =           | NA        |                                |                  |
| 9490                                           | • •                     |                       | $p_p(kPa) =$                      | NA        | p <sub>F</sub> (kPa ) =        | NA               |
| ≅ 5400 -                                       | •                       | 0.002                 | $Q_p (m^3/s) =$                   | NA        | , ,                            |                  |
| KI                                             |                         | [Vm in                | tp (s) =                          | NA        | t <sub>F</sub> (s) =           | NA               |
| © 5350 -                                       |                         | Injection Rate [Vmin] | S el S <sup>*</sup> (-)=          | NA        | S el S <sup>*</sup> (-)=       | NA               |
| C 5400 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0     |                         | In je ctio            | EC <sub>w</sub> (mS/m)=           | I         | 0 61 0 (*) <del>-</del>        |                  |
| 5300                                           | •                       | 0.001                 | Temp <sub>w</sub> (gr C)=         | 15.1      |                                |                  |
| 5250                                           | •                       |                       | Derivative fact.=                 | NA        | Derivative fact.=              | NA               |
| 3230                                           | •                       |                       | Derivative lact                   | INA       | Derivative fact.               | INA              |
| 5200                                           |                         | 0.000                 |                                   |           |                                |                  |
| 0.00 0.10 0.20 0.30 0.40 0.50<br>Elapsed Tii   |                         | .00                   | Results                           |           | Results                        |                  |
|                                                |                         |                       |                                   | INIA      | Results                        |                  |
|                                                |                         |                       | Q/s ( $m^2/s$ )=                  | NA        |                                |                  |
| Log-Log plot incl. derivates- flo              | ow period               |                       | $T_{\rm M} ({\rm m}^2/{\rm s}) =$ | NA        |                                |                  |
|                                                |                         |                       | Flow regime:                      | transient | Flow regime:                   | transient        |
|                                                |                         |                       | $dt_1 (min) =$                    | NA        | $dt_1$ (min) =                 | NA               |
|                                                |                         |                       | $dt_2$ (min) =                    | NA        | $dt_2$ (min) =                 | NA               |
|                                                |                         |                       | $T (m^2/s) =$                     | NA        | $T (m^2/s) =$                  | NA               |
|                                                |                         |                       | S (-) =                           | NA        | S (-) =                        | NA               |
|                                                |                         |                       | $K_s$ (m/s) =                     | NA        | $K_s (m/s) =$                  | NA               |
| Not Ar                                         | nalyzad                 |                       | $S_s(1/m) =$                      | NA        | $S_s (1/m) =$                  | NA               |
| Not Ar                                         | iaiyseu                 |                       | $C (m^3/Pa) =$                    | NA        | $C (m^3/Pa) =$                 | NA               |
|                                                |                         |                       | $C_D(-) =$                        | NA        | $C_D(-) =$                     | NA               |
|                                                |                         |                       | ξ (-) =                           | NA        | ξ (-) =                        | NA               |
|                                                |                         |                       |                                   |           |                                |                  |
|                                                |                         |                       | $T_{GRF}(m^2/s) =$                | NA        | $T_{GRF}(m^2/s) =$             | NA               |
|                                                |                         |                       | $S_{GRF}(-) =$                    | NA        | $S_{GRF}(-) =$                 | NA               |
|                                                |                         |                       | D <sub>GRF</sub> (-) =            | NA        | D <sub>GRF</sub> (-) =         | NA               |
| Log-Log plot incl. derivatives-                | recovery period         |                       | Selected repres                   |           |                                |                  |
| <u> </u>                                       |                         |                       | $dt_1$ (min) =                    | NA        | $C (m^3/Pa) =$                 | NA               |
|                                                |                         |                       | $dt_2$ (min) =                    | NA        | $C_D(-) =$                     | NA               |
|                                                |                         |                       | $T_T (m^2/s) =$                   | NA        | ξ(-) =                         | NA               |
|                                                |                         |                       | S (-) =                           | NA        | - · · · ·                      |                  |
|                                                |                         |                       | $K_s (m/s) =$                     | NA        | 1                              |                  |
|                                                |                         |                       | $\frac{R_s(11/3)}{S_s(1/m)} =$    | NA        | 1                              |                  |
| 3.T . A                                        | ب ما مسام               |                       | Comments:                         | I. " '    | 1                              | <u> </u>         |
| Not Ar                                         | laryscu                 |                       |                                   |           | ged packer complian<br>1 m2/s. | ce) the interval |
|                                                |                         |                       |                                   |           |                                |                  |

|                    |                                                                                                                                       | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | um                                      | mary Sheet                       |                  |                                 |                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|------------------|---------------------------------|-----------------|
| Proj               | lect:                                                                                                                                 | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | jatio                                   | Test type:[1]                    |                  |                                 | CHi             |
| Are                | a:                                                                                                                                    | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ema                                     | r Test no:                       |                  |                                 |                 |
| Bor                | ehole ID:                                                                                                                             | KL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X11/                                    | A Test start:                    |                  |                                 | 060810 08:06    |
| Tes                | t section from - to (m):                                                                                                              | 573 00-578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 n                                    | n Responsible for                |                  |                                 | Stephan Rohs    |
|                    | ` ,                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | test execution:                  |                  |                                 |                 |
| Sec                | tion diameter, 2·r <sub>w</sub> (m):                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                    | Responsible for test evaluation: |                  | Crist                           | ian Enachescı   |
| Line               | ear plot Q and p                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Flow period                      |                  | Recovery period                 |                 |
| 5600               |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | — 8                                     | Indata                           |                  | Indata                          |                 |
| 3000               | KLX11A_573.00-578.00_060810_1_CHir_Q_r                                                                                                | P section     P above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | p <sub>0</sub> (kPa) =           | 5349             |                                 |                 |
| 5550               | <del>}</del>                                                                                                                          | P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | p <sub>i</sub> (kPa ) =          | 5350             |                                 |                 |
|                    |                                                                                                                                       | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                       | $p_p(kPa) =$                     | 5550             | p <sub>F</sub> (kPa ) =         | 535             |
| [KPa]              | ;                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | $Q_p (m^3/s) =$                  | 6.85E-05         |                                 |                 |
| 원<br>9 5450        | <u> </u>                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s t t t t t t t t t t t t t t t t t t t | tp (s) =                         | 1200             | $t_F$ (s) =                     | 120             |
| eunsseud 6         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Rate                                  | S el S* (-)=                     |                  | S el S <sup>*</sup> (-)=        | 1.00E-0         |
| 90 5400<br>90 4u w |                                                                                                                                       | Approximately 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | njec tio                                | EC <sub>w</sub> (mS/m)=          |                  | 0010()                          | 1               |
| 5350               | ·                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                       | Temp <sub>w</sub> (gr C)=        | 15.2             |                                 |                 |
|                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                       | Derivative fact.=                | 0.02             | Derivative fact.=               | 0.0             |
| 5300               | ; .                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       | Delivative fact.=                | 0.02             | Derivative fact.                | 0.0             |
| 5250<br>0.         | 00 0.20 0.40 0.60 C                                                                                                                   | 1.00 1.20 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _۱                                      |                                  |                  |                                 |                 |
|                    | Elapsed Tin                                                                                                                           | ne [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | Results                          |                  | Results                         |                 |
|                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Q/s $(m^2/s)=$                   | 3.4E-06          |                                 |                 |
| Log                | -Log plot incl. derivates- flo                                                                                                        | w period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | $T_{\rm M} (m^2/s) =$            | 2.8E-06          |                                 | 1               |
|                    |                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | Flow regime:                     | transient        | Flow regime:                    | transient       |
|                    | Elapsed time [h]                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | $dt_1 (min) =$                   |                  | dt <sub>1</sub> (min) =         | 0.5             |
| 10 <sup>2</sup>    | SKB Laxemar / KLX11A<br>573.00-578.00 / CH                                                                                            | Flow Dim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 °                                    | $dt_1 (min) =$ $dt_2 (min) =$    |                  | $dt_1 (min) =$ $dt_2 (min) =$   | 8.4             |
|                    |                                                                                                                                       | (0) 2000 7000020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ` ′                              |                  | , ,                             |                 |
|                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                     | $T (m^2/s) =$                    |                  | $T (m^2/s) =$                   | 1.5E-0          |
| 1                  | • •                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | S (-) =                          | 1.0E-06          |                                 | 1.0E-0          |
| 101                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-1</sup>                        | $K_s (m/s) =$                    | 1.9E-06          | $K_s$ (m/s) =                   | 3.0E-0          |
| do).               | •                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                 | $S_s (1/m) =$                    | 2.0E-07          | $S_s (1/m) =$                   | 2.0E-0          |
| /qD, (1k           | • •                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03 [min/]                             | $C (m^3/Pa) =$                   | NA               | $C (m^3/Pa) =$                  | 7.7E-1          |
| 07                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/4.(                                   | C <sub>D</sub> (-) =             | NA               | $C_D(-) =$                      | 8.5E-0          |
| 10°                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-2</sup>                        | ξ(-) =                           | 9.7              |                                 | 19.             |
|                    | FI CWMCDR Hymneneous                                                                                                                  | - 100° A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ç (-) —                          | 0.7              | S (-) -                         | 10.             |
|                    | R.O.M/ODE Horrogeneous BOUNDARY CONDITIONS: Constant pressure WELL TYPE Source SUFFENDMENT (FE: No superposition R.O.T TYPE : Log-log | n= 2.00E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.003                                   | $T_{GRF}(m^2/s) =$               | NA               | T (m²/a) -                      | NA              |
| 1                  | 10 <sup>12</sup> 10 <sup>13</sup> 10 <sup>14</sup>                                                                                    | s= 9.72E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                  | NA               | $T_{GRF}(m^2/s) = S_{GPF}(-) =$ | NA              |
|                    | tD                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -014 ( )                         |                  | -014 ( )                        |                 |
|                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | D <sub>GRF</sub> (-) =           | NA               | D <sub>GRF</sub> (-) =          | NA              |
| LOG                | -Log plot incl. derivatives- re                                                                                                       | ecovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | Selected represe                 |                  |                                 |                 |
|                    | Eapsed time [h]                                                                                                                       | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | $dt_1 (min) =$                   | 0.53             | 0 (III /I u)                    | 7.7E-1          |
| 10 <sup>2</sup>    |                                                                                                                                       | 10,-1 10,0<br>Flow Dim Version 2,14b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | $dt_2$ (min) =                   | 8.47             | $C_D(-) =$                      | 8.5E-0          |
|                    | 5/3.00-578.00 / CHir                                                                                                                  | (c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                     | $T_T (m^2/s) =$                  | 1.5E-05          | ξ (-) =                         | 19.             |
|                    | ***************************************                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | S (-) =                          | 1.0E-06          |                                 |                 |
|                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>2</sup>                         | K <sub>s</sub> (m/s) =           | 3.0E-06          |                                 |                 |
| 10 <sup>1</sup>    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | S <sub>s</sub> (1/m) =           | 2.0E-07          |                                 | 1               |
| e l                | // · · · · \.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                      | Comments:                        |                  | 1                               |                 |
| od .               | \                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | à                                | transmissivity o | f 1.5E-5 m2/s was d             | erived from the |
| 10°                |                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>1</sup>                         |                                  |                  | ase, which shows the            |                 |
| 10-                |                                                                                                                                       | · resident and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a s |                                         |                                  |                  | range for the interva           |                 |
|                    | FLOW MODEL: Homogeneous                                                                                                               | C= 7.68E-10 m3/Pa<br>T= 1.50E-05 m2/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                       |                                  |                  | m2/s. The static pre-           |                 |
|                    | FLOW MODE: Homogeneous BOUNDARY CONDITIONS: Constant rate WELL TYFE: Source SUFERPOSITION TYPE: Agarwal time PLOT TYPE: Log-log       | S= 1.00E-06 -<br>s= 1.97E+01 -<br>n= 2.00E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                  |                  | om the CHir phase u             |                 |
| ↓                  | 10 <sup>1</sup> 10 <sup>2</sup>                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 °                                    |                                  |                  | t to a value of 5350.           |                 |
|                    | SUPERFOSITION TYPE: Against time PLOT TYPE: Log-log  10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>1</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10°                                     |                                  |                  |                                 |                 |

|                     |                                                                                                                             |                      | Test S                                                                                   | <u>um</u> ı                    | nary She                  | et           |                   |                                          |                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|--------------------------------|---------------------------|--------------|-------------------|------------------------------------------|-------------------|
| Proje               | ct:                                                                                                                         | Oskarshamn           | site investi                                                                             | gation                         | Test type:[               | 1]           |                   |                                          | CHi               |
| Area:               |                                                                                                                             |                      | Lax                                                                                      | cemar                          | Test no:                  |              |                   |                                          | 1                 |
| Borel               | nole ID:                                                                                                                    |                      | KL                                                                                       | X11A                           | Test start:               |              |                   |                                          | 060810 10:02      |
| Test                | section from - to (m):                                                                                                      |                      | 578.00-583                                                                               | .00 m                          | Responsibl                | e for        |                   |                                          | Stephan Rohs      |
| Soction             | on diameter, 2·r <sub>w</sub> (m):                                                                                          |                      |                                                                                          | 0.076                          | test execut<br>Responsibl |              |                   | Cric                                     | tian Enachescu    |
| Secil               | on diameter, 21 <sub>w</sub> (m).                                                                                           |                      |                                                                                          | 0.076                          | test evalua               |              |                   | Ch                                       | suan Enachescu    |
| Linea               | r plot Q and p                                                                                                              |                      |                                                                                          |                                | Flow perio                | d            |                   | Recovery perio                           | d                 |
|                     |                                                                                                                             |                      |                                                                                          |                                | Indata                    |              |                   | Indata                                   | _                 |
| 5650                | KLX11A_578.00-583.00_060810_1_CHir_Q_r                                                                                      |                      | • P section                                                                              |                                | p <sub>0</sub> (kPa) =    |              | 5398              |                                          |                   |
| 5600 -              | ì                                                                                                                           |                      | P above P below Q                                                                        | - 9                            | p <sub>i</sub> (kPa ) =   |              | 5397              |                                          |                   |
|                     | į                                                                                                                           | :                    | -u                                                                                       | - 8                            | $p_p(kPa) =$              |              |                   | p <sub>F</sub> (kPa ) =                  | 539               |
| 5550 ·              | •                                                                                                                           | <b>.</b>             |                                                                                          | 7 _                            | $Q_{p} (m^{3}/s) =$       |              | 9.33E-05          |                                          |                   |
| ure [kPa]           | • •                                                                                                                         |                      |                                                                                          | - 6 Mi                         | tp (s) =                  |              | 1200              | $t_F$ (s) =                              | 1200              |
| Pressure            |                                                                                                                             | :                    |                                                                                          | n Rate                         | S el S <sup>*</sup> (-)=  |              | 1.00E-06          | S el S <sup>*</sup> (-)=                 | 1.00E-0           |
| 8 5450<br>W         | · • •                                                                                                                       | •                    |                                                                                          | h ction Rate [l/min]           | EC <sub>w</sub> (mS/m     | ı)=          |                   |                                          |                   |
| 5400                |                                                                                                                             |                      |                                                                                          | - 3                            | Temp <sub>w</sub> (gr 0   | C)=          | 15.1              |                                          | 1                 |
|                     |                                                                                                                             |                      |                                                                                          | - 2                            | Derivative                | fact.=       | 0.06              | Derivative fact.=                        | 0.0               |
| 5350                |                                                                                                                             |                      |                                                                                          | - 1                            |                           |              |                   |                                          |                   |
| 5300                | 0.20 0.40 0.60                                                                                                              | 0.80 1.00            | 1.20 1.40                                                                                | 0                              |                           |              |                   |                                          |                   |
|                     | Elapsed                                                                                                                     | i Time [h]           |                                                                                          |                                | Results                   |              |                   | Results                                  | _                 |
|                     |                                                                                                                             |                      |                                                                                          |                                | $Q/s (m^2/s)$             | =            | 4.6E-06           |                                          |                   |
| Log-l               | og plot incl. derivates- f                                                                                                  | low period           |                                                                                          |                                | $T_M (m^2/s) =$           |              | 3.8E-06           |                                          |                   |
|                     | Bapsed time                                                                                                                 | e [h]                |                                                                                          |                                | Flow regim                | e:           | transient         | Flow regime:                             | transient         |
| 10 <sup>2</sup> SK  | 0, <sup>-4</sup> 10, <sup>-3</sup> 10, <sup>-2</sup>                                                                        | 10,-1                | 10.0<br>Flow Dim Version 2.14b                                                           | 7                              | dt <sub>1</sub> (min)     | =            | 0.88              | $dt_1$ (min) =                           | 0.58              |
| 578                 | .00-583.00 / CH                                                                                                             |                      | Flow Dim Version 2.14b<br>(c) Golder Associates                                          |                                | dt <sub>2</sub> (min)     | =            | 15.88             | dt <sub>2</sub> (min) =                  | 8.04              |
|                     |                                                                                                                             |                      |                                                                                          | 0.3                            | $T (m^2/s) =$             |              | 1.0E-05           | $T (m^2/s) =$                            | 2.1E-0            |
|                     | AND CO. CO. CO. CO. CO. CO. CO. CO. CO. CO.                                                                                 |                      |                                                                                          | -10.3                          | S (-) =                   |              | 1.0E-06           | , ,                                      | 1.0E-0            |
| 10 1                | • • •                                                                                                                       |                      |                                                                                          | 10-1                           | $K_s$ (m/s) =             | :            |                   | $K_s (m/s) =$                            | 4.2E-0            |
|                     | • •                                                                                                                         | ± .                  |                                                                                          |                                | $S_s(1/m) =$              |              |                   | S <sub>s</sub> (1/m) =                   | 2.0E-0            |
| (3/dg)              | • • •                                                                                                                       | •                    |                                                                                          | 0.03                           | C (m <sup>3</sup> /Pa)    | _            | NA                | C (m <sup>3</sup> /Pa) =                 | 1.4E-0            |
| 1/4[                | •                                                                                                                           | •                    |                                                                                          | 14, (14)                       | , ,                       | <del>-</del> | NA                | $C_D(-) =$                               | 1.5E-0            |
| 100                 | ***                                                                                                                         |                      |                                                                                          | 10°2                           |                           |              |                   |                                          | 1.3L-0            |
|                     |                                                                                                                             |                      |                                                                                          | 1                              | ξ (-)                     | =            | 5.0               | ξ (-) =                                  | 19.4              |
| B                   | OWMODEL: Homogeneous SUNDARY CONDITIONS: Constant pressure ELTYFE: Source PERFOSITION TYPE: No superposition OFT TYPE:      | ••                   | T= 1.03E-05 m2/s<br>S= 1.00E-06 -<br>n= 2.00E+00 -                                       | 0.003                          | 2                         |              | 4.05.00           | 2                                        | NIA               |
| Ä                   | OTTILE .Edg-log                                                                                                             |                      | s= 5.59E+00 -                                                                            |                                | $T_{GRF}(m^2/s)$          |              |                   | $T_{GRF}(m^2/s) =$                       | NA                |
|                     | 10 <sup>9</sup> 10 <sup>10</sup> tE                                                                                         | 10 <sup>11</sup> 10  | ) <sup>12</sup> 10                                                                       | 13                             | - OIKI ( )                |              | 1.0E-06           |                                          | NA                |
|                     |                                                                                                                             |                      |                                                                                          |                                | D <sub>GRF</sub> (-)      | =            |                   | D <sub>GRF</sub> (-) =                   | NA                |
| Log-l               | og plot incl. derivatives-                                                                                                  | recovery perio       | od                                                                                       |                                |                           | eprese       | ntative paran     |                                          |                   |
|                     | Elapsed time                                                                                                                | <b>b</b> 1           | 0                                                                                        |                                | ατ <sub>1</sub> ()        | =            | 0.88              | C (m³/Pa) =                              | 1.4E-09           |
| 10 <sup>2</sup> SKE |                                                                                                                             | 10,-1                | Flow Dim Version 2.14b<br>(c) Golder Associates                                          |                                | dt <sub>2</sub> (min)     | =            |                   | $C_D(-) =$                               | 1.5E-0            |
| 5/8                 | 00-383.00 / CHIF                                                                                                            |                      | (c) code: 7 bboobleb                                                                     | 300                            | $T_T (m^2/s)$             | =            | 1.0E-05           | ξ (-) =                                  | 5.0               |
|                     | 0 0 00000000000000000000000000000000000                                                                                     |                      |                                                                                          |                                | S (-) =                   | =            | 1.0E-06           |                                          |                   |
| 40 13               | <i>_</i> ···                                                                                                                |                      |                                                                                          | 10 <sup>2</sup>                | $K_s$ (m/s)               | =            | 2.0E-06           |                                          |                   |
| 10 1                |                                                                                                                             |                      |                                                                                          |                                | S <sub>s</sub> (1/m) :    | =            | 2.0E-07           |                                          |                   |
| nd 'n               | \.                                                                                                                          |                      |                                                                                          | 30 [R <sub>D</sub> ] ((0d-d)   | Comments                  | S:           |                   |                                          |                   |
|                     | . \                                                                                                                         |                      |                                                                                          | 10 <sup>1</sup> 0 <sup>4</sup> |                           |              | transmissivity of | 1.0E-5 m2/s was                          | derived from the  |
| 10 °                |                                                                                                                             |                      |                                                                                          | " <sup>2</sup>                 |                           |              |                   | e, which shows the                       |                   |
|                     |                                                                                                                             | · Mile Mary Mary 198 |                                                                                          | 3                              | derivative qu             | uality. 7    | The confidence r  | ange for the interv                      | al transmissivity |
| - 1                 | FLOW MODEL: Homogeneous     ROLINDARY CONDITIONS: Constant rate.                                                            |                      | C= 1.40E-09 m3/Pa<br>T= 2.11E-05 m2/s<br>S= 1.00E-06 -                                   | •                              | is estimated              | to be 8.     | 0E-6 to 3.0E-5    | m2/s. The static pr                      |                   |
|                     | WRI TYPE · Source                                                                                                           |                      | S= 1.00E-00 -                                                                            |                                |                           |              |                   |                                          |                   |
|                     | FLOW NDOEL : Horrogeneous BOADARY CONDITIONS: Constant rate WELL STATE SUPERIORITION TYPE: Agar wal time PLOTTYPE : Log-log |                      | C= 1.40E.09 m3/Pa<br>T= 2.11E.05 m2/s<br>S= 1.00E.06 -<br>s= 1.94E+01 -<br>n= 2.00E+00 - | 10 <sup>0</sup>                | at transduce              | r depth,     |                   | m the CHir phase<br>t to a value of 539? |                   |

|                                                                                                                                             | Test Sumi                                                                                        | nary Sheet                                  |                |                                            |               |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|----------------|--------------------------------------------|---------------|
| Project:                                                                                                                                    | Oskarshamn site investigation                                                                    | Test type:[1]                               |                |                                            | Р             |
| Aroa:                                                                                                                                       | Lavama                                                                                           | Test no:                                    |                |                                            |               |
| Area:                                                                                                                                       | Laxemai                                                                                          | rest no.                                    |                |                                            |               |
| Borehole ID:                                                                                                                                | KLX11A                                                                                           | Test start:                                 |                |                                            | 060810 12:20  |
| Test section from - to (m):                                                                                                                 | 583.00-588.00 m                                                                                  | Responsible for test execution:             |                |                                            | Stephan Rohs  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                     | 0.076                                                                                            | Responsible for                             |                | Crist                                      | ian Enachescu |
| Linear plot Q and p                                                                                                                         |                                                                                                  | test evaluation: Flow period                |                | Recovery period                            |               |
|                                                                                                                                             |                                                                                                  | Indata                                      |                | Indata                                     |               |
| 5750                                                                                                                                        | 0.003                                                                                            | p <sub>0</sub> (kPa) =                      | 5447           |                                            |               |
|                                                                                                                                             | 00-588.00_060810_1_CHir_Q_r                                                                      | p <sub>i</sub> (kPa ) =                     | 5452           |                                            |               |
| 5700                                                                                                                                        | · P below<br>- Q                                                                                 | $p_p(kPa) =$                                |                | p <sub>F</sub> (kPa ) =                    | 551           |
| 5650                                                                                                                                        | • :                                                                                              | $Q_p (m^3/s) =$                             | NA             | F1 (··· • )                                |               |
| ₩ ± 5600                                                                                                                                    | - 0.002                                                                                          | $\frac{Q_p (\Pi / S) -}{tp (s)} =$          |                | t <sub>F</sub> (s) =                       | 388           |
| ss ere                                                                                                                                      | nijection Rate (Jimin)                                                                           |                                             | NA             |                                            | 1.00E-0       |
| e :                                                                                                                                         | tion R                                                                                           | S el S $^*$ (-)=<br>EC $_w$ (mS/m)=         | INA            | S el S <sup>*</sup> (-)=                   | 1.00E-0       |
| 82 5500                                                                                                                                     | •   3                                                                                            |                                             | 15.4           |                                            |               |
| 5450                                                                                                                                        | •                                                                                                | Temp <sub>w</sub> (gr C)= Derivative fact.= |                |                                            | 0.0           |
| 5400 -                                                                                                                                      | •                                                                                                | Derivative fact.=                           | NA             | Derivative fact.=                          | 0.0           |
| 5350                                                                                                                                        |                                                                                                  |                                             |                |                                            |               |
| 0.00 0.20 0.40 0.60 0.80 1.<br>Elapsed                                                                                                      | 00 1.20 1.40 1.60 1.80 2.00<br>Time [h]                                                          | Results                                     | •              | Results                                    | L             |
|                                                                                                                                             |                                                                                                  | $Q/s (m^2/s) =$                             | NA             |                                            |               |
| Log-Log plot incl. derivates- f                                                                                                             | low period                                                                                       | $T_{\rm M} (m^2/s) =$                       | NA             |                                            |               |
|                                                                                                                                             |                                                                                                  | Flow regime:                                | transient      | Flow regime:                               | transient     |
|                                                                                                                                             |                                                                                                  | $dt_1$ (min) =                              | NA             | $dt_1$ (min) =                             | NA            |
|                                                                                                                                             |                                                                                                  | $dt_2 (min) =$                              | NA             | $dt_2$ (min) =                             | NA            |
|                                                                                                                                             |                                                                                                  | $T (m^2/s) =$                               | NA             | $T (m^2/s) =$                              | 1.2E-1        |
|                                                                                                                                             |                                                                                                  | S (-) =                                     | NA             | S (-) =                                    | 1.0E-0        |
|                                                                                                                                             |                                                                                                  | $K_s (m/s) =$                               | NA             | $K_s (m/s) =$                              | 2.4E-1        |
|                                                                                                                                             |                                                                                                  | $S_s(1/m) =$                                | NA             | S <sub>s</sub> (1/m) =                     | 2.0E-0        |
| Not A                                                                                                                                       | nalysed                                                                                          | $C (m^3/Pa) =$                              | NA             | $C (m^3/Pa) =$                             | 1.2E-1        |
|                                                                                                                                             |                                                                                                  | $C_D(-) =$                                  | NA             | $C_D(-) =$                                 | 1.3E-0        |
|                                                                                                                                             |                                                                                                  | ξ(-) =                                      | NA             | ξ(-) =                                     | -0.           |
|                                                                                                                                             |                                                                                                  | <i>≥</i> (−) −                              |                | » (-) –                                    | 0.            |
|                                                                                                                                             |                                                                                                  | $T_{GRF}(m^2/s) =$                          | NA             | $T_{GRF}(m^2/s) =$                         | 2.6E-1        |
|                                                                                                                                             |                                                                                                  | $S_{GRF}(-) =$                              | NA             | $S_{GRF}(-) =$                             | 1.0E-0        |
|                                                                                                                                             |                                                                                                  | $D_{GRF}(-) =$                              | NA             | D <sub>GRF</sub> (-) =                     | 1.62 0        |
| Log-Log plot incl. derivatives-                                                                                                             | recovery period                                                                                  | Selected represe                            |                |                                            |               |
|                                                                                                                                             | - coording police                                                                                | $dt_1$ (min) =                              | NA             | C (m <sup>3</sup> /Pa) =                   | 1.2E-1        |
| 10 <sup>-3</sup> 10 <sup>-2</sup> Bapsed time                                                                                               | 10,1 10,1                                                                                        | $dt_2 \text{ (min)} =$                      | NA             | $C_D(-) =$                                 | 1.3E-0        |
| 10 SKB Laxemar / KL X11A<br>583.00-588.00 / Pl                                                                                              | Flow Dim Version 2.14b (c) Golder Associates                                                     |                                             | 1.2E-11        |                                            | -0.           |
|                                                                                                                                             |                                                                                                  | $T_T (m^2/s) = S(-) = $                     | 1.0E-06        |                                            | -0.           |
|                                                                                                                                             | 100                                                                                              | 9 ( )                                       |                |                                            |               |
| 10°                                                                                                                                         |                                                                                                  | $K_s (m/s) =$                               | 2.4E-12        |                                            |               |
|                                                                                                                                             | 0.3                                                                                              | S <sub>s</sub> (1/m) =                      | 2.0E-07        |                                            |               |
| od od                                                                                                                                       | 10 <sup>-1</sup> 10 <sup>-1</sup>                                                                | Comments:                                   |                |                                            |               |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                     | Doomodad pressur                                                                                 |                                             |                | f 1.2E-11 m2/s was                         |               |
| 10-1                                                                                                                                        | 0.03                                                                                             |                                             |                | The confidence ran<br>to be 9.0E-12 to 4.0 |               |
| nouses                                                                                                                                      | C= 123F-11 mVFa                                                                                  |                                             |                | lated due to the very                      |               |
| FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Sulpruise WELL TYPE : Source SUPERFORMINON TYPE: No superposition PLOT TYPE : Peres, Reyrolds | C= 1.235.11 m3/Pa<br>T= 1.165.11 m2/s<br>S= 1.005.06 - 1005.06 = 100.72<br>s= -6.805.01 - 100.72 | transmissivity.                             | not be extrapo | and to the very                            | ,             |
| PLOT TYPE : Peres, Reynolds                                                                                                                 | n= 2.00E+00 -                                                                                    | <b>I</b>                                    |                |                                            |               |
| 10 <sup>-2</sup> 10 <sup>-1</sup>                                                                                                           | 10 <sup>0</sup> 10 <sup>1</sup> 10 <sup>2</sup>                                                  |                                             |                |                                            |               |

|                                              | Test 9                 | Sumr                                         | nary Sheet                       |                   |                         |                 |
|----------------------------------------------|------------------------|----------------------------------------------|----------------------------------|-------------------|-------------------------|-----------------|
| Project:                                     | Oskarshamn site invest |                                              |                                  |                   |                         | Р               |
| Area:                                        | 1 -                    | aveme:                                       | Test no:                         |                   |                         |                 |
| AICA.                                        | Lã                     | axemal                                       | 1 621 110.                       |                   |                         |                 |
| Borehole ID:                                 | К                      | LX11A                                        | Test start:                      |                   |                         | 060810 14:4     |
| Test section from - to (m):                  | 588.00-59              | 3.00 m                                       | Responsible for test execution:  |                   |                         | Stephan Roh     |
| Section diameter, 2·r <sub>w</sub> (m):      |                        | 0.076                                        | Responsible for test evaluation: |                   | Crist                   | tian Enachesc   |
| Linear plot Q and p                          |                        |                                              | Flow period                      |                   | Recovery period         | j               |
| h h                                          |                        |                                              | Indata                           |                   | Indata                  |                 |
| 5800                                         | • P section            | T 0.003                                      | p <sub>0</sub> (kPa) =           | 5493              |                         |                 |
| KLX11A_588.00-593.00_060810_1_Pi_Q_r<br>5750 | • P above<br>• P below |                                              | p <sub>i</sub> (kPa ) =          | NA                |                         |                 |
| <u> </u>                                     | Q                      |                                              | $p_p(kPa) =$                     | NA                | p <sub>F</sub> (kPa ) = | NA              |
| 5700 -                                       | •                      | 0.002 =                                      | $Q_p (m^3/s) =$                  | NA                |                         | <u> </u>        |
| E 97 9600                                    | •                      | 0.002 - 0.000 - 1<br>Injection Rate [//m in] | tp(s) =                          | NA                | t <sub>F</sub> (s) =    | NA              |
| <b>P</b>                                     | •                      | n Rate                                       | S el S <sup>*</sup> (-)=         | NA                | S el S* (-)=            | NA              |
| Ū 5550 ·                                     | •                      | njectio                                      | EC <sub>w</sub> (mS/m)=          |                   | 5 5. 5 (- <i>)</i> -    | 1               |
| 5500                                         | #                      | - U.UU1 <del>-</del>                         | Temp <sub>w</sub> (gr C)=        | 15.4              | 1                       |                 |
| •                                            | •                      |                                              | Derivative fact.=                | NA                | Derivative fact.=       | NA              |
| 5450                                         |                        |                                              | DOMAGNO NACE.                    | 1 1 1             | Donvative ract.         | . */ `          |
| 0.00 0.20 0.40 0.60 0                        |                        | 0.000                                        |                                  |                   | <del> </del>            |                 |
| Elapsed Ti                                   |                        |                                              | Results                          |                   | Results                 |                 |
|                                              |                        |                                              |                                  | INIA              | Results                 |                 |
| Log Log plating daminata - #1                | ow poriod              |                                              | Q/s $(m^2/s)=$                   | NA                |                         |                 |
| Log-Log plot incl. derivates- flo            | ow period              |                                              | $T_M (m^2/s) =$                  | NA                | Class was size as       | transit         |
|                                              |                        |                                              | Flow regime:                     | transient         | Flow regime:            | transient       |
|                                              |                        |                                              | $dt_1 (min) =$                   | NA                | dt <sub>1</sub> (min) = | NA              |
|                                              |                        |                                              | $dt_2$ (min) =                   | NA                | $dt_2$ (min) =          | NA              |
|                                              |                        |                                              | $T (m^2/s) =$                    | NA                | $T (m^2/s) =$           | NA              |
|                                              |                        |                                              | S (-) =                          | NA                | S (-) =                 | NA              |
|                                              |                        |                                              | $K_s$ (m/s) =                    | NA                | $K_s (m/s) =$           | NA              |
| Not Ar                                       | nalvsed                |                                              | $S_s (1/m) =$                    | NA                | $S_s (1/m) =$           | NA              |
| NOT AL                                       | .u. 300 u              |                                              | $C (m^3/Pa) =$                   | NA                | $C (m^3/Pa) =$          | NA              |
|                                              |                        |                                              | $C_D(-) =$                       | NA                | $C_D(-) =$              | NA              |
|                                              |                        |                                              | ξ(-) =                           | NA                | ξ (-) =                 | NA              |
|                                              |                        |                                              |                                  |                   |                         |                 |
|                                              |                        |                                              | $T_{GRF}(m^2/s) =$               | NA                | $T_{GRF}(m^2/s) =$      | NA              |
|                                              |                        |                                              | $S_{GRF}(-) =$                   | NA                | $S_{GRF}(-)$ =          | NA              |
|                                              |                        |                                              | $D_{GRF}$ (-) =                  | NA                | $D_{GRF}$ (-) =         | NA              |
| Log-Log plot incl. derivatives-              | recovery period        |                                              | Selected represe                 |                   | neters.                 |                 |
|                                              |                        |                                              | $dt_1 (min) =$                   | NA                | $C (m^3/Pa) =$          | NA              |
|                                              |                        |                                              | $dt_2$ (min) =                   | NA                | $C_D(-) =$              | NA              |
|                                              |                        |                                              | $T_T (m^2/s) =$                  | NA                | ξ (-) =                 | NA              |
|                                              |                        |                                              | S (-) =                          | NA                |                         |                 |
|                                              |                        |                                              | K <sub>s</sub> (m/s) =           | NA                |                         |                 |
|                                              |                        |                                              | $S_s (1/m) =$                    | NA                |                         |                 |
| Not Ar                                       | nalvsed                |                                              | Comments:                        | •                 | -                       |                 |
|                                              |                        |                                              | Based on the test ro             | esponse the inter | val transmissivity is   | lower than 1.01 |

|                                                                                                                | Test S                                                                                            | Sumr                   | nary Sheet                        |                   |                                            |              |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|-------------------|--------------------------------------------|--------------|
| Project:                                                                                                       | Oskarshamn site investi                                                                           | igation                | Test type:[1]                     |                   |                                            | СН           |
| Area:                                                                                                          | La                                                                                                | xemar                  | Test no:                          |                   |                                            |              |
| Borehole ID:                                                                                                   | KI                                                                                                | LX11A                  | Test start:                       |                   |                                            | 060810 16:3  |
| Test section from - to (m):                                                                                    | 593.00-598                                                                                        | 3.00 m                 | Responsible for                   |                   |                                            | Stephan Roh  |
| 2 ( )                                                                                                          |                                                                                                   | 0.070                  | test execution:                   |                   | 0 : 1                                      |              |
| Section diameter, 2·r <sub>w</sub> (m):                                                                        |                                                                                                   | 0.076                  | Responsible for test evaluation:  |                   | Crist                                      | ian Enachesc |
| Linear plot Q and p                                                                                            |                                                                                                   |                        | Flow period                       |                   | Recovery period                            |              |
|                                                                                                                |                                                                                                   |                        | Indata                            | ***************** | Indata                                     |              |
| 5850                                                                                                           | FOR DO DODGE 4 P. O - P Section                                                                   | 0.003                  | p <sub>0</sub> (kPa) =            | 5540              |                                            |              |
| 5800 -                                                                                                         | 598.00_060810_1_Pi_Q_r                                                                            |                        | p <sub>i</sub> (kPa ) =           | 5546              |                                            |              |
| 5750                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                             |                        | $p_p(kPa) =$                      | 5784              | p <sub>F</sub> (kPa ) =                    | 571          |
|                                                                                                                |                                                                                                   | - 0.002                | $Q_p (m^3/s) =$                   | NA                | ,                                          |              |
| 5700 -                                                                                                         | •                                                                                                 | [/m in]                | tp (s) =                          | 10                | t <sub>F</sub> (s) =                       | 3679         |
| 5650 -                                                                                                         |                                                                                                   | Rate                   | S el S <sup>*</sup> (-)=          | NA                | S el S <sup>*</sup> (-)=                   | 1.00E-0      |
| 5600                                                                                                           | • •                                                                                               | Injection Rate [I/min] | EC <sub>w</sub> (mS/m)=           |                   | 3 61 3 (-)-                                |              |
|                                                                                                                |                                                                                                   | - 0.001                | Temp <sub>w</sub> (gr C)=         | 15.5              |                                            |              |
| 5550                                                                                                           | <u>.</u>                                                                                          |                        | Derivative fact.=                 |                   | Derivative fact.=                          | 0.0          |
| 5500 -                                                                                                         | ·                                                                                                 |                        | Benvative last.                   | 10.0              | Berryative ract.                           | 0.0          |
| 5450                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                             | 0.000                  |                                   |                   |                                            |              |
| 0.00 0.20 0.40 0.60 0.80 Elapsed T                                                                             |                                                                                                   | 1.80                   | Results                           |                   | Results                                    |              |
|                                                                                                                |                                                                                                   |                        | $Q/s (m^2/s)=$                    | NA                | 1000110                                    |              |
| .og-Log plot incl. derivates- fl                                                                               | ow period                                                                                         |                        | $T_{\rm M} (m^2/s) =$             | NA                |                                            |              |
| Log Log plot mon derivates in                                                                                  | ow poriou                                                                                         |                        | Flow regime:                      | transient         | Flow regime:                               | transient    |
|                                                                                                                |                                                                                                   |                        | dt <sub>1</sub> (min) =           | NA                | dt <sub>1</sub> (min) =                    | NA           |
|                                                                                                                |                                                                                                   |                        | $dt_1 (min) =$ $dt_2 (min) =$     | NA                | $dt_1 (min) =$ $dt_2 (min) =$              | NA           |
|                                                                                                                |                                                                                                   |                        | - 、                               | NA                | , ,                                        | 4.2E-1       |
|                                                                                                                |                                                                                                   |                        | $T (m^2/s) = S (-) =$             | NA                | $T (m^2/s) = S (-) =$                      | 1.0E-0       |
|                                                                                                                |                                                                                                   |                        |                                   | NA                | $K_s(m/s) =$                               |              |
|                                                                                                                |                                                                                                   |                        | -5 ()                             |                   |                                            | 8.4E-1       |
| Not A                                                                                                          | nalysed                                                                                           |                        | $S_s(1/m) =$                      | NA                | $S_s(1/m) =$                               | 2.0E-0       |
|                                                                                                                |                                                                                                   |                        | $C (m^3/Pa) =$                    | NA                | $C (m^3/Pa) =$                             | 1.9E-1       |
|                                                                                                                |                                                                                                   |                        | $C_D(-) =$                        | NA                | $C_D(-) =$                                 | 2.1E-0       |
|                                                                                                                |                                                                                                   |                        | ξ(-) =                            | NA                | ξ (-) =                                    | 0.           |
|                                                                                                                |                                                                                                   |                        | <b>-</b> , 2, )                   | NA                | - , 2, <u>)</u>                            | NA           |
|                                                                                                                |                                                                                                   |                        | $T_{GRF}(m^2/s) =$ $S_{GPF}(-) =$ | NA                | $T_{GRF}(m^2/s) =$ $S_{GPF}(-) =$          | NA           |
|                                                                                                                |                                                                                                   |                        | -011 ( )                          | NA<br>NA          | - SI(I ( )                                 | NA<br>NA     |
| and an plat incl. derivatives                                                                                  | received.                                                                                         |                        | D <sub>GRF</sub> (-) =            |                   | D <sub>GRF</sub> (-) =                     | INA          |
| .og-Log plot incl. derivatives-                                                                                |                                                                                                   |                        | Selected represe                  | NA                | <u></u>                                    | I 10F1       |
| 10 <sup>-2</sup> Eapsed time                                                                                   | 10,0 10,1                                                                                         | 10.2                   | dt <sub>1</sub> (min) =           | NA<br>NA          | C (m <sup>3</sup> /Pa) =                   | 1.9E-1       |
| 10 SKB Laxemar / KLX11A<br>593.00-598.00 / FI                                                                  | Flow Dim Version 2.14b<br>(c) Golder Associates                                                   | 10 <sup>1</sup>        | $dt_2 (min) =$                    |                   | $C_D(-) =$                                 | 2.1E-0       |
|                                                                                                                |                                                                                                   | 1                      | $T_T (m^2/s) =$                   | 4.2E-12           |                                            | 0.           |
|                                                                                                                |                                                                                                   | 3                      | S (-) =                           | 1.0E-06           |                                            |              |
| 10 .                                                                                                           |                                                                                                   |                        | $K_s (m/s) =$                     | NA                |                                            | ļ            |
| in a second of its distance                                                                                    |                                                                                                   | 10° Ji                 | $S_s(1/m) =$                      | NA                |                                            |              |
| · · · · · · · · · · · · · · · · · · ·                                                                          |                                                                                                   | nssaud palmowoog       | Comments:                         |                   |                                            |              |
| 10-1                                                                                                           |                                                                                                   | 0.3                    |                                   |                   | f 4.2E-12 m2/s was                         |              |
|                                                                                                                |                                                                                                   | -10 <sup>-1</sup>      |                                   |                   | The confidence rar to be 1.0E-12 to 7.0    |              |
| FLOW MODEL : Horroge                                                                                           | meous C= 1.89E-11 m3/Pa                                                                           |                        |                                   |                   | to be 1.0E-12 to 7.0 lated due to the very |              |
| FLOW MODEL : Horroge<br>BOUNDARY CONTINONS SI<br>WELL TYPE<br>SUPERFOSTION TYPE: No s<br>PLOT TYPE : Peres, Re | uglpulse T= 4.24E-12 m2/s<br>S= 1.00E-06 -<br>uperposition s= -3.40E-02 -<br>ynotis n= 2.00E+00 - | 0.03                   | transmissivity.                   | not be extrapo    | and to the very                            | , -0 11      |
| 10 <sup>-1</sup> 10 <sup>0</sup>                                                                               | 10.1 10.2 1                                                                                       | 03                     |                                   |                   |                                            |              |
|                                                                                                                |                                                                                                   |                        |                                   |                   |                                            |              |

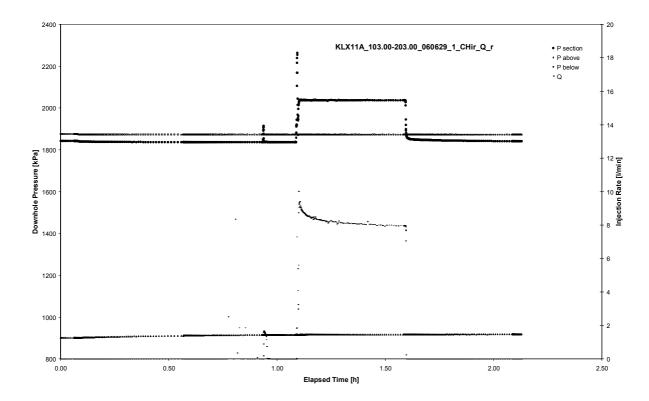
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                                                         | umi                  | mary Sheet                               |                                         |                                              |                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|------------------------------------------|-----------------------------------------|----------------------------------------------|------------------------------|--|
| Proj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ect:                                                                                                                                                                                                                                                                                                                                   | Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |                      |                                          |                                         |                                              |                              |  |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lax                                                                            | cema                 | Test no:                                 | †                                       |                                              | 1                            |  |
| Bore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ehole ID:                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KL                                                                             | .X11A                | Test start:                              |                                         |                                              | 060811 08:01                 |  |
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | section from - to (m):                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 598.00-603                                                                     | .00 m                | Responsible for                          |                                         | Stephan Ro                                   |                              |  |
| Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 0.076                | test execution: Responsible for          |                                         | Crist                                        | an Enachescu                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                      | test evaluation:                         |                                         |                                              |                              |  |
| Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ar plot Q and p                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                      | Flow period                              |                                         | Recovery period                              |                              |  |
| 5800 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | <b>7</b> 0.6         | Indata                                   | 1 5500                                  | Indata                                       |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX11A_598.00-603.00_060811_1_CHir_Q_r                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P section     P above                                                          |                      | p <sub>0</sub> (kPa) =                   | 5582                                    |                                              |                              |  |
| 5750 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • P below<br>• Q                                                               | 0.5                  | p <sub>i</sub> (kPa ) =                  | 5582                                    |                                              |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                      | $p_p(kPa) =$                             |                                         | p <sub>F</sub> (kPa ) =                      | 558                          |  |
| 8 5700 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | 0.4<br>=             | $Q_p (m^3/s) =$                          | 4.48E-06                                |                                              |                              |  |
| Downhole Pressure [KPa]<br>- 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 - 0895 |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | Rate [I/min]         | tp (s) =                                 |                                         | $t_F$ (s) =                                  | 120                          |  |
| 9 5650 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | Injection R          | S el S <sup>*</sup> (-)=                 | 1.00E-06                                | S el S <sup>*</sup> (-)=                     | 1.00E-0                      |  |
| 5600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Constitution                                                                 | 0.2                  | EC <sub>w</sub> (mS/m)=                  |                                         |                                              |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                      | Temp <sub>w</sub> (gr C)=                | 15.6                                    |                                              |                              |  |
| 5550 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 0.1                  | Derivative fact.=                        | 0.05                                    | Derivative fact.=                            | 0.0                          |  |
| 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                      |                                          |                                         |                                              |                              |  |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0.20 0.40 0.60 Elapsed                                                                                                                                                                                                                                                                                                               | 0.80 1.00<br>Time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.20 1.40                                                                      | 0.0                  | Results                                  |                                         | Results                                      |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                      |                                          | 2.2E-07                                 | Results                                      |                              |  |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                          | ow pariod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                      | Q/s $(m^2/s)=$                           | 1.8E-07                                 |                                              |                              |  |
| Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -Log plot incl. derivates- ii                                                                                                                                                                                                                                                                                                          | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                      | $T_M (m^2/s) =$                          |                                         |                                              | transiant                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bapsed time (i                                                                                                                                                                                                                                                                                                                         | h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                            |                      | Flow regime:                             | transient                               | Flow regime:                                 | transient                    |  |
| 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SKB Laxemar / KLX11A<br>998.00-603.00 / OH                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow Dim Version 2.14b<br>(c) Golder Associates                                | 30                   | dt <sub>1</sub> (min) =                  |                                         | dt <sub>1</sub> (min) =                      | NA                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | l .                  | $dt_2 (min) =$                           |                                         | $dt_2$ (min) =                               | NA                           |  |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOWMODEL: Two shell composite OLINDARY CONDTIONS: Constant pressure ELL TYPE: Source UFER-OSITION TYPE: No superposition LOT TYPE: Log-log                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 10 <sup>1</sup>      | $T (m^2/s) =$                            |                                         | $T (m^2/s) =$                                | 8.7E-0                       |  |
| 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UPERPOSITION TYPE: No superposition  LOT TYPE : Log-log                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 1                    | S (-) =                                  | 1.0E-06                                 | ` '                                          | 1.0E-0                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 3                    | $K_s (m/s) =$                            |                                         | $K_s (m/s) =$                                | 1.7E-0                       |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , As                                                                                                                                                                                                                                                                                                                                   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | 10° E                | $S_s (1/m) =$                            | 2.0E-07                                 | $S_s(1/m) =$                                 | 2.0E-0                       |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • • •                                                                                                                                                                                                                                                                                                                                  | i .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                | 10° [/uin] (b/1) '   | $C (m^3/Pa) =$                           | NA                                      | $C (m^3/Pa) =$                               | 1.2E+1                       |  |
| 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • • •                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 0.3                  | $C_D(-) =$                               | NA                                      | $C_D(-) =$                                   | 1.4E+18                      |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 3.76E-07 m2/s                                                                |                      | ξ (-) =                                  | 3.9                                     | ξ (-) =                                      | 14.8                         |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 10-1                 |                                          |                                         |                                              |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | ٠.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n1 200E+00 -<br>n2 200E+00 -<br>rD1 290E+04 -<br>brw 200E+00 -<br>s 3.92E+00 - |                      | $T_{GRF}(m^2/s) =$                       | NA                                      | $T_{GRF}(m^2/s) =$                           | NA                           |  |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>6</sup> 10 <sup>7</sup> tD                                                                                                                                                                                                                                                                                                     | 10 <sup>8</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 <sup>9</sup> 10 <sup>10</sup>                                                | <del>,</del>         | S <sub>GRF</sub> (-) =                   | NA                                      | $S_{GRF}(-) =$                               | NA                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                      | D <sub>GRF</sub> (-) =                   | NA                                      | D <sub>GRF</sub> (-) =                       | NA                           |  |
| Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                            | recovery perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | od                                                                             |                      | Selected repres                          | entative paran                          | neters.                                      |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Connect time (in                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                      | $dt_1$ (min) =                           | 0.83                                    | $C (m^3/Pa) =$                               | 1.2E+1                       |  |
| 10 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,-4 10,-3 Eapsed time [h                                                                                                                                                                                                                                                                                                             | 10,-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                      | $dt_2 \text{ (min)} =$                   | 4.65                                    | $C_D(-) =$                                   | 1.4E+1                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iKB Laxemar / KLX11A<br>98.00-603.00 / CHir                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow Dim Version 2.14b<br>(c) Golder Associates                                |                      | $T_T (m^2/s) =$                          | 3.8E-07                                 |                                              | 3.5                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 300                  | S (-) =                                  | 1.0E-06                                 |                                              |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | January Comments                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 10 <sup>2</sup>      | $K_s (m/s) =$                            | 7.6E-08                                 |                                              |                              |  |
| 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                      | $S_s (1/m) =$                            | 2.0E-07                                 |                                              | <u> </u>                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 30 \( \frac{1}{2} \) | Comments:                                | 2.0L-07                                 |                                              |                              |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , · · · ·                                                                                                                                                                                                                                                                                                                              | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                      |                                          | l transmissivity a                      | 62 9E 07 m2/a waa                            | dariyad from th              |  |
| 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | 101 5                |                                          |                                         | f 3.8E-07 m2/s was<br>se (inner zone), which |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ^ <u>, a2</u>                                                                                                                                                                                                                                                                                                                          | e partir symmetric services and a service service services and a service service services and a service service services and a service service services and a service service services and a service service service services and a service service service service services and a service service service services and a service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service serv | T 8.70E-07 m2/s                                                                |                      |                                          |                                         | the confidence range                         |                              |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                      | transmissivity is estimated to be 9.0E-08 to 9.0E-07 m2/s (this range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                      |                                          |                                         |                                              |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FLOW MODEL : Two shell composite BOUNDARY CONDITIONS: Constant rate                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S 1.00E-06 C 1.23E-10 m3/Pa<br>n1 2.00E+00 n2 2.00E+00 -                       |                      | transmissivity is es                     | simated to be 9.0                       | L 00 to 7.0L 07 III2                         | (                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FLOW MODEL: Two shell composite BOUNDARY CONDITIONS: Constant rate WELL TYPE: Source SUPERFORMON TYPE: Aganwal time PLOT TYPE: Log-log                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n2 2.00E+00 -<br>rD1 1.00E+09 -                                                | 10°                  | includes the derive                      | ed transmissivity                       | from the CHir phase                          | e). The static               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R.OWMODEL : Two shell composite BOUNDARY CONTINONS: Onstart rate WELL TYPE : Source Supposed that I Log-log  10 <sup>7</sup> 10 <sup>7</sup> 10 <sup>2</sup> 10 <sup>10</sup> | 10 3 10 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n2 2.00E+00 -<br>rD1 1.00E+09 -<br>brw 3.00E+00 -<br>s 1.48E+01 -              | 10°                  | includes the derive<br>pressure measured | ed transmissivity<br>l at transducer de |                                              | e). The static<br>m the CHir |  |

|                                                                                                                                           | Test                                                                                            | Sumi                           | nary Sheet                           |                   |                          |                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|-------------------|--------------------------|-----------------|--|
| Project:                                                                                                                                  | Oskarshamn site inves                                                                           | tigation                       | Test type:[1]                        |                   |                          | CHi             |  |
| Area:                                                                                                                                     | La                                                                                              | axemar                         | Test no:                             |                   |                          | 1               |  |
| Borehole ID:                                                                                                                              | , k                                                                                             | /I V11A                        | Test start:                          |                   |                          | 060811 10:29    |  |
| Borenole ID.                                                                                                                              | , n                                                                                             | LXIIA                          | rest start.                          |                   |                          | 000011 10.28    |  |
| Test section from - to (m):                                                                                                               | 663.00-66                                                                                       | 8.00 m                         | Responsible for test execution:      | Stephan R         |                          |                 |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                   |                                                                                                 | 0.076                          | Responsible for                      |                   | Crist                    | ian Enachescı   |  |
| Linear plot Q and p                                                                                                                       | <u>†</u>                                                                                        | test evaluation: Flow period   |                                      | Recovery period   |                          |                 |  |
| F F                                                                                                                                       |                                                                                                 |                                | Indata                               |                   | Indata                   |                 |  |
| 6450                                                                                                                                      | 60811 1 CHir O r Psection                                                                       | 0.005                          | p <sub>0</sub> (kPa) =               | 6188              |                          |                 |  |
| KLX11A_663.00-668.00_0                                                                                                                    | 60811_1_CHir_Q_r Pabove Pelow                                                                   |                                | p <sub>i</sub> (kPa ) =              | 6196              |                          |                 |  |
|                                                                                                                                           |                                                                                                 | 0.004                          | $p_p(kPa) =$                         | 6428              | p <sub>F</sub> (kPa ) =  | 626             |  |
| 6350 -                                                                                                                                    | : \                                                                                             |                                | $Q_p (m^3/s) =$                      | 1.67E-08          | , , ,                    |                 |  |
| (KPa)                                                                                                                                     | · \                                                                                             | 0.003                          | $\frac{Q_p (\Pi / S)^{-}}{tp (s)} =$ |                   | t <sub>F</sub> (s) =     | 120             |  |
| 8 6300 -                                                                                                                                  |                                                                                                 | Rate [I                        |                                      |                   |                          | 1.00E-0         |  |
| e 6250                                                                                                                                    |                                                                                                 | 0.000<br>1)ection Rate [1/min] | S el S <sup>*</sup> (-)=             | 1.00E-00          | S el S <sup>*</sup> (-)= | 1.00E-0         |  |
|                                                                                                                                           |                                                                                                 | = E                            | EC <sub>w</sub> (mS/m)=              | 16.5              |                          |                 |  |
| 6200                                                                                                                                      | =                                                                                               |                                | Temp <sub>w</sub> (gr C)=            | 16.5              |                          |                 |  |
| 6150                                                                                                                                      |                                                                                                 | - 0.001                        | Derivative fact.=                    | 0.02              | Derivative fact.=        | 0.0             |  |
| ••                                                                                                                                        |                                                                                                 |                                |                                      |                   |                          |                 |  |
| 0.00 0.50 1.00 Elapsed                                                                                                                    | 1.50 2.00 2.50<br>Time [h]                                                                      | 0.000                          | Deculto                              |                   | Deculto                  |                 |  |
| Liapood                                                                                                                                   |                                                                                                 |                                | Results                              | <b>.</b>          | Results                  |                 |  |
|                                                                                                                                           |                                                                                                 |                                | Q/s $(m^2/s)=$                       | 7.0E-10           |                          |                 |  |
| Log-Log plot incl. derivates- f                                                                                                           | low period                                                                                      |                                | $T_{\rm M} (m^2/s) =$                | 5.8E-10           |                          |                 |  |
| Bapsed time [                                                                                                                             | า                                                                                               |                                | Flow regime:                         | transient         | Flow regime:             | transient       |  |
| 10 17 10,12                                                                                                                               | <sup>2</sup> 10, <sup>0</sup> 10, <sup>1</sup> 10, <sup>2</sup>                                 |                                | $dt_1$ (min) =                       | NA                | $dt_1$ (min) =           | NA              |  |
| SKB Laxemar / KLX11A<br>663.00-668.00 / CH                                                                                                |                                                                                                 |                                | $dt_2$ (min) =                       | NA                | dt <sub>2</sub> (min) =  | NA              |  |
|                                                                                                                                           | Flow Dim Version 2.14b<br>(c) Golder Associates                                                 | 3000                           | $T (m^2/s) =$                        | 1.0E-10           | $T (m^2/s) =$            | 1.3E-1          |  |
|                                                                                                                                           |                                                                                                 |                                | S (-) =                              | 1.0E-06           |                          | 1.0E-0          |  |
| 10 d                                                                                                                                      |                                                                                                 | 10 <sup>3</sup>                | $K_s (m/s) =$                        |                   | $K_s$ (m/s) =            | 2.7E-1          |  |
|                                                                                                                                           |                                                                                                 |                                | $S_s (1/m) =$                        |                   | $S_s(1/m) =$             | 2.0E-0          |  |
| :                                                                                                                                         |                                                                                                 | 98<br>(1/q)' [min/]            | - ( )                                | NA                | - ( )                    | 3.9E-1          |  |
| ٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠                                                                                                    |                                                                                                 | Vq. (1/q                       | $C (m^3/Pa) =$                       |                   | $C (m^3/Pa) =$           |                 |  |
| 10-1                                                                                                                                      |                                                                                                 | 10 <sup>2</sup>                | $C_D(-) =$                           | NA                | $C_D(-) =$               | 4.3E-0          |  |
|                                                                                                                                           | T 1.01E-10 m2/s                                                                                 |                                | ξ (-) =                              | -2.8              | ξ (-) =                  | -2.             |  |
| FLOW MODEL : Two shell com<br>BOLNDARY CONDITIONS Constant<br>WELL TYPE : Source<br>SUFERCS INON TYPE : No superpo<br>FLOT TYPE : Log-log | T 1.015.10 m2/s  S 1.005.06 -  pressure n1 2.0005.00 -  pressure n2 2.0005.00 -  (D1 1.205.00 - | 30                             | 2                                    |                   | 2                        |                 |  |
| L                                                                                                                                         | brw 2.60⊟00 -<br>s -2.82⊑+00 -                                                                  |                                | $T_{GRF}(m^2/s) =$                   | NA                | $T_{GRF}(m^2/s) =$       | NA              |  |
| 10 <sup>-2</sup> 10 <sup>-1</sup> tD                                                                                                      | 10 <sup>d</sup> 10 <sup>1</sup> 10 <sup>2</sup>                                                 |                                | $S_{GRF}(-) =$                       | NA                | $S_{GRF}(-) =$           | NA              |  |
|                                                                                                                                           |                                                                                                 |                                | $D_{GRF}$ (-) =                      | NA                | $D_{GRF}$ (-) =          | NA              |  |
| Log-Log plot incl. derivatives                                                                                                            | - recovery period                                                                               |                                | Selected represe                     | entative paran    | ieters.                  |                 |  |
| Bapsed time                                                                                                                               | [h]                                                                                             |                                | $dt_1$ (min) =                       | NA                | C (m³/Pa) =              | 3.9E-1          |  |
| 10 <sup>1</sup> SKB Laxemer / KLX11A 663.00-668.00 / CHr                                                                                  | 10, <sup>-1</sup> 10, <sup>0</sup> 10,<br>Flow Dim Version 2.14b<br>(c) Golder Associates       | ή.                             | $dt_2$ (min) =                       | NA                | $C_D(-) =$               | 4.3E-0          |  |
| 663.00-668.00 / CHr                                                                                                                       | (c) Golder Associates                                                                           | -                              | $T_T (m^2/s) =$                      | 1.3E-10           | ξ(-) =                   | -2.             |  |
|                                                                                                                                           |                                                                                                 | 10 <sup>3</sup>                | S (-) =                              | 1.0E-06           |                          |                 |  |
|                                                                                                                                           | /                                                                                               | 300                            | K <sub>s</sub> (m/s) =               | 2.6E-11           |                          | 1               |  |
| 10 4                                                                                                                                      |                                                                                                 |                                | S <sub>s</sub> (1/m) =               | 2.0E-07           |                          |                 |  |
|                                                                                                                                           | /j/                                                                                             | 10° [84] (0d                   | Comments:                            |                   |                          |                 |  |
|                                                                                                                                           |                                                                                                 | 9                              |                                      | transmissivity of | f 1.3E-10 m2/s was       | derived from th |  |
| FLOWINDEL : Two shell composite BOUNDARY CONDITIONS: Constant rate Source Superposition YHE: Against alter PLOTTYPE : Log-log             |                                                                                                 | 30                             |                                      |                   | se, which shows the      |                 |  |
| SUPENPUSHION TYPE: Agarwal time PLOT TYPE : Log-log                                                                                       | T 1.34E-10 m2/s                                                                                 |                                |                                      |                   | range for the interval   |                 |  |
|                                                                                                                                           | S 1.00E-06 -<br>C 3.94E-11 m3/Pa                                                                | 10 <sup>1</sup>                |                                      |                   | 0 m2/s. Due to the       |                 |  |
| · //.                                                                                                                                     | \$ <sup>™</sup> -2.48€+00 :                                                                     |                                | transmissivity no fr                 |                   |                          |                 |  |
| 10 <sup>-2</sup> 10 <sup>-1</sup>                                                                                                         | 10 <sup>0</sup> 10 <sup>1</sup> 1                                                               | 3                              |                                      |                   |                          |                 |  |
|                                                                                                                                           |                                                                                                 |                                |                                      |                   |                          |                 |  |
|                                                                                                                                           |                                                                                                 |                                | <u>I</u>                             |                   |                          |                 |  |

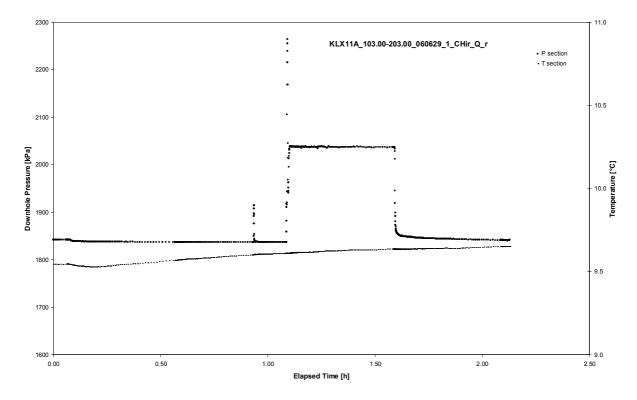
|                                                                                                                                         | Test S                                                                                     | <u>um</u> r                                | nary Sheet                       |                   |                          |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|-------------------|--------------------------|-----------------|
| Project:                                                                                                                                | Oskarshamn site investi                                                                    | gation                                     | Test type:[1]                    |                   |                          | CHi             |
| Area:                                                                                                                                   | Lax                                                                                        | kemar                                      | Test no:                         |                   |                          |                 |
|                                                                                                                                         |                                                                                            |                                            |                                  |                   |                          |                 |
| Borehole ID:                                                                                                                            | KL                                                                                         | -X11A                                      | Test start:                      |                   |                          | 060811 13:30    |
| Test section from - to (m):                                                                                                             | 668.00-673                                                                                 | .00 m                                      | Responsible for test execution:  |                   |                          | Stephan Rohs    |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                 |                                                                                            | 0.076                                      | Responsible for test evaluation: |                   | Crist                    | ian Enachescı   |
| Linear plot Q and p                                                                                                                     |                                                                                            |                                            | Flow period                      |                   | Recovery period          |                 |
| • •                                                                                                                                     |                                                                                            |                                            | Indata                           |                   | Indata                   |                 |
| 6500 • KI X11A 668 00                                                                                                                   | 1-673.00_060811_1_Pi_Q_r • P section                                                       | 0.003                                      | p <sub>0</sub> (kPa) =           | 6237              |                          |                 |
| 6450                                                                                                                                    | P above                                                                                    |                                            | p <sub>i</sub> (kPa ) =          | 6245              |                          |                 |
| 0430                                                                                                                                    | • Q •                                                                                      |                                            | $p_p(kPa) =$                     | 6458              | p <sub>F</sub> (kPa ) =  | 636             |
| 6400 -                                                                                                                                  |                                                                                            |                                            | $Q_p (m^3/s) =$                  | NA                | P1 ( - /                 |                 |
| 요<br>요<br>요                                                                                                                             |                                                                                            | - 0.002<br>                                | tp (s) =                         |                   | t <sub>F</sub> (s) =     | 358             |
| S 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                 | :                                                                                          | Rate [I/                                   |                                  | NA                |                          | 1.00E-0         |
| 0 6300 - C                                                                                                                              | •                                                                                          | Injection Rate [I/min]                     | S el S* (-)=                     | INA               | S el S <sup>*</sup> (-)= | 1.00E-0         |
| 8 6300                                                                                                                                  | •                                                                                          | <u>후</u><br>0.001                          | EC <sub>w</sub> (mS/m)=          | 16.6              |                          |                 |
| 6250                                                                                                                                    |                                                                                            |                                            | Temp <sub>w</sub> (gr C)=        | 16.6              |                          |                 |
| 6200 -                                                                                                                                  | •                                                                                          |                                            | Derivative fact.=                | NA                | Derivative fact.=        | 0.0             |
| 6150                                                                                                                                    |                                                                                            | 0.000                                      |                                  |                   |                          |                 |
| 0.00 0.20 0.40 0.60 0.80 Elapsed T                                                                                                      | 1.00 1.20 1.40 1.60 1.3<br>ime [h]                                                         |                                            | Results                          |                   | Results                  | <u> </u>        |
|                                                                                                                                         |                                                                                            |                                            | $Q/s (m^2/s)=$                   | NA                |                          |                 |
| Log-Log plot incl. derivates- fl                                                                                                        | ow period                                                                                  |                                            | $T_M (m^2/s) =$                  | NA                |                          |                 |
| <u> </u>                                                                                                                                | <u>'</u>                                                                                   |                                            | Flow regime:                     | transient         | Flow regime:             | transient       |
|                                                                                                                                         |                                                                                            |                                            | $dt_1 \text{ (min)} =$           | NA                | $dt_1 (min) =$           | 6.7             |
|                                                                                                                                         |                                                                                            |                                            | $dt_2 \text{ (min)} =$           | NA                | $dt_2 (min) =$           | 42.0            |
|                                                                                                                                         |                                                                                            |                                            | ` '                              | NA                |                          | 1.2E-1          |
|                                                                                                                                         |                                                                                            |                                            | $T (m^2/s) = S (-) =$            |                   | $T (m^2/s) = S (-) =$    |                 |
|                                                                                                                                         |                                                                                            |                                            | 0 ( )                            | NA                | 0 ( )                    | 1.0E-0          |
|                                                                                                                                         |                                                                                            |                                            | $K_s(m/s) =$                     | NA                | $K_s (m/s) =$            | 2.3E-1          |
| Not A                                                                                                                                   | nalysed                                                                                    |                                            | $S_s (1/m) =$                    | NA                | S <sub>s</sub> (1/m) =   | 2.0E-0          |
|                                                                                                                                         | J                                                                                          |                                            | $C (m^3/Pa) =$                   | NA                | $C (m^3/Pa) =$           | 1.7E-1          |
|                                                                                                                                         |                                                                                            |                                            | $C_D(-) =$                       | NA                | $C_D(-) =$               | 1.8E-0          |
|                                                                                                                                         |                                                                                            |                                            | ξ (-) =                          | NA                | ξ (-) =                  | -0.             |
|                                                                                                                                         |                                                                                            |                                            | 2                                |                   | 2                        | 5.075.4         |
|                                                                                                                                         |                                                                                            |                                            | $T_{GRF}(m^2/s) =$               | NA                | $T_{GRF}(m^2/s) =$       | 5.67E-1         |
|                                                                                                                                         |                                                                                            |                                            | $S_{GRF}(-) =$                   | NA                | $S_{GRF}(-) =$           | 1.00E-0         |
|                                                                                                                                         |                                                                                            |                                            | $D_{GRF}$ (-) =                  | NA                | D <sub>GRF</sub> (-) =   | 1.0             |
| Log-Log plot incl. derivatives-                                                                                                         | recovery period                                                                            |                                            | Selected represe                 |                   | <u></u>                  |                 |
| Bapsed time                                                                                                                             | [h] 40.1 40.01                                                                             |                                            | $dt_1 (min) =$                   | 6.71              | C (m³/Pa) =              | 1.7E-1          |
| 10. <sup>10</sup> SKB Laxemar / KLX11A 668.00-673.00 / FI                                                                               | . 10,"                                                                                     | 7                                          | $dt_2$ (min) =                   | 42.07             | $C_D(-) =$               | 1.8E-0          |
| 668.00-673.00 / PI                                                                                                                      | (c) Golder Associates                                                                      | 3                                          | $T_T (m^2/s) =$                  | 1.2E-11           |                          | -0.             |
| ••                                                                                                                                      | ·                                                                                          | 450                                        | S (-) =                          | 1.0E-06           |                          |                 |
| 10°                                                                                                                                     |                                                                                            | 100                                        | $K_s (m/s) =$                    | 2.4E-12           |                          |                 |
|                                                                                                                                         |                                                                                            | 0.3                                        | $S_s (1/m) =$                    | 2.0E-07           |                          |                 |
| a l                                                                                                                                     |                                                                                            | nted bre                                   | Comments:                        |                   |                          |                 |
|                                                                                                                                         |                                                                                            | 0.3 10 10 10 10 10 10 10 10 10 10 10 10 10 | The recommended                  | transmissivity of | f 1.2E-11 m2/s was       | derived from th |
| 10-1                                                                                                                                    |                                                                                            | ^                                          | radial flow analysis             | of the Pi phase.  | The confidence ran       | ge for the      |
| T GWANDER                                                                                                                               | C= 1.65E-11                                                                                | 0.03                                       |                                  |                   | to be 9.0E-12 to 4.0     |                 |
| FLOW MODEL . Homogeneous BOUNDARY CONDITIONS Stugrouse WELLTYE . Source SUPPROSITION TYPE: No superposition FLOT TYPE : Fares, Raynolds | C= 1.65E.11 mg/Pa<br>T= 1.17E.11 mg/Ps<br>S= 1.00E.06 -<br>s= -2.90E.01 -<br>n= 2.00E+00 - |                                            |                                  | d not be extrapo  | lated due to the very    | low             |
|                                                                                                                                         |                                                                                            | 10-2                                       | transmissivity.                  |                   |                          |                 |
| . 10 <sup>-1</sup> 10 <sup>0</sup> tE                                                                                                   | 10 <sup>1</sup> 10 <sup>2</sup> 10                                                         | o <sup>3</sup>                             |                                  |                   |                          |                 |
|                                                                                                                                         |                                                                                            |                                            |                                  |                   |                          |                 |

|                                                                                                                                                    | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sumr                     | nary Sheet                      |                 |                                         |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|-----------------|-----------------------------------------|---------------|
| Project:                                                                                                                                           | Oskarshamn site invest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | igation                  | Test type:[1]                   |                 |                                         | CHi           |
| Area:                                                                                                                                              | Laxemar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Test no:                        |                 |                                         | •             |
| Borehole ID:                                                                                                                                       | KI X11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Test start:                     |                 |                                         | 060811 15:38  |
| Borchoic IB.                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                 |                                         |               |
| Test section from - to (m):                                                                                                                        | 673.00-678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.00 m                   | Responsible for test execution: |                 |                                         | Stephan Rohs  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                    | Responsible for                 |                 | Crist                                   | ian Enachescu |
| Linear plot Q and p                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | test evaluation: Flow period    |                 | Recovery period                         |               |
| Linear plot & and p                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Indata                          |                 | Indata                                  |               |
| 6550 <del></del>                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 0.003                  | p <sub>0</sub> (kPa) =          | 6283            | maata                                   |               |
| KLX11A_673.0                                                                                                                                       | • P section • P above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | p <sub>i</sub> (kPa ) =         | 6288            |                                         |               |
| 6500 -                                                                                                                                             | P below<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | $p_p(kPa) =$                    |                 | p <sub>F</sub> (kPa ) =                 | 629           |
| 6450 -                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                 | NA              | ρ <sub>Γ</sub> (κι α )                  | 027           |
| 프                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.002                  | $\frac{Q_p (m^3/s)=}{tp (s)} =$ |                 | t <sub>F</sub> (s) =                    | 3720          |
| 2 6400 -                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nte [1/m                 |                                 |                 |                                         |               |
| 3 and                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Injection Rate [I/min]   | S el S* (-)=                    | NA              | S el S <sup>*</sup> (-)=                | 1.00E-0       |
| 8 8550                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nje ct                   | EC <sub>w</sub> (mS/m)=         |                 |                                         |               |
| 6300                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001                    | Temp <sub>w</sub> (gr C)=       | 16.7            |                                         |               |
|                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Derivative fact.=               | NA              | Derivative fact.=                       | 0.0           |
| 6250                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                 |                                         |               |
| 0.00 0.20 0.40 0.60 0.80                                                                                                                           | 1.00 1.20 1.40 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                    |                                 |                 |                                         |               |
| Elapsed                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                      | Results                         |                 | Results                                 |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $Q/s (m^2/s) =$                 | NA              |                                         |               |
| Log-Log plot incl. derivates- f                                                                                                                    | low period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | $T_{\rm M} (m^2/s) =$           | NA              |                                         |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Flow regime:                    | transient       | Flow regime:                            | transient     |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $dt_1$ (min) =                  | NA              | $dt_1$ (min) =                          | 2.3           |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $dt_2 \text{ (min)} =$          | NA              | $dt_2 \text{ (min)} =$                  | 8.9           |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $T (m^2/s) =$                   | NA              | $T (m^2/s) =$                           | 9.0E-1        |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | S (-) =                         | NA              | S (-) =                                 | 1.0E-0        |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                 |                                         |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $K_s$ (m/s) =                   | NA              | $K_s (m/s) =$                           | 1.8E-1        |
| Not A                                                                                                                                              | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | $S_s (1/m) =$                   | NA              | $S_s(1/m) =$                            | 2.0E-0        |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $C (m^3/Pa) =$                  | NA              | C (m³/Pa) =                             | 1.2E-1        |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $C_D(-) =$                      | NA              | $C_D(-) =$                              | 1.3E-0        |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ξ (-) =                         | NA              | ξ (-) =                                 | 0.            |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                 |                                         |               |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $T_{GRF}(m^2/s) =$              | NA              | $T_{GRF}(m^2/s) =$                      | NA            |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $S_{GRF}(-) =$                  | NA              | S <sub>GRF</sub> (-) =                  | NA            |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | D <sub>GRF</sub> (-) =          | NA              | D <sub>GRF</sub> (-) =                  | NA            |
| Log-Log plot incl. derivatives                                                                                                                     | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Selected represe                | entative paran  |                                         |               |
| <u> </u>                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | $dt_1$ (min) =                  | 2.36            |                                         | 1.2E-1        |
| Bapsed time 10. <sup>-3</sup> 10. <sup>-3</sup> 10. <sup>-3</sup>                                                                                  | [h] 10, <sup>-1</sup> 10, <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>-</del> 1           | $dt_2 \text{ (min)} =$          |                 | $C_D(-) =$                              | 1.3E-0        |
| 10 1<br>SKB Laxemer / KLX11A<br>673.00-678.00 / Pi                                                                                                 | Flow Dim Version 2.14b<br>(c) Golder Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                      | 2                               | 9.0E-11         |                                         | 0.            |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                      | $T_T (m^2/s) = $ $S (-) = $     | 1.0E-06         |                                         | 0.            |
|                                                                                                                                                    | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 10 -1                    |                                 |                 |                                         |               |
| 10°                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | K <sub>s</sub> (m/s) =          | 1.8E-11         |                                         |               |
| · · · · · ·                                                                                                                                        | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | 0.03                     | $S_s(1/m) =$                    | 2.0E-07         |                                         |               |
|                                                                                                                                                    | ,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03 nssaud patryonuooog | Comments:                       |                 |                                         |               |
| .:                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 -2 Townood            |                                 |                 | 9.0E-11 m2/s was                        |               |
| 10-1                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                        |                                 |                 | (inner zone). The co                    |               |
|                                                                                                                                                    | C 1.19E-11 m2/s<br>T 8.98E-11 m2/s<br>S 1.00E-06 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.003                    |                                 |                 | mated to be 5.0E-11 be extrapolated due |               |
| FLOW MODEL : Two shall composite BOLNDARY CONDITIONS: Stugrpuise WELL TYPE : Source SUFBROSTION TYPE: No superposition PLOT TYPE : Peres, Reynolds | s 1.40E-01 -<br>n1 2.00F+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F 10 -3                  | transmissivity.                 | soure could not | oc extraporated alle                    | w me very low |
| our Engrusion TYPE: No superposition                                                                                                               | n2 2.00E+00 -<br>rD1 9.80E+00 -<br>brw 8.06E-01 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                       | a unsimissivity.                |                 |                                         |               |
| 10 <sup>-1</sup> 10 <sup>-0</sup>                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>             |                                 |                 |                                         |               |

| Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sumr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|
| Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test type:[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | CHi                   |
| La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
| KLX11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 060811 17:45          |
| 678.00-683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Stephan Roh           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cris                                      | tian Enachescu        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | test evaluation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | d                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | T                     |
| Pi_Q_r • P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
| • P below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n- (kPa ) =                               | 633                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ρ <sub>F</sub> (κι α <i>)</i> –           | 033                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t (a) =                                   | 912                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | te [l/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S el S (-)=                               | 1.00E-0               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                       |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Derivative fact.=                         | 0.0                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
| 2.00 2.50 3.00 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
| me [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Results                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Q/s (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
| ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_M (m^2/s)=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | transient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flow regime:                              | transient             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $dt_1 (min) =$                            | 1.9                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $dt_2$ (min) =                            | 16.9                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T (m^2/s) =$                             | 8.4E-1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S (-) =                                   | 1.0E-0                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $K_s (m/s) =$                             | 1.7E-1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_s(1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_s(1/m) =$                              | 2.0E-0                |
| ialysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C (m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C (m^3/Pa) =$                            | 1.5E-1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , ,                                       | 1.7E-0                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | -0.3                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3()                                       | †                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T <sub></sub> (m <sup>2</sup> /s) =       | NA                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | NA                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | NA                    |
| recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                  |                       |
| Tood vory portou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 1.5E-1                |
| h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 1.7E-0                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | -0.3<br>-0.3          |
| (b) Color Moderates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | -0.                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | <u> </u>              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
| with the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0 <b>Ŀ</b> -07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03 aut page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>-2</sup> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The confidence ra<br>to be 6.0E-11 to 1.0 |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • OOGA VALITATISHIISSI'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vitv is collillated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UL U.UE-II IU I.V                         | ノレーI U 11114/5. I IIに |
| C= 1.52E-11 mg/Pa<br>T= 8.40E-11 mg/Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
| C= 1.52E-11 m8/Pa<br>T= 8.4E-11 m2/s<br>S= 1.00E-06<br>s= 3.24E-01 -<br>n= 2.00E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lated due to the ver                      |                       |
| n= 2.00E+00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | static pressure cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PLQ.r Paction Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pactor Pa | Laxemar   KLX11A   678.00-683.00 m   0.076   0.076   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000 | Ploy   Period   Indata   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po (kPa) =   Po ( | Laxemar   Test no:                        | Laxemar   Test no:    |

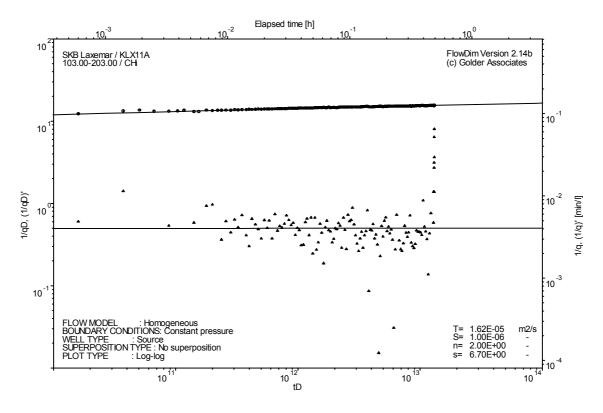

Test: 103.00 – 203.00 m

# **APPENDIX 2-1**


Test 103.00 – 203.00 m

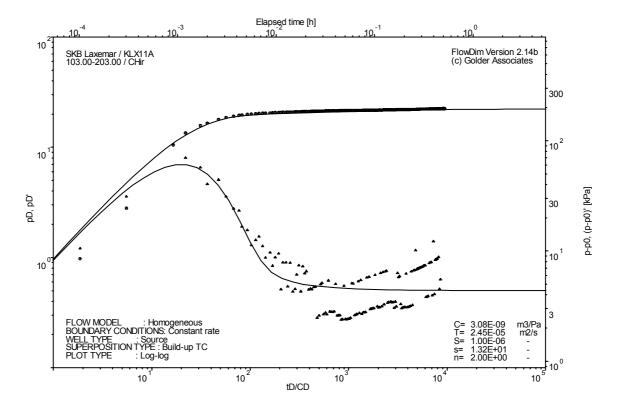
Analysis diagrams

Test: 103.00 – 203.00 m

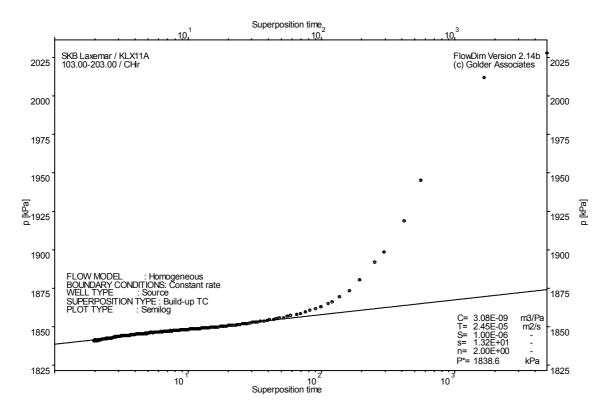



Pressure and flow rate vs. time; cartesian plot



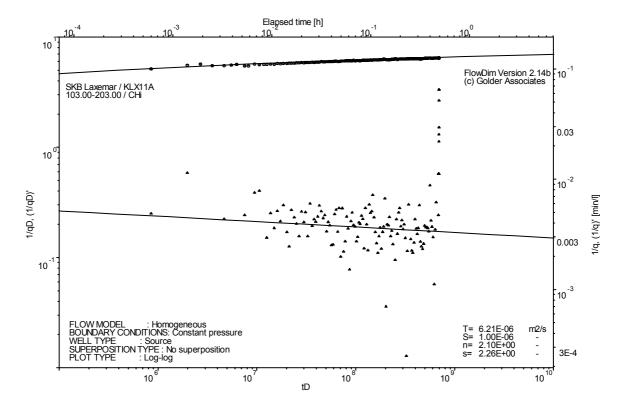

Interval pressure and temperature vs. time; cartesian plot

Test: 103.00 – 203.00 m

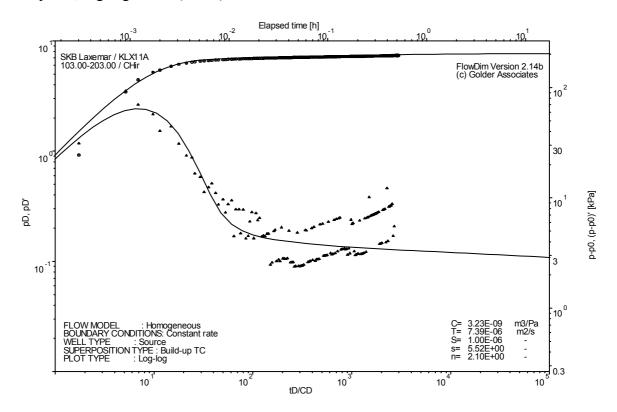



CHI phase; log-log match

Test: 103.00 – 203.00 m




CHIR phase; log-log match




CHIR phase; HORNER match

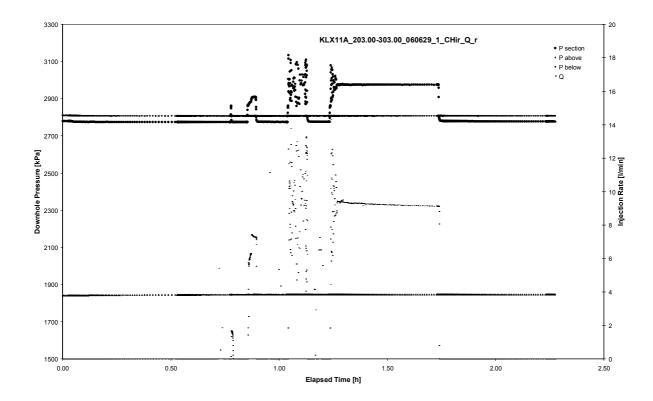
Test: 103.00 – 203.00 m



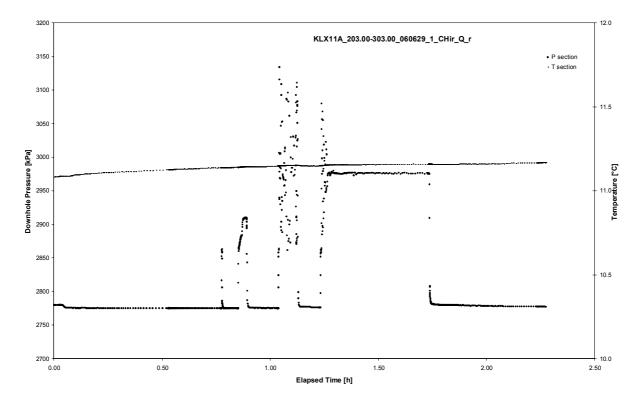
CHI phase; log-log match (n=2.1)



CHIR phase; log-log match (n=2.1)

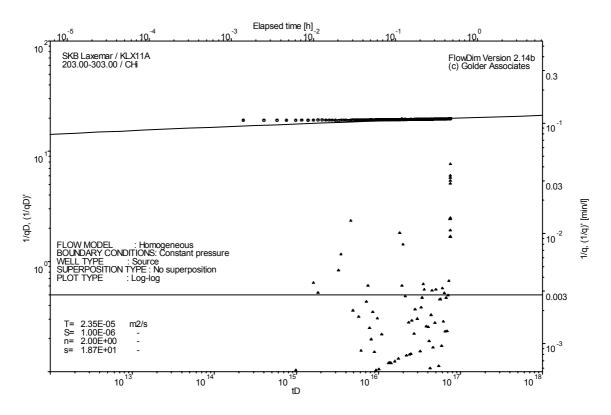

Test: 203.00 – 303.00 m

# **APPENDIX 2-2**


Test 203.00 – 303.00 m

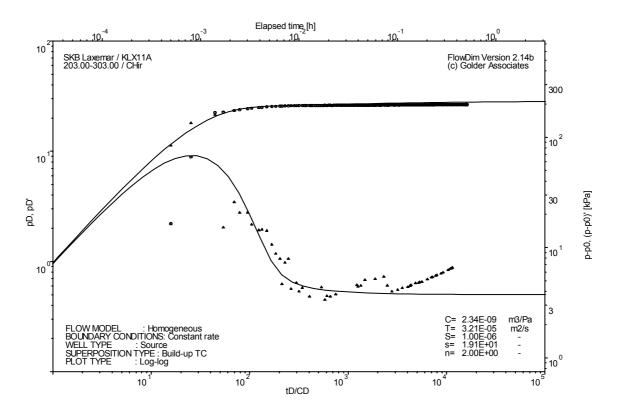
Analysis diagrams

Test: 203.00 – 303.00 m

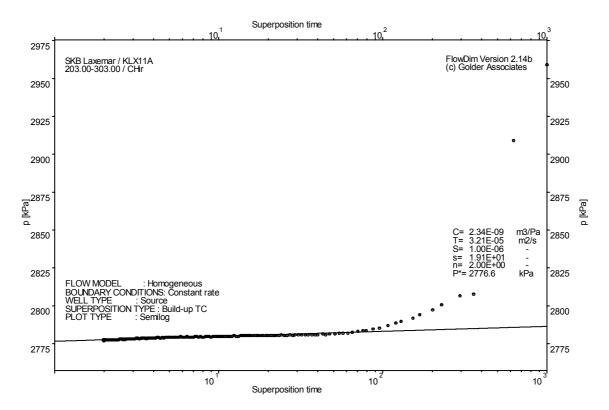



Pressure and flow rate vs. time; cartesian plot



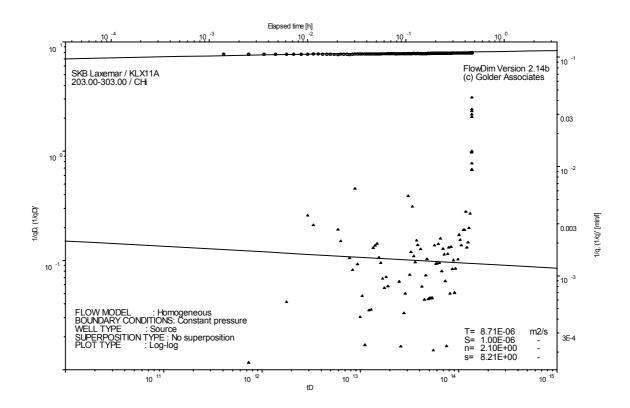

Interval pressure and temperature vs. time; cartesian plot

Test: 203.00 – 303.00 m

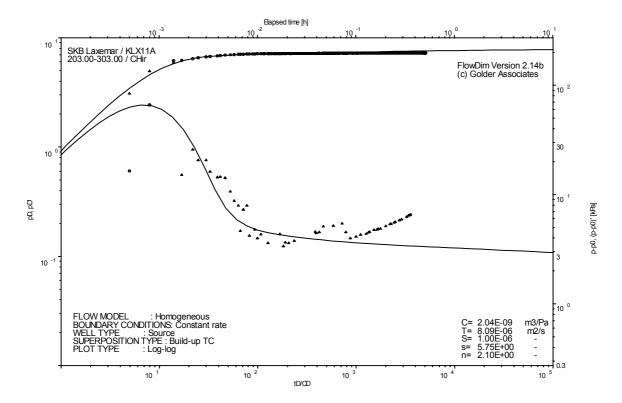



CHI phase; log-log match

Test: 203.00 - 303.00 m




CHIR phase; log-log match




CHIR phase; HORNER match

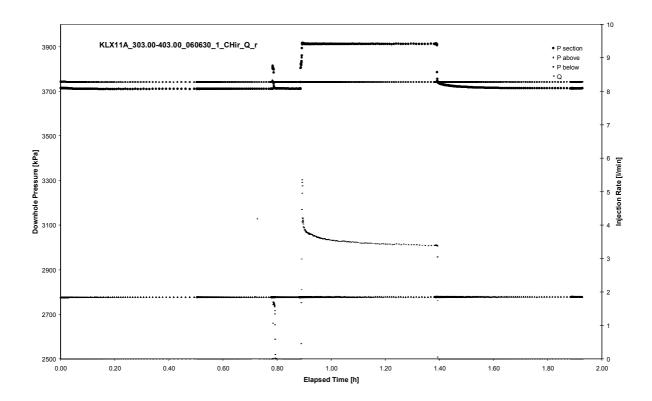
Test: 203.00 – 303.00 m



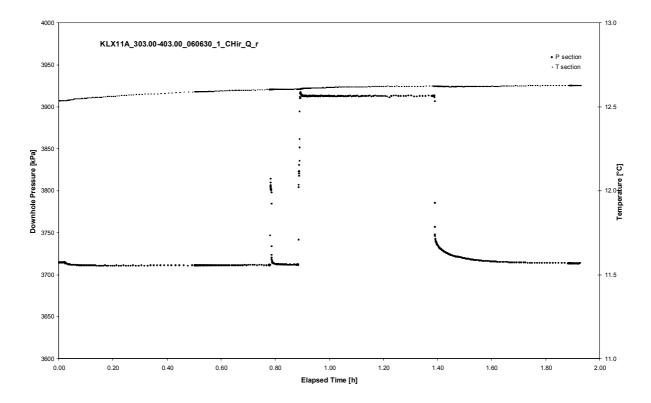
CHI phase; log-log match (n=2.1)



CHIR phase; log-log match (n=2.1)

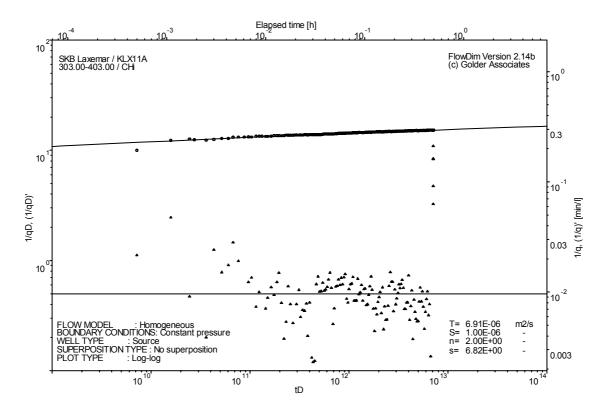

Test: 303.00 – 403.00 m

# **APPENDIX 2-3**


Test 303.00 – 403.00 m

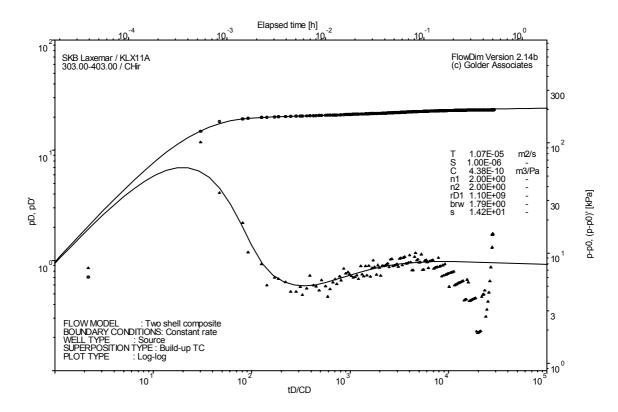
Analysis diagrams

Test: 303.00 – 403.00 m

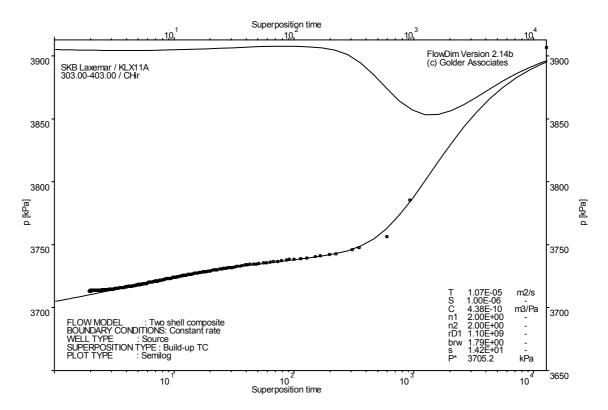



Pressure and flow rate vs. time; cartesian plot



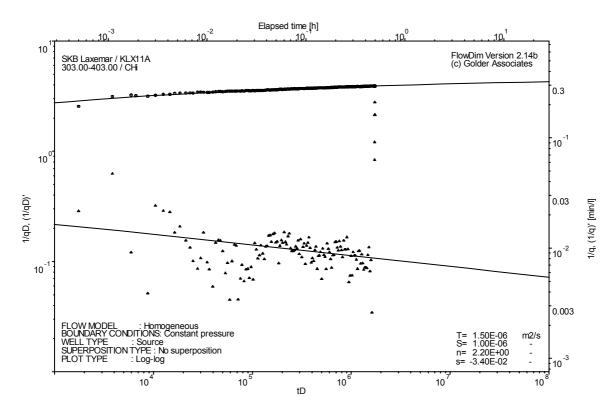

Interval pressure and temperature vs. time; cartesian plot

Test: 303.00 – 403.00 m




CHI phase; log-log match

Test: 303.00 – 403.00 m




CHIR phase; log-log match

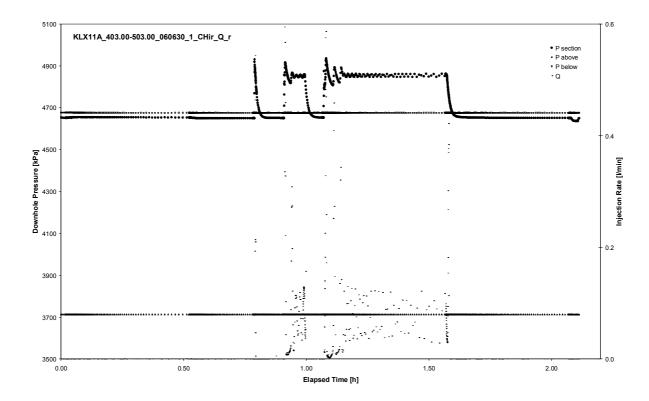


CHIR phase; HORNER match

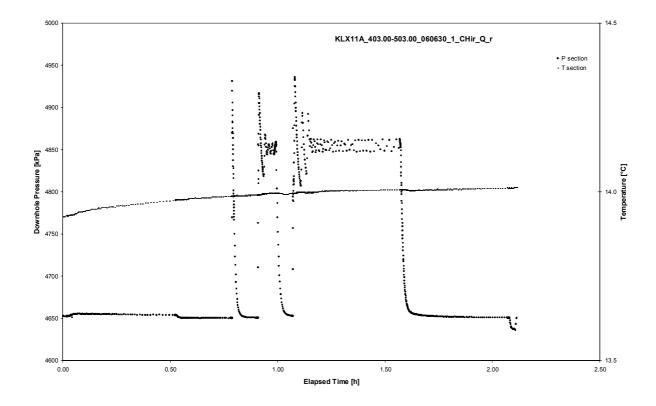
Test: 303.00 – 403.00 m



CHI phase; log-log match (n=2.2)

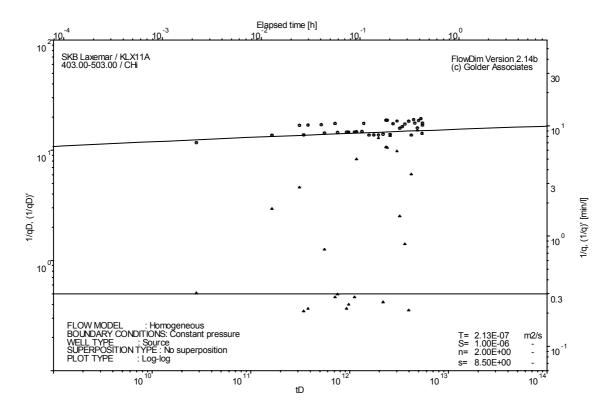

Test: 403.00 – 503.00 m

# **APPENDIX 2-4**


Test 403.00 – 503.00 m

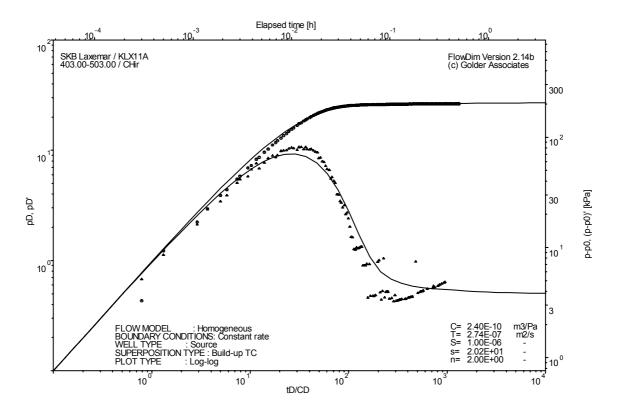
Analysis diagrams

Test: 403.00 – 503.00 m

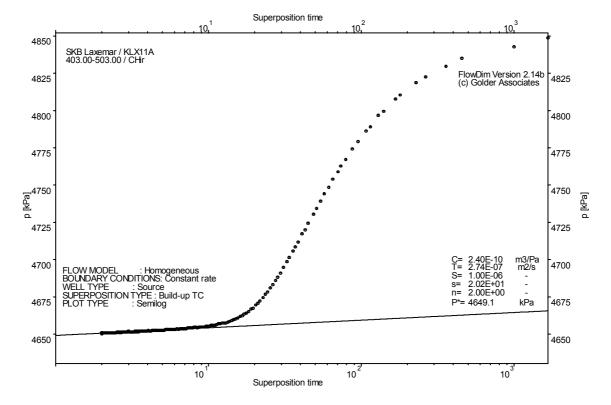



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Test: 403.00 – 503.00 m




CHI phase; log-log match

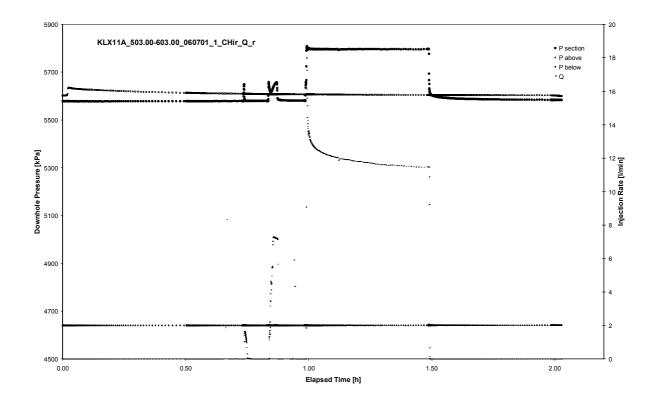
Test: 403.00 - 503.00 m



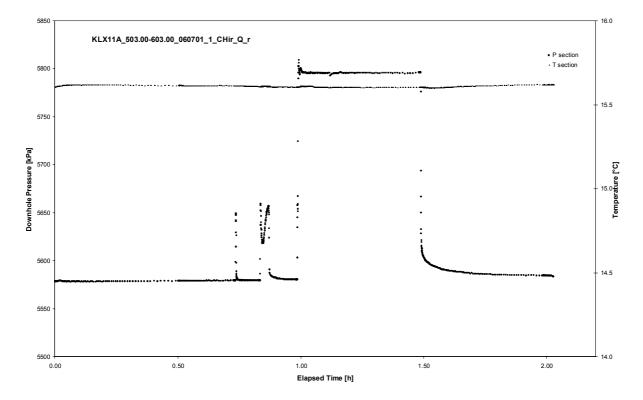
CHIR phase; log-log match



CHIR phase; HORNER match

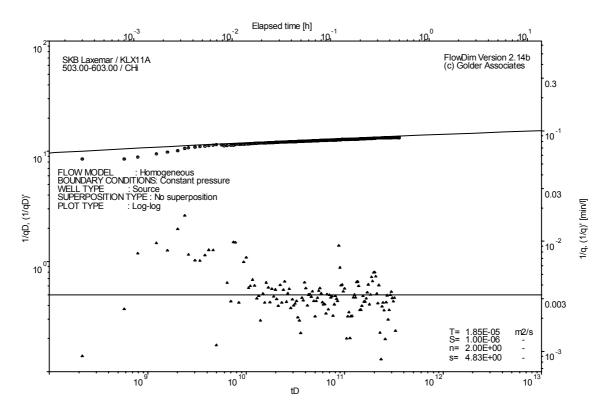

Test: 503.00 – 603.00 m

# **APPENDIX 2-5**


Test 503.00 – 603.00 m

Analysis diagrams

Test: 503.00 – 603.00 m

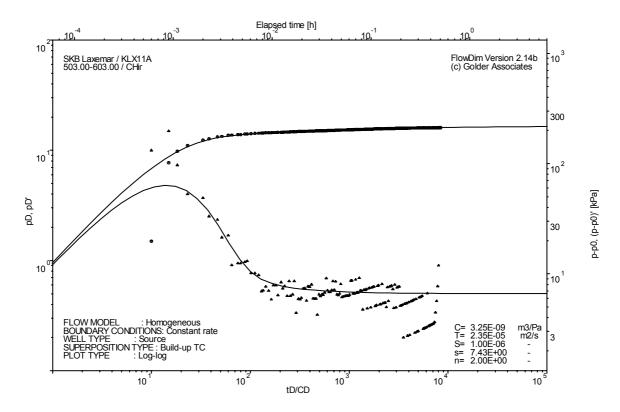



Pressure and flow rate vs. time; cartesian plot

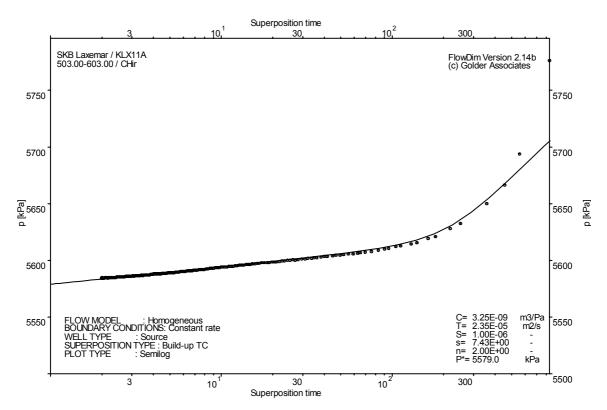


Interval pressure and temperature vs. time; cartesian plot

Test: 503.00 – 603.00 m

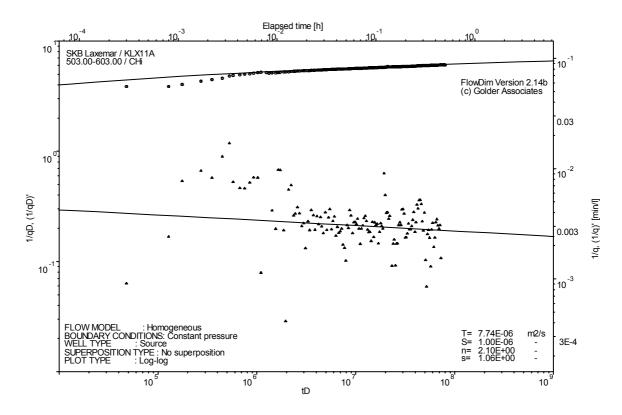



CHI phase; log-log match

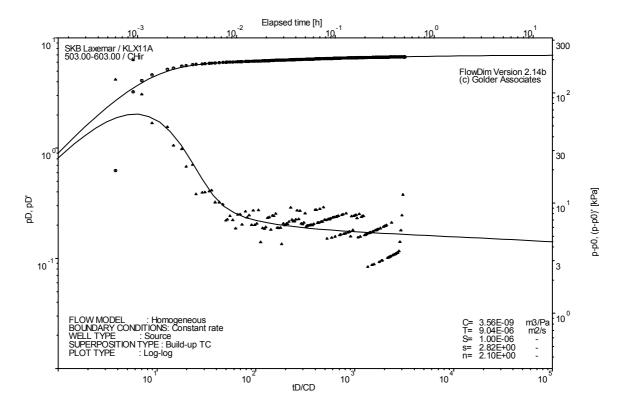

Page 2-5/4

Borehole: KLX11A

Test: 503.00 – 603.00 m




CHIR phase; log-log match




CHIR phase; HORNER match

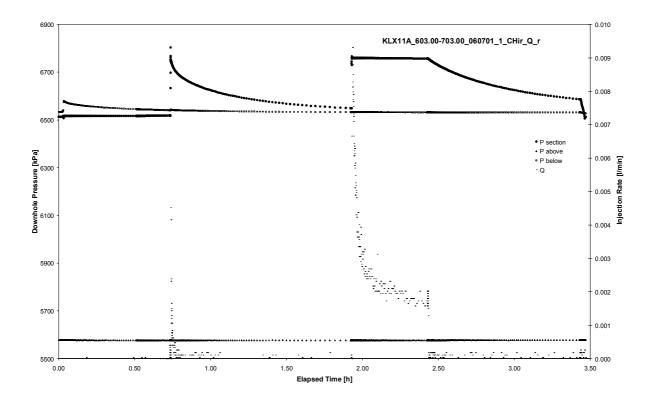
Test: 503.00 – 603.00 m



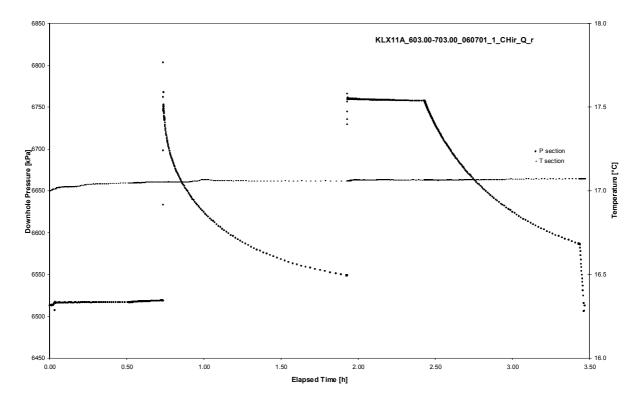
CHI phase; log-log match (n=2.1)



CHIR phase; log-log match (n=2.1)

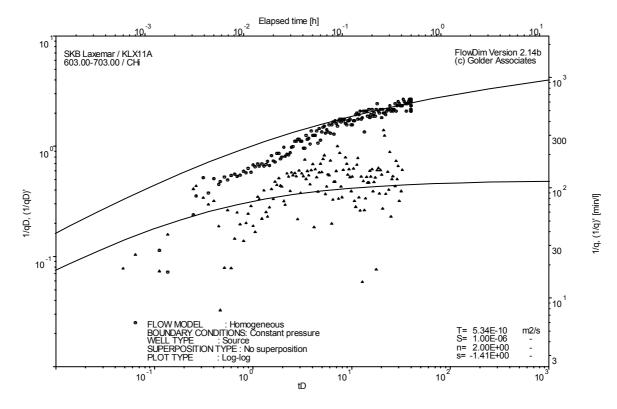

Test: 603.00 – 703.00 m

# **APPENDIX 2-6**


Test 603.00 – 703.00 m

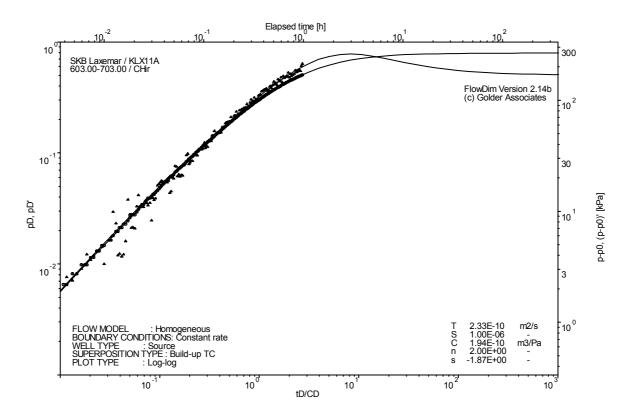
Analysis diagrams

Test: 603.00 – 703.00 m

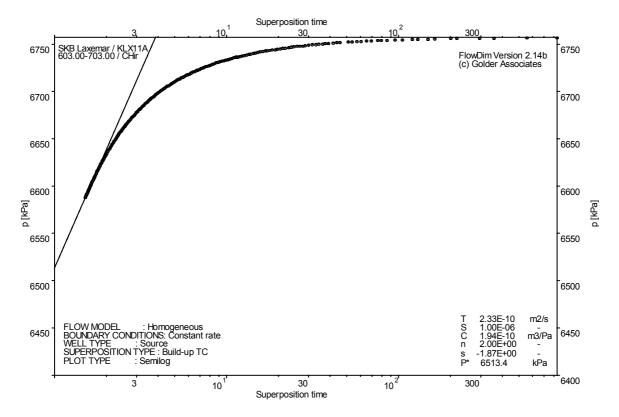



Pressure and flow rate vs. time; cartesian plot



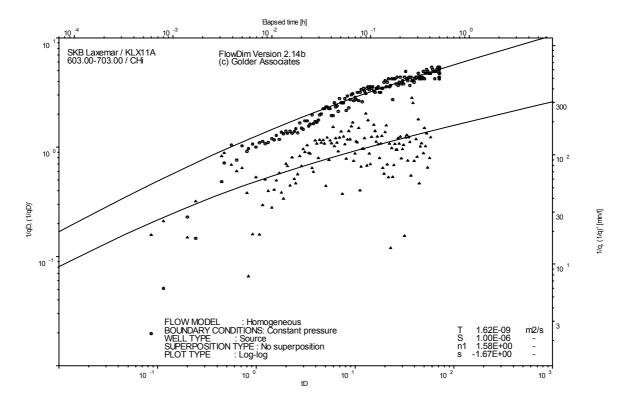

Interval pressure and temperature vs. time; cartesian plot

Test: 603.00 – 703.00 m




CHI phase; log-log match

Test: 603.00 – 703.00 m




CHIR phase; log-log match



CHIR phase; HORNER match

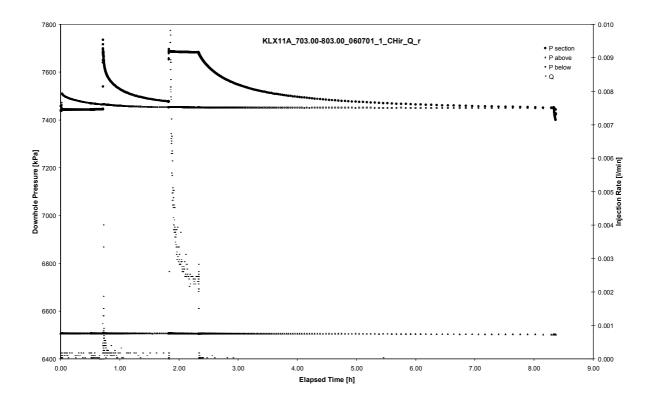
Test: 603.00 – 703.00 m



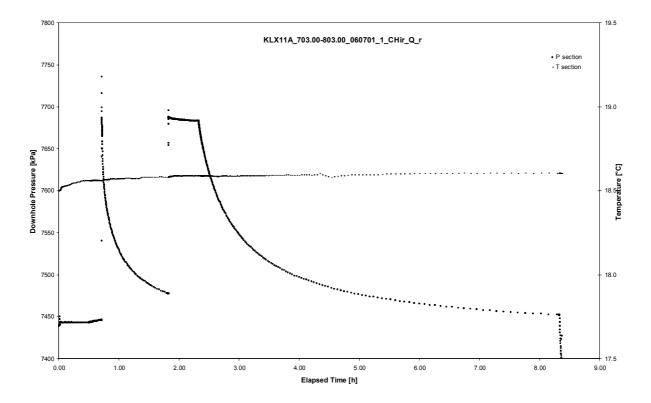
CHI phase; log-log match (n=1.58)

Test: 703.00 – 803.00 m

# **APPENDIX 2-7**


Test 703.00 – 803.00 m

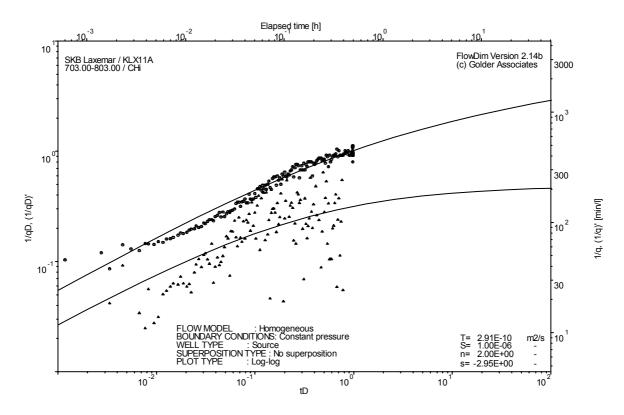
Analysis diagrams


Page 2-7/2

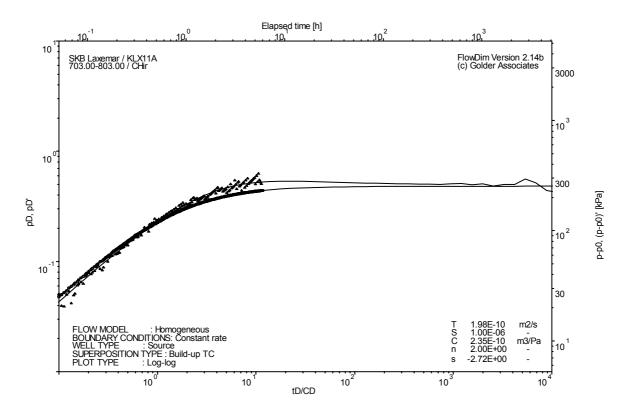
Borehole: KLX11A

Test: 703.00 – 803.00 m

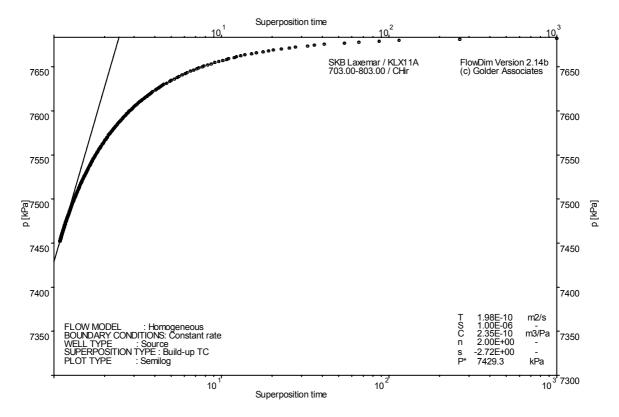



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

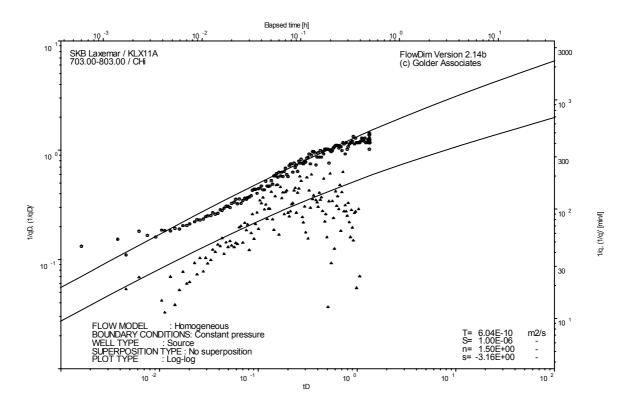
Borehole: KLX11A Page 2-7/3


Test: 703.00 – 803.00 m



Test: 703.00 – 803.00 m




CHIR phase; log-log match



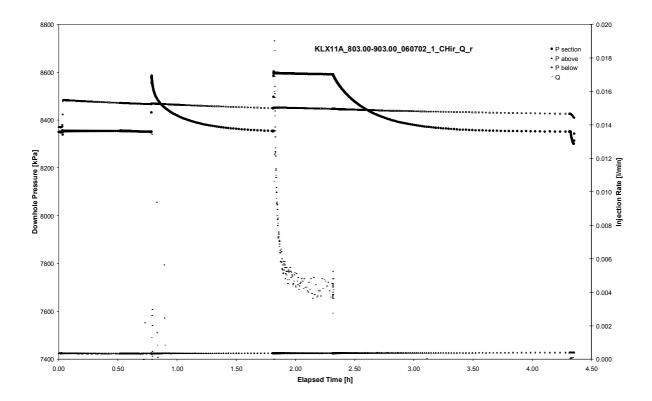
CHIR phase; HORNER match

Borehole: KLX11A Page 2-7/5

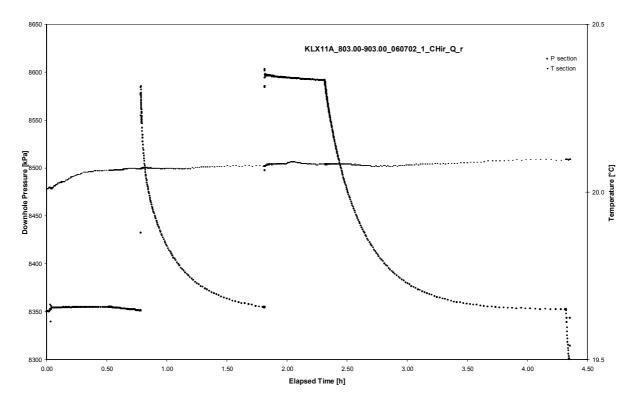
Test: 703.00 – 803.00 m



CHI phase; log-log match (n=1.5)


Borehole: KLX11A Page 2-8/1

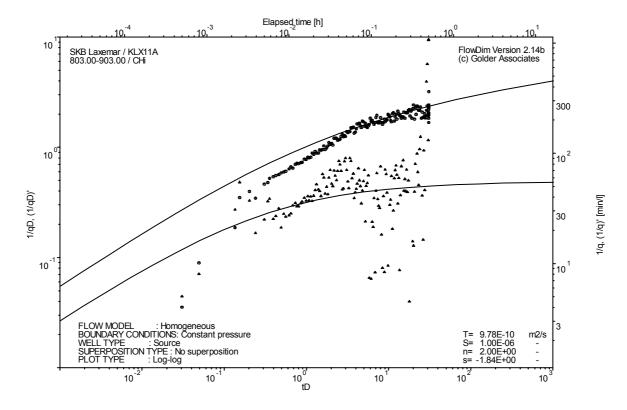
Test: 803.00 – 903.00 m


# **APPENDIX 2-8**

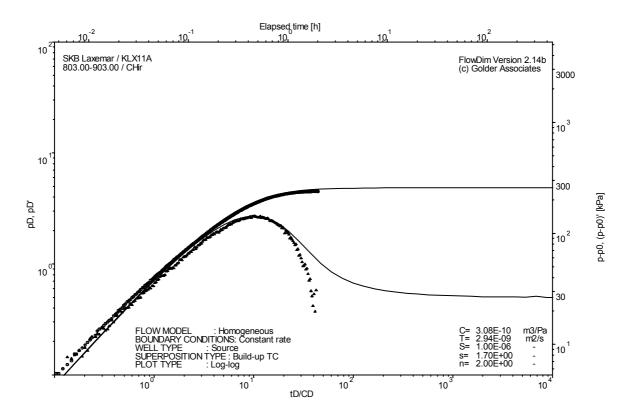
Test 803.00 – 903.00 m

Test: 803.00 – 903.00 m

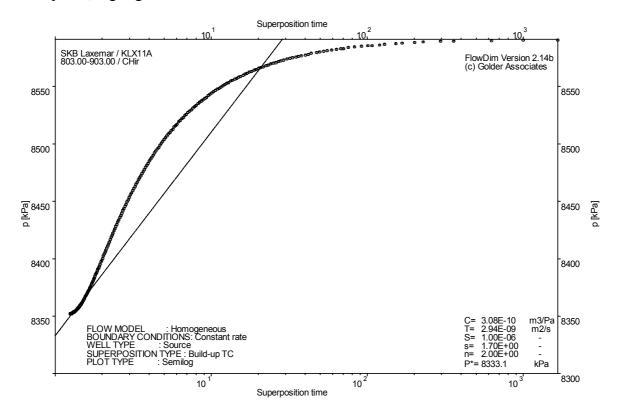



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

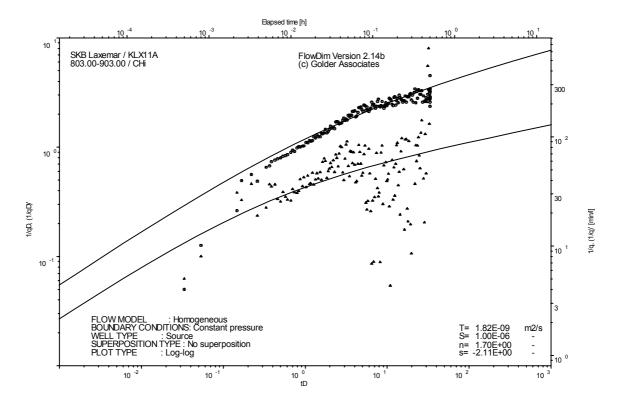
Borehole: KLX11A Page 2-8/3


Test: 803.00 – 903.00 m



Test: 803.00 – 903.00 m




CHIR phase; log-log match



CHIR phase; HORNER match

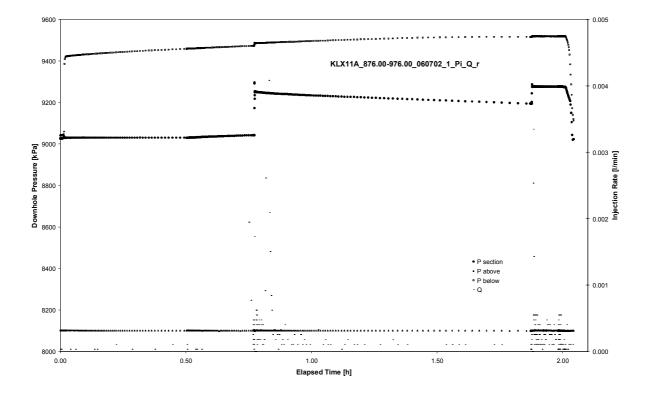
Borehole: KLX11A Page 2-8/5

Test: 803.00 – 903.00 m

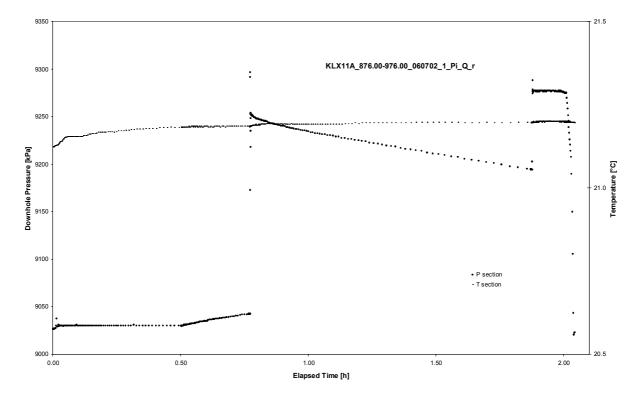


CHI phase; log-log match (n=1.7)

Borehole: KLX11A Page 2-9/1

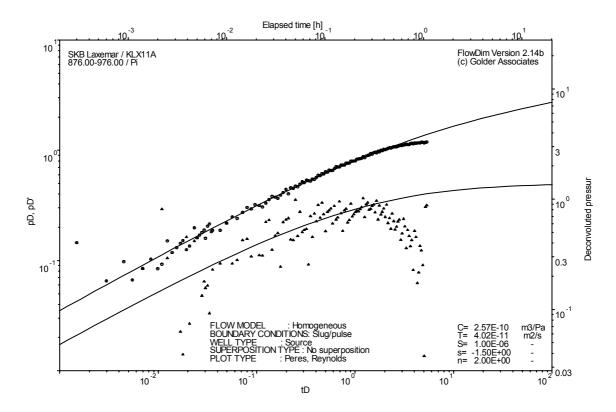

Test: 876.00 – 976.00 m

# **APPENDIX 2-9**

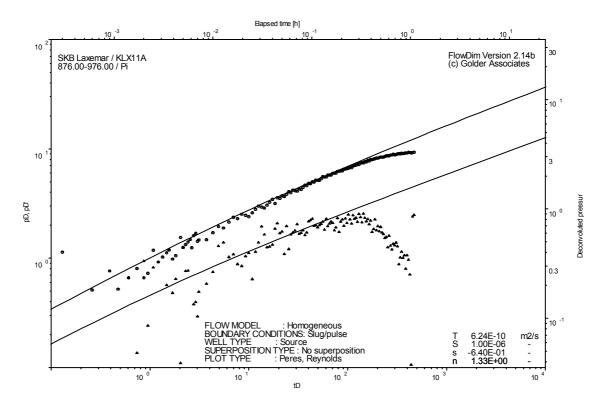

Test 876.00 – 976.00 m

Page 2-9/2






Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

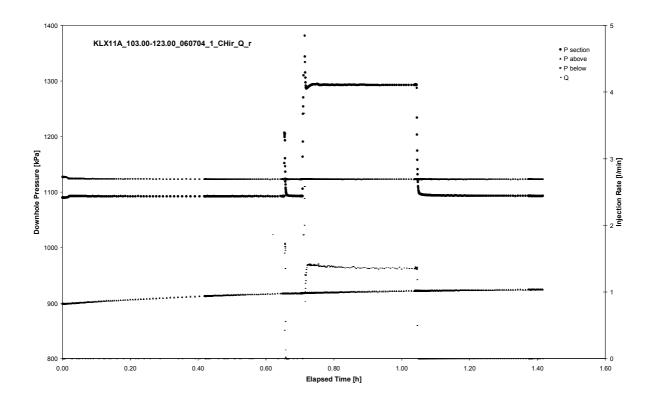
Test: 876.00 – 976.00 m



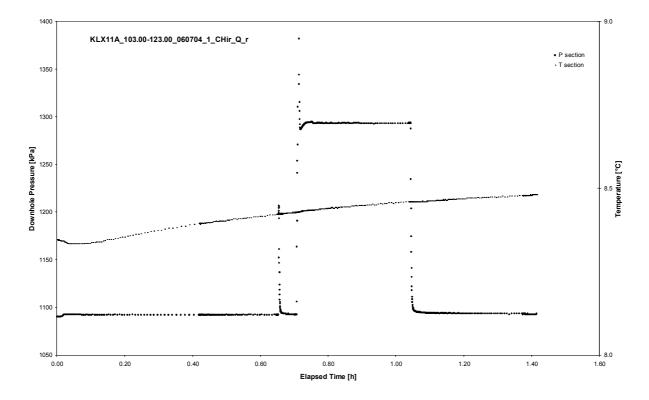
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n=1.33)


Borehole: KLX11A Page 2-10/1

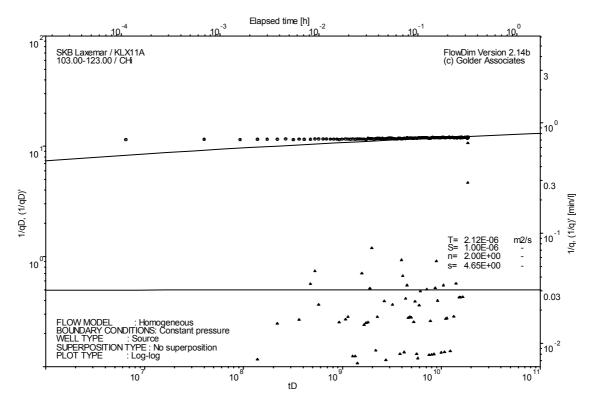
Test: 103.00 – 123.00 m


# **APPENDIX 2-10**

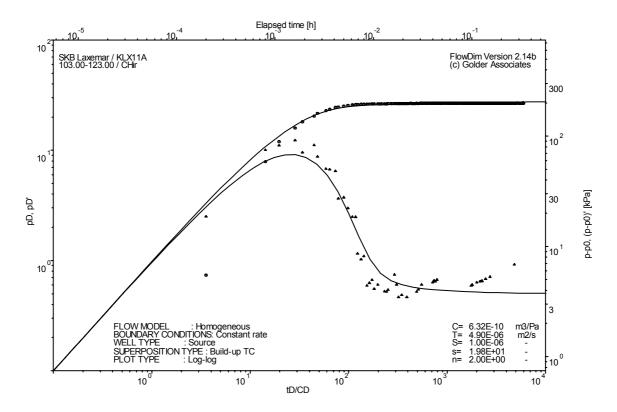
Test 103.00 – 123.00 m

Test: 103.00 – 123.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-10/3

Test: 103.00 – 123.00 m



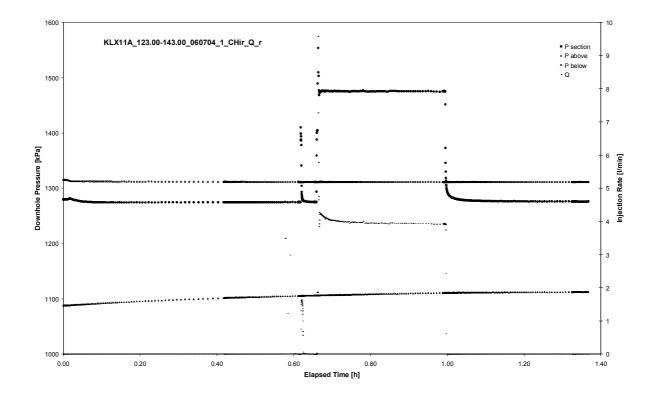
Test: 103.00 – 123.00 m



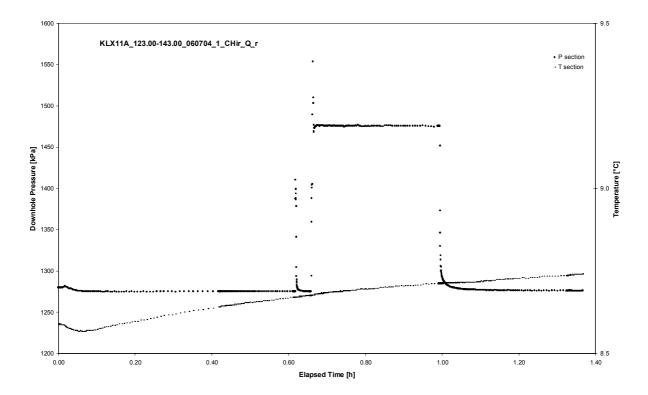
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-11/1

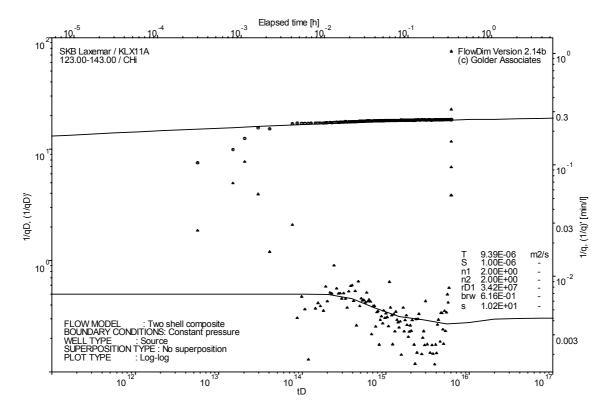
Test: 123.00 – 143.00 m


# **APPENDIX 2-11**

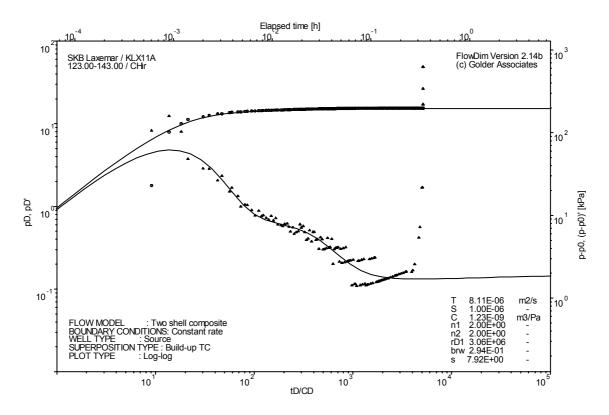
Test 123.00 – 143.00 m

Test: 123.00 – 143.00 m

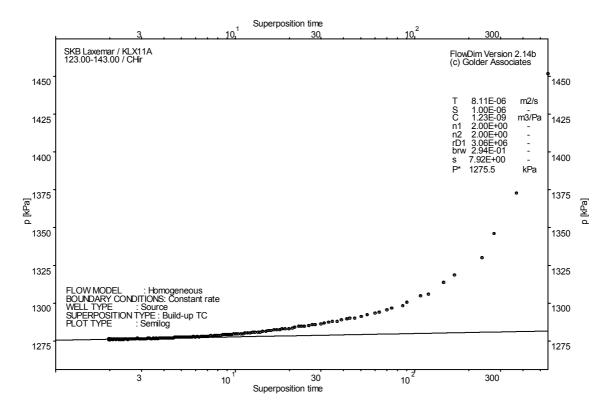



Pressure and flow rate vs. time; cartesian plot



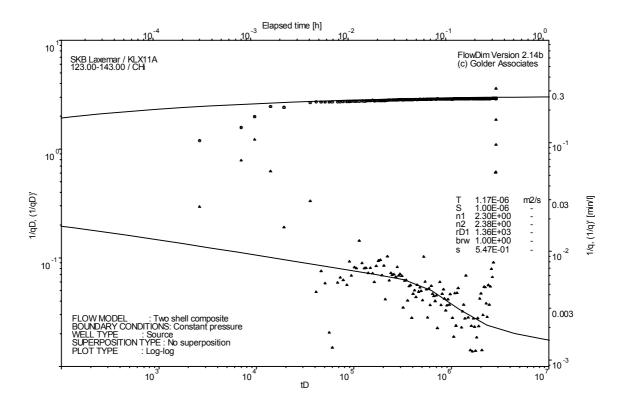

Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-11/3

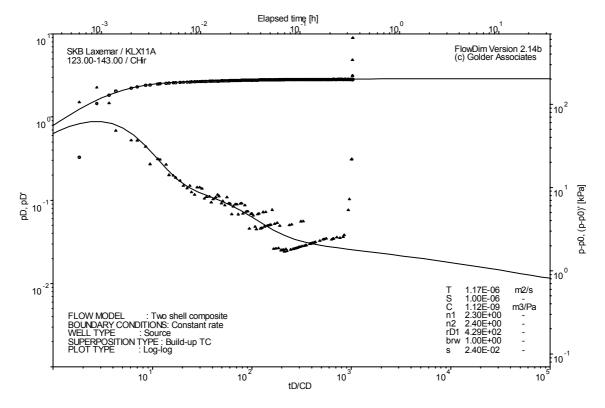

Test: 123.00 – 143.00 m



Test: 123.00 – 143.00 m




CHIR phase; log-log match




CHIR phase; HORNER match

Test: 123.00 – 143.00 m



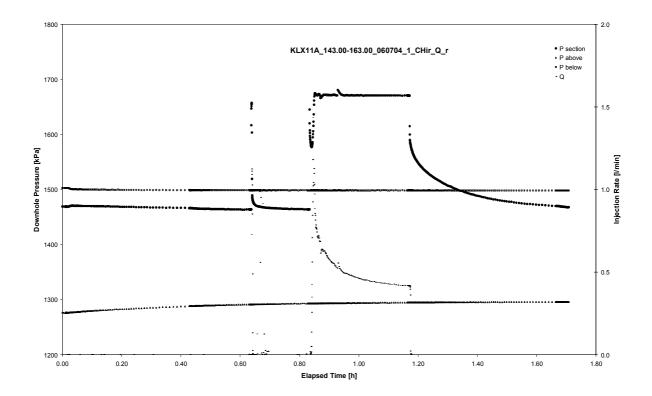
CHI phase; log-log match (n1=2.3, n2=2.38)



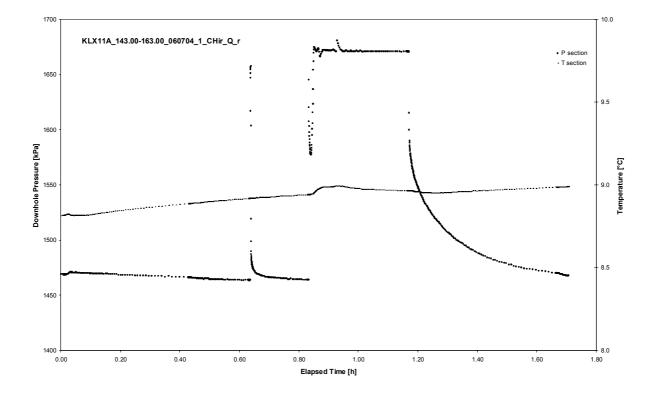
CHIR phase; log-log match (n1=2.3, n2=2.4)

Borehole: KLX11A Page 2-12/1

Test: 143.00 – 163.00 m


# **APPENDIX 2-12**

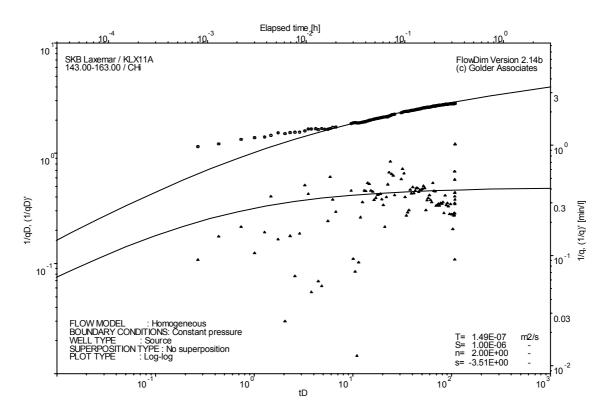
Test 143.00 – 163.00 m


Page 2-12/2

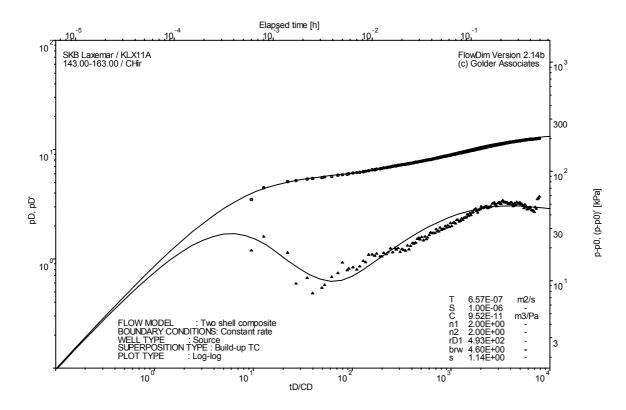
Borehole: KLX11A

Test: 143.00 – 163.00 m

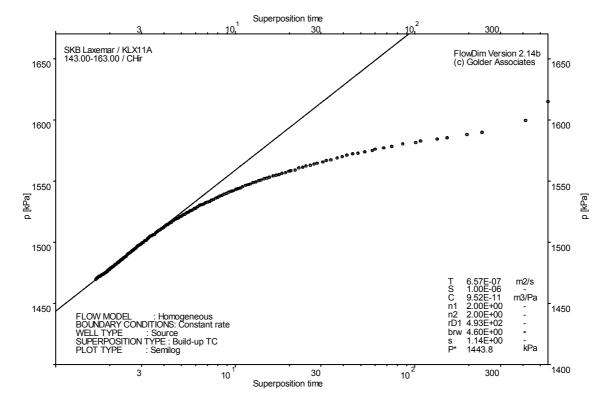



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

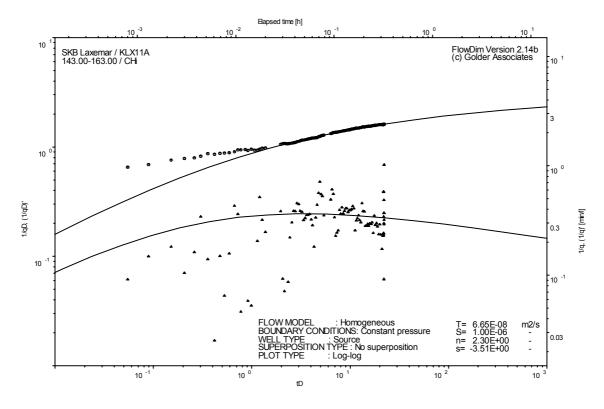
Borehole: KLX11A Page 2-12/3


Test: 143.00 – 163.00 m



Test: 143.00 – 163.00 m




CHIR phase; log-log match



CHIR phase; HORNER match

Borehole: KLX11A Page 2-12/5

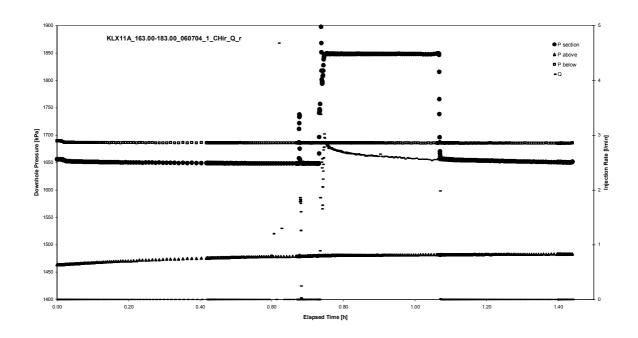
Test: 143.00 – 163.00 m



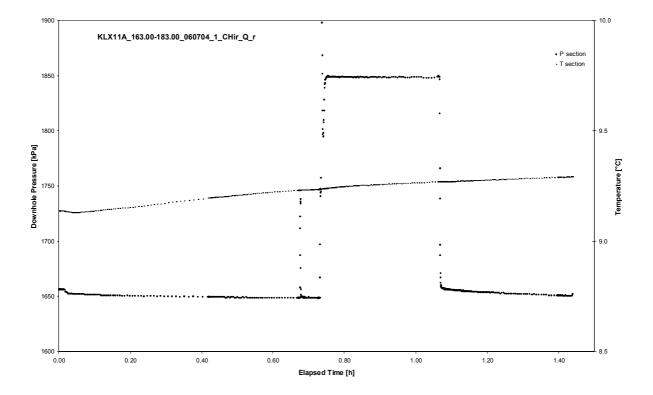
CHI phase; log-log match (n=2.3)

Borehole: KLX11A Page 2-13/1

Test: 163.00 – 183.00 m


# **APPENDIX 2-13**

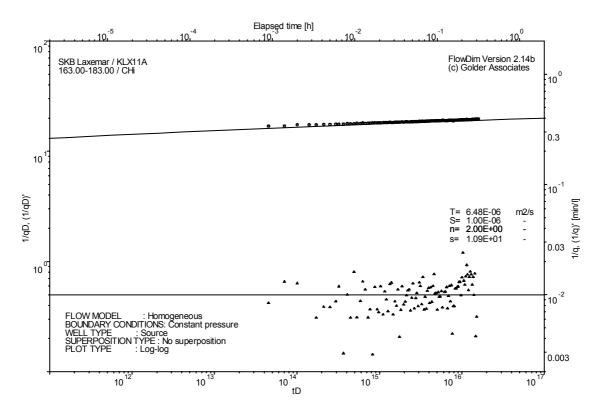
Test 163.00 – 183.00 m


Page 2-13/2

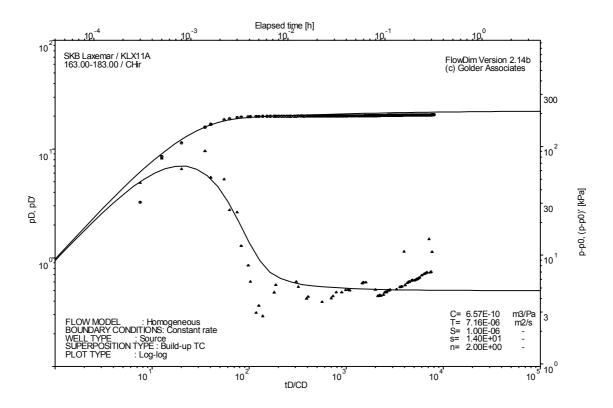
Borehole: KLX11A

Test: 163.00 – 183.00 m

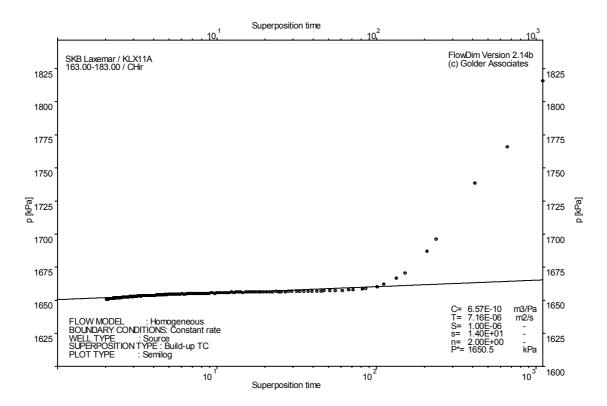



## Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-13/3


Test: 163.00 – 183.00 m



Test: 163.00 – 183.00 m



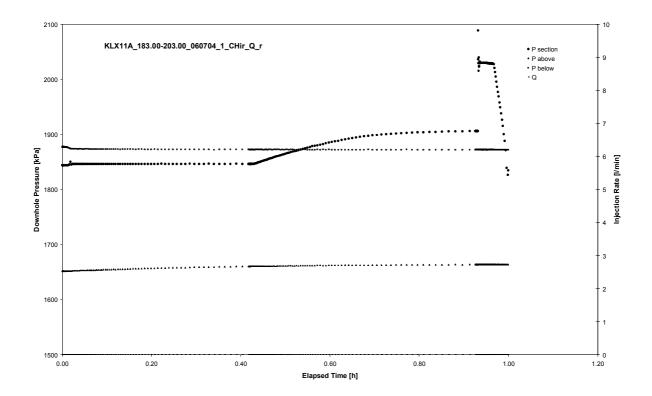
CHIR phase; log-log match



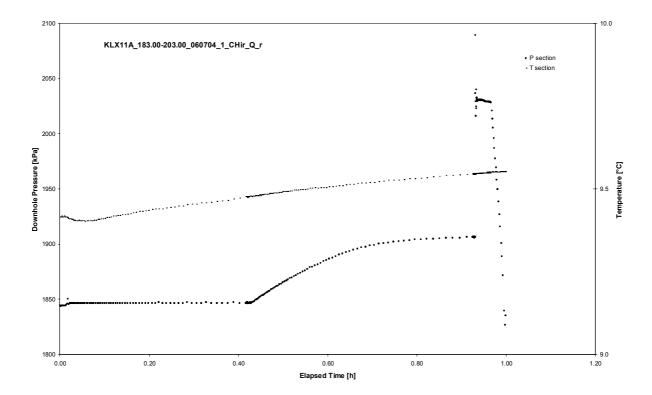
CHIR phase; HORNER match

Borehole: KLX11A Page 2-14/1

Test: 183.00 – 203.00 m


# **APPENDIX 2-14**

Test 183.00 – 203.00 m


Page 2-14/2

Borehole: KLX11A

Test: 183.00 – 203.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

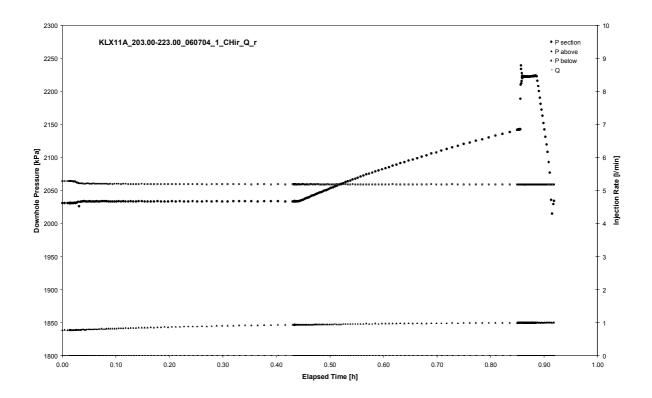
Borehole: KLX11A Page 2-14/3

Test: 183.00 – 203.00 m

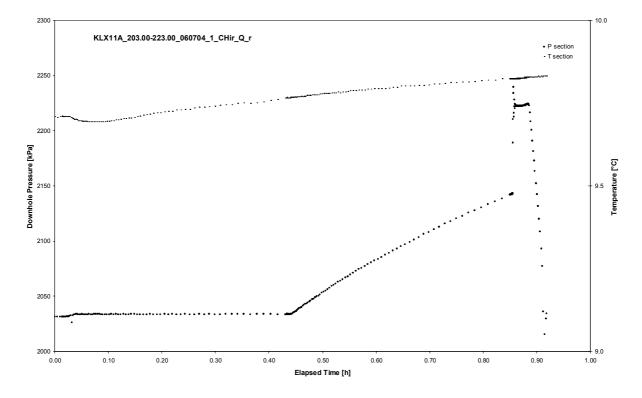
Not analysed

| Borehole:<br>Test: | KLX11A<br>183.00 – 203.00 m |              | Page 2-14/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match


Borehole: KLX11A Page 2-15/1

Test: 203.00 – 223.00 m


# **APPENDIX 2-15**

Test 203.00 – 223.00 m

Test: 203.00 – 223.00 m



Pressure and flow rate vs. time; cartesian plot



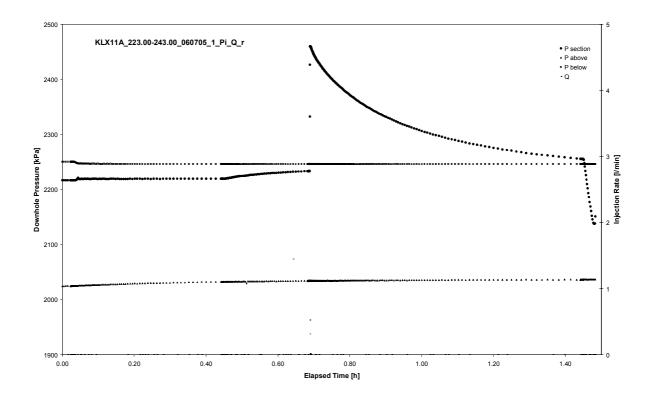
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-15/3

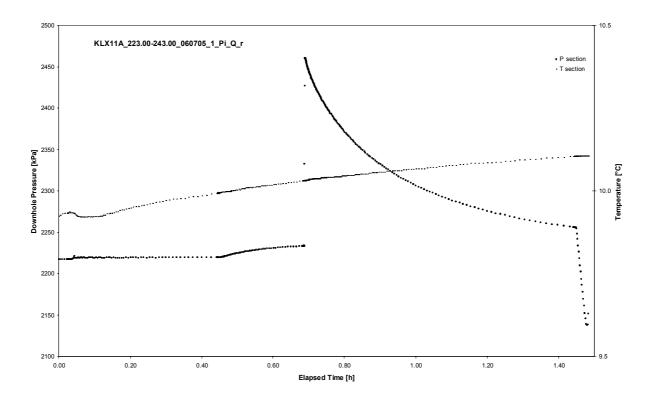
Test: 203.00 – 223.00 m

Not analysed

| Borehole: Test: | KLX11A<br>203.00 – 223.00 m |              | Page 2-15/4 |
|-----------------|-----------------------------|--------------|-------------|
| Test.           | 203.00 – 223.00 III         |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             | Not analysed |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
| CHIR pha        | se; log-log match           |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             | Not analysed |             |

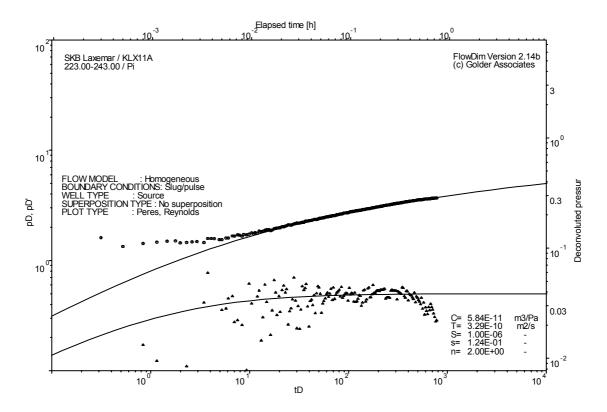

Borehole: KLX11A Page 2-16/1

Test: 223.00 – 243.00 m

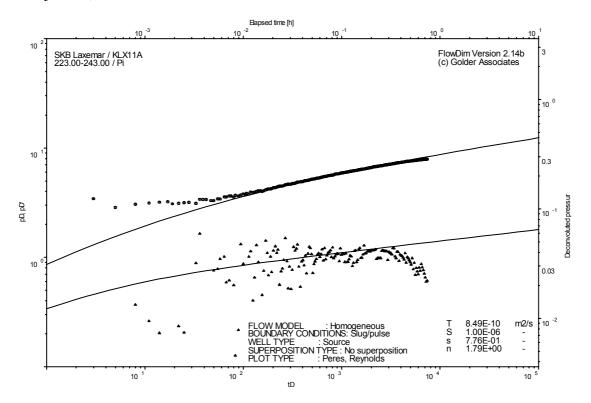

# **APPENDIX 2-16**

Test 223.00 – 243.00 m

Test: 223.00 – 243.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Test: 223.00 – 243.00 m



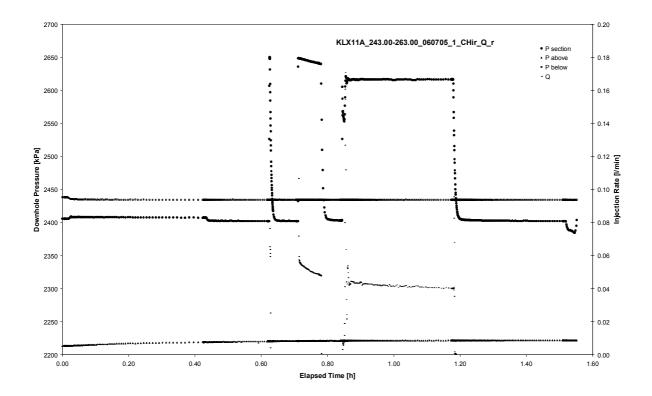
Pulse injection; deconvolution match



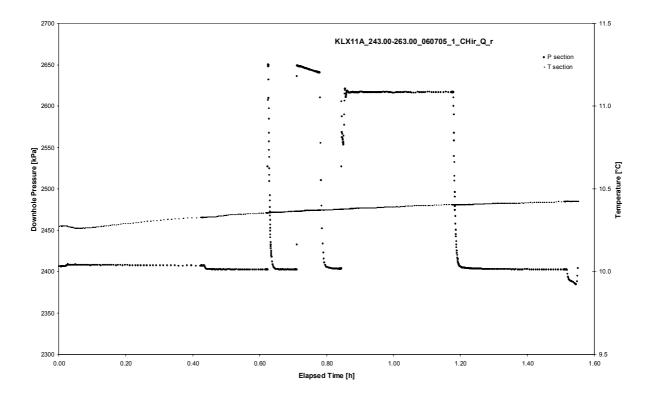
Pulse injection; deconvolution match (n=1.79)

Borehole: KLX11A Page 2-17/1

Test: 243.00 – 263.00 m


# **APPENDIX 2-17**

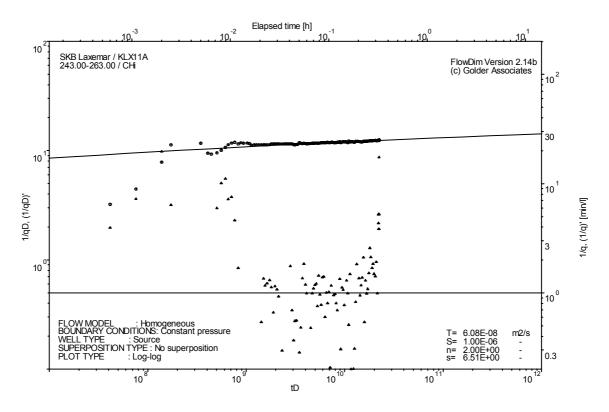
Test 243.00 – 263.00 m


Page 2-17/2

Borehole: KLX11A

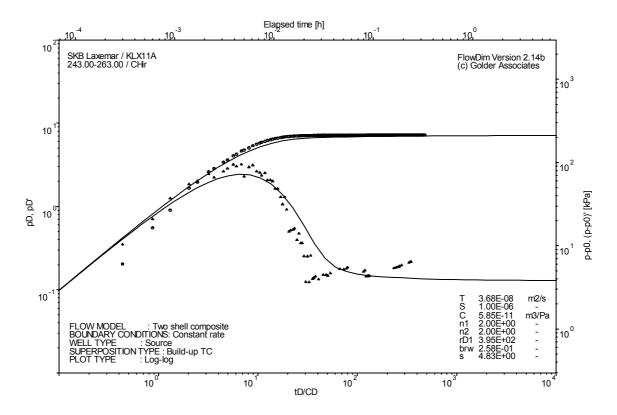
Test: 243.00 – 263.00 m



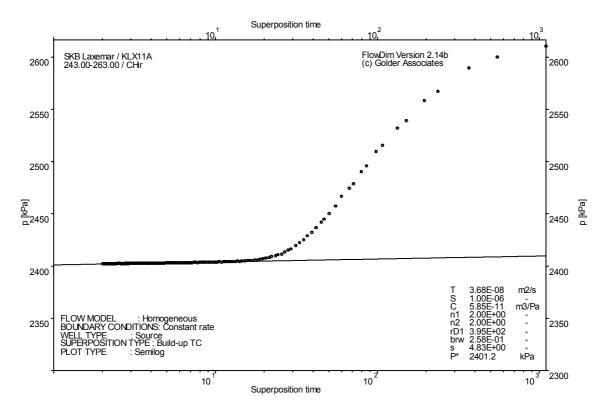

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-17/3

Test: 243.00 – 263.00 m




CHI phase; log-log match

Test: 243.00 – 263.00 m



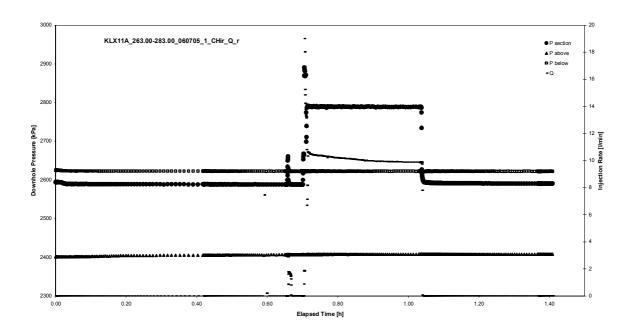
CHIR phase; log-log match



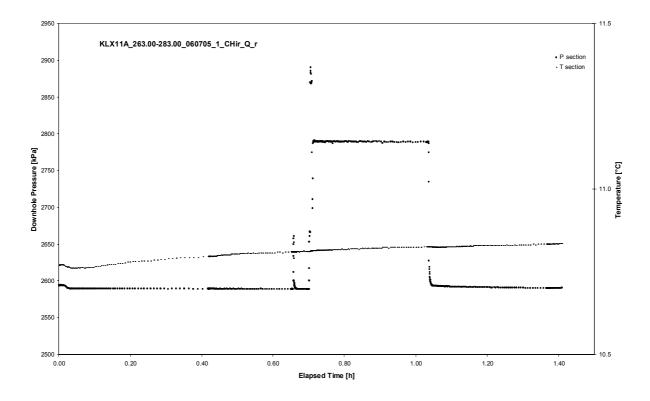
CHIR phase; HORNER match

Borehole: KLX11A Page 2-18/1

Test: 263.00 – 283.00 m


# **APPENDIX 2-18**

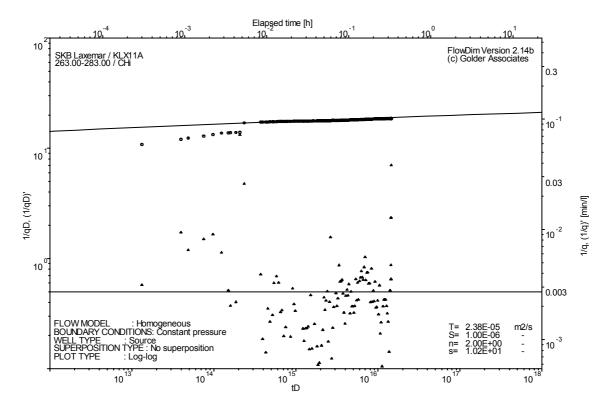
Test 263.00 – 283.00 m


Page 2-18/2

Borehole: KLX11A

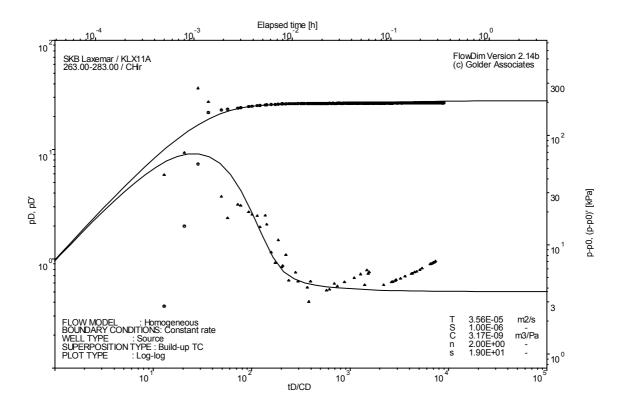
Test: 263.00 – 283.00 m



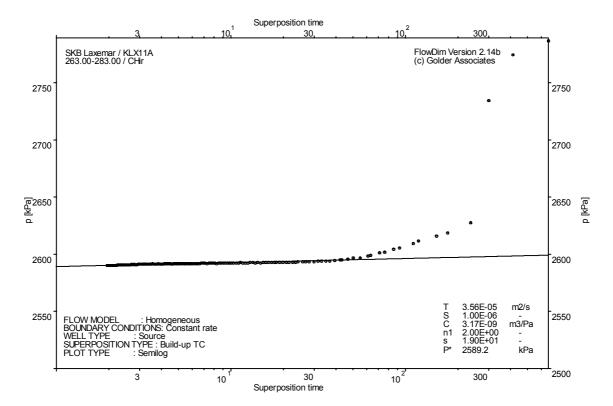

### Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-18/3

Test: 263.00 – 283.00 m




CHI phase; log-log match

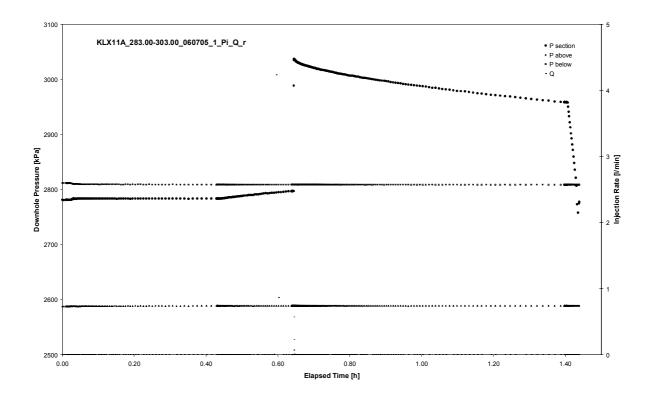
Test: 263.00 – 283.00 m



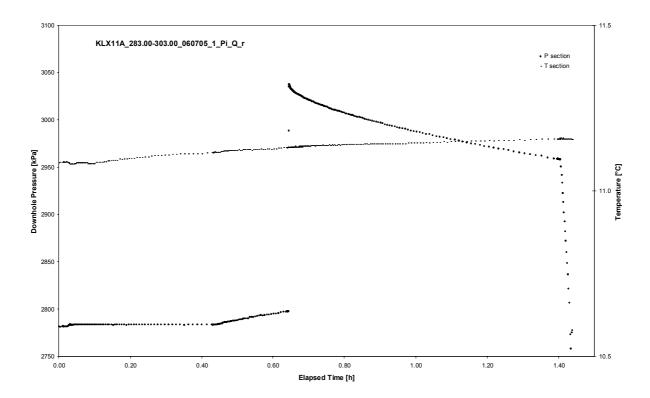
CHIR phase; log-log match



CHIR phase; HORNER match

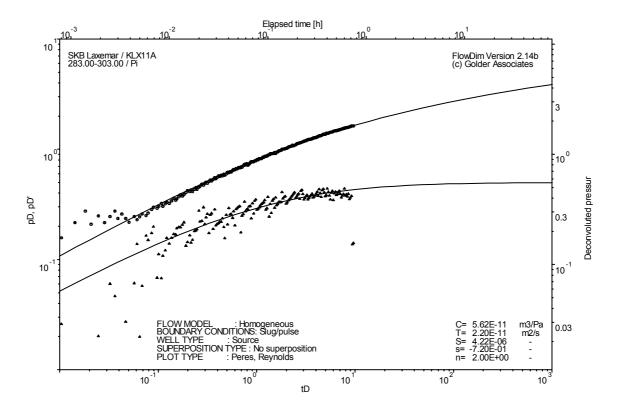

Borehole: KLX11A Page 2-19/1

Test: 283.00 – 303.00 m

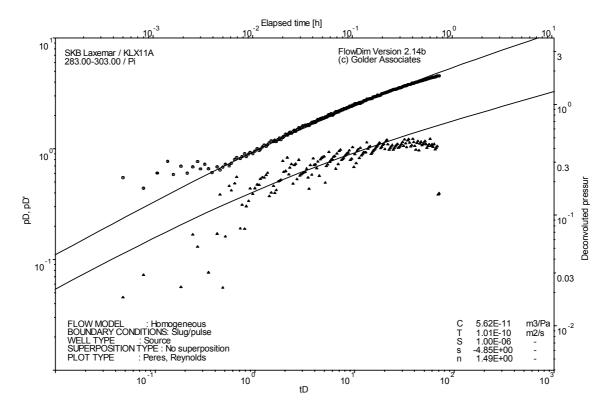

# **APPENDIX 2-19**

Test 283.00 – 303.00 m

Test: 283.00 – 303.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

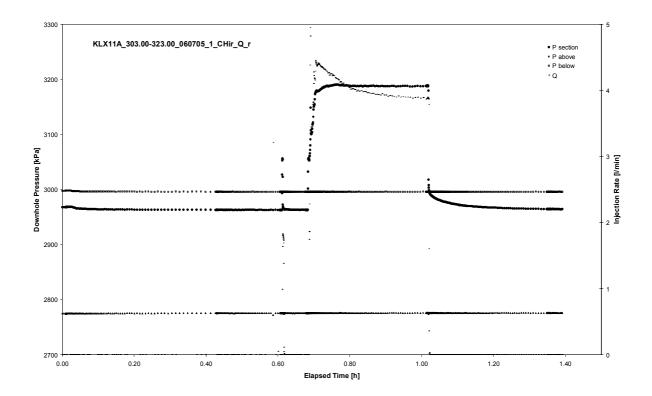
Test: 283.00 – 303.00 m



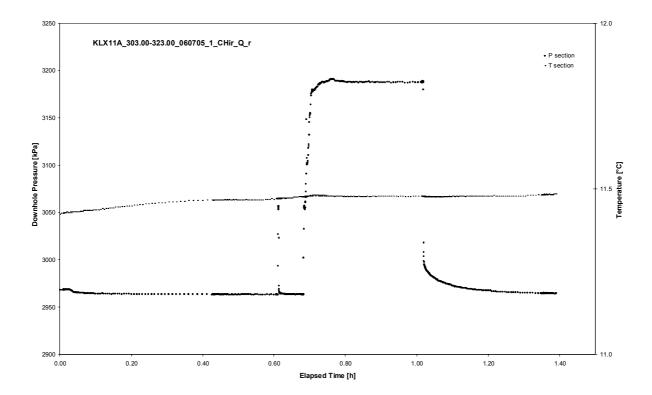
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n=1.49)


Borehole: KLX11A Page 2-20/1

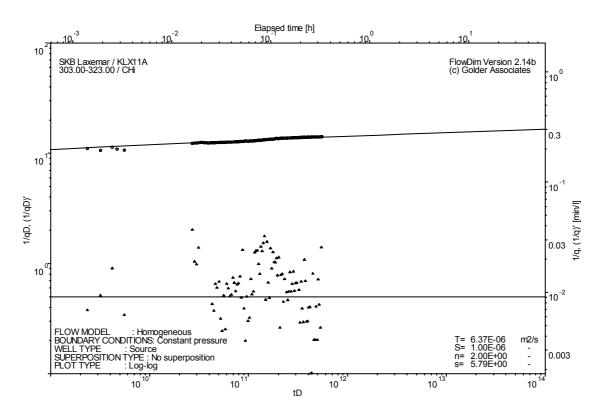
Test: 303.00 - 323.00 m


# **APPENDIX 2-20**

Test 303.00 – 323.00 m

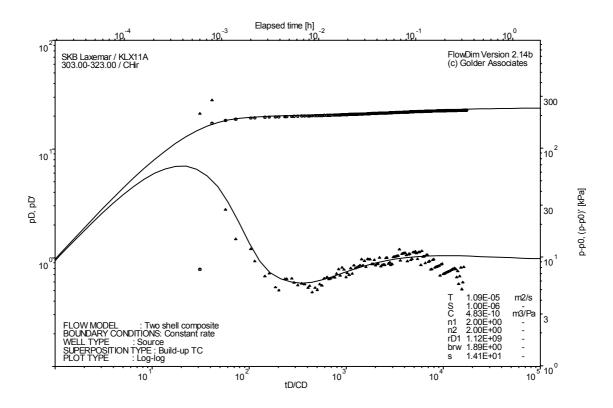
Test: 303.00 – 323.00 m



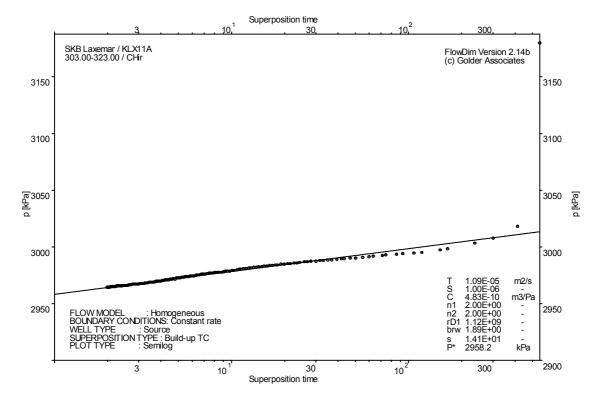

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-20/3

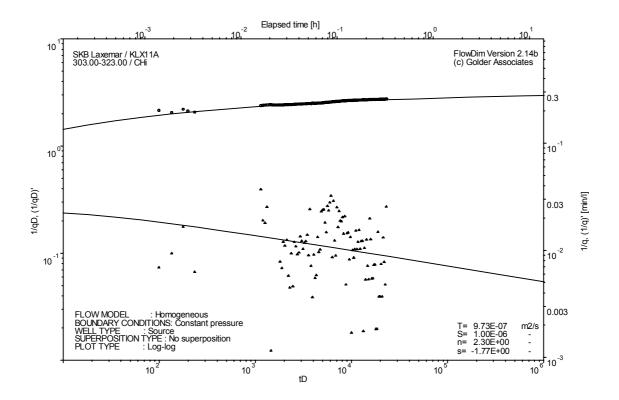
Test: 303.00 – 323.00 m




CHI phase; log-log match

Test: 303.00 - 323.00 m




CHIR phase; log-log match



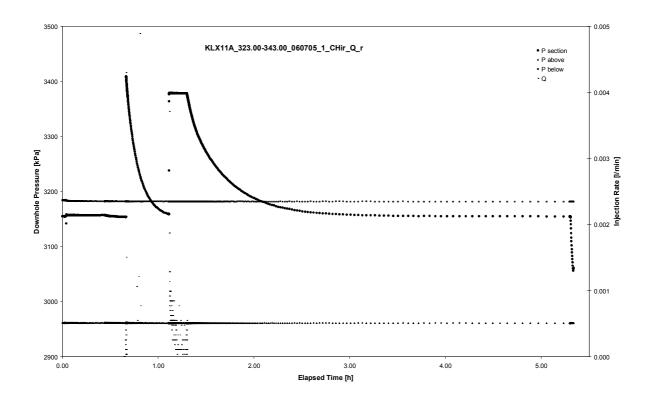
CHIR phase; HORNER match

Borehole: KLX11A Page 2-20/5

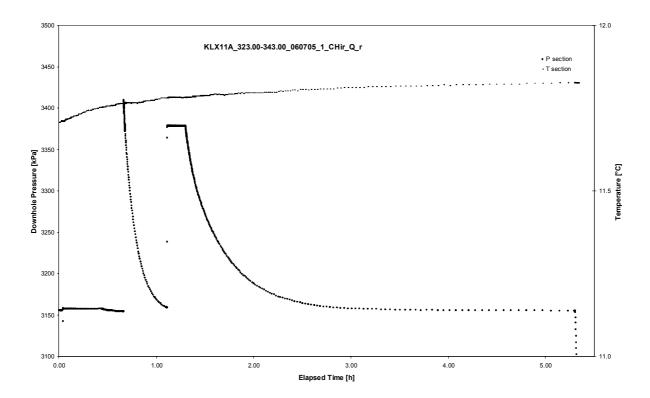
Test: 303.00 – 323.00 m



CHI phase; log-log match (n=2.3)


Borehole: KLX11A Page 2-21/1

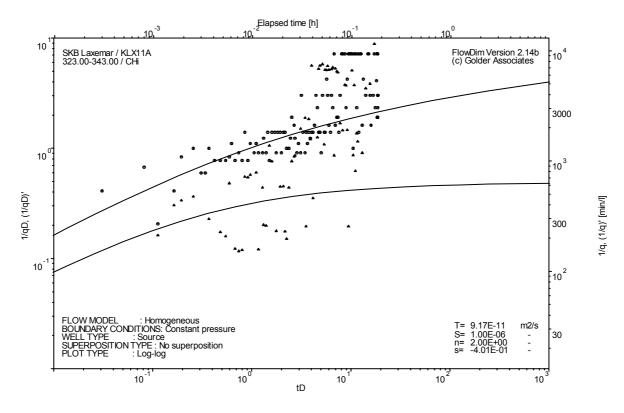
Test: 323.00 – 343.00 m


# **APPENDIX 2-21**

Test 323.00 – 343.00 m

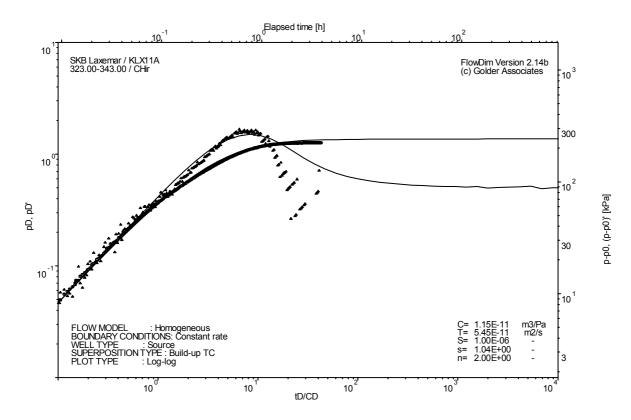
Test: 323.00 – 343.00 m



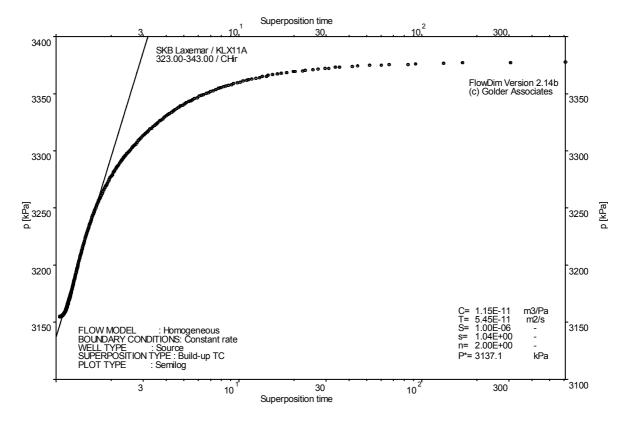

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-21/3

Test: 323.00 – 343.00 m




CHI phase; log-log match

Test: 323.00 - 343.00 m



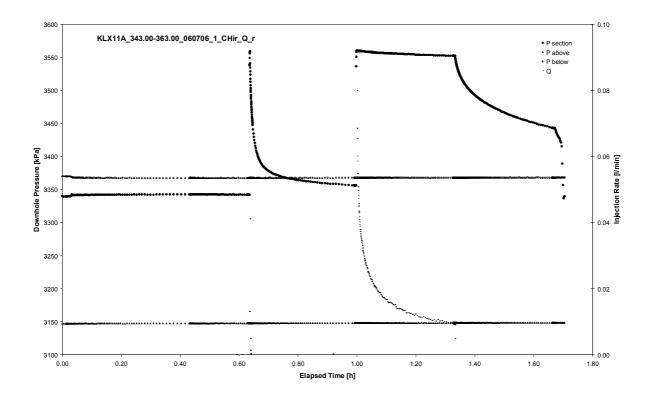
CHIR phase; log-log match



CHIR phase; HORNER match

Borehole: KLX11A Page 2-22/1

Test: 343.00 – 363.00 m


# **APPENDIX 2-22**

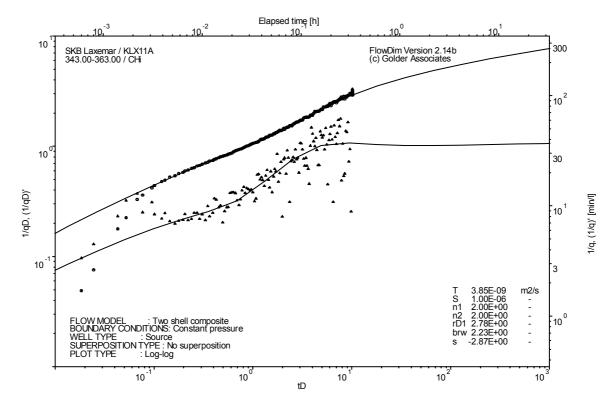
Test 343.00 – 363.00 m

Page 2-22/2

Borehole: KLX11A

Test: 343.00 – 363.00 m

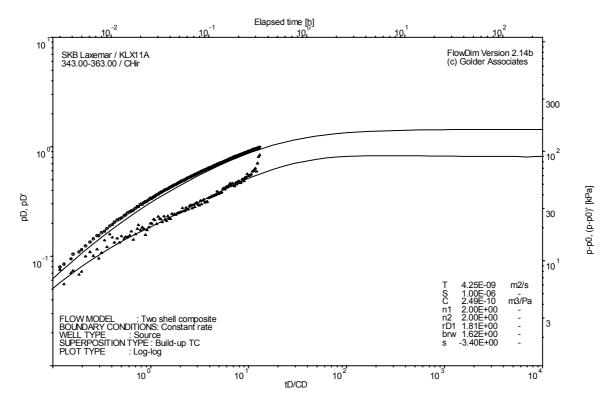



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

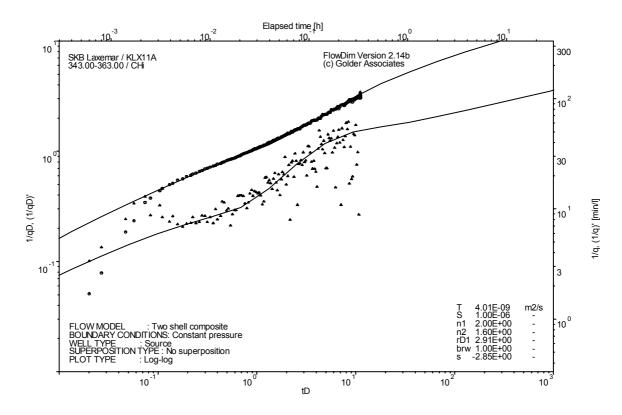
Borehole: KLX11A Page 2-22/3


Test: 343.00 – 363.00 m

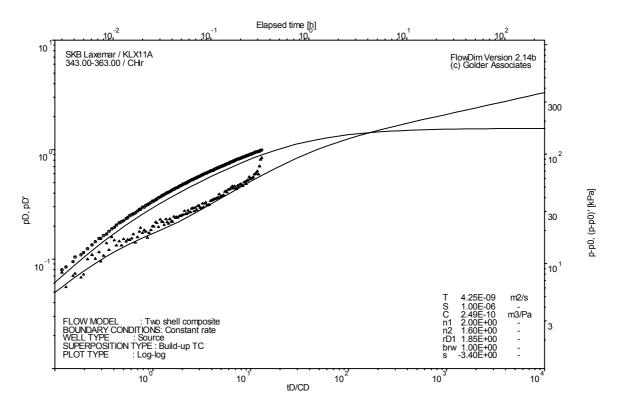


CHI phase; log-log match

Borehole: KLX11A Page 2-22/4


Test: 343.00 – 363.00 m




CHIR phase; log-log match

### Not analysable

Test: 343.00 – 363.00 m



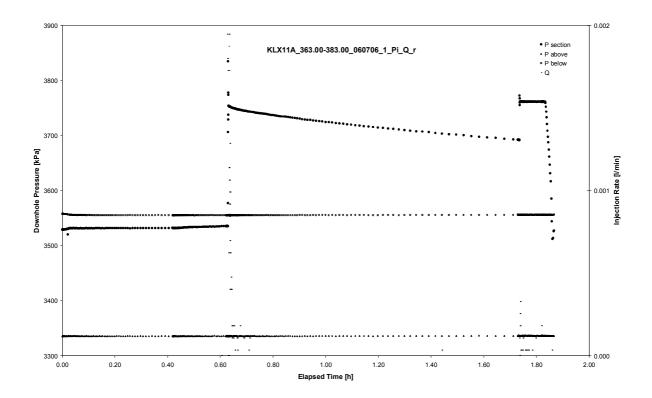
CHI phase; log-log match (n1=2, n2=1.6)



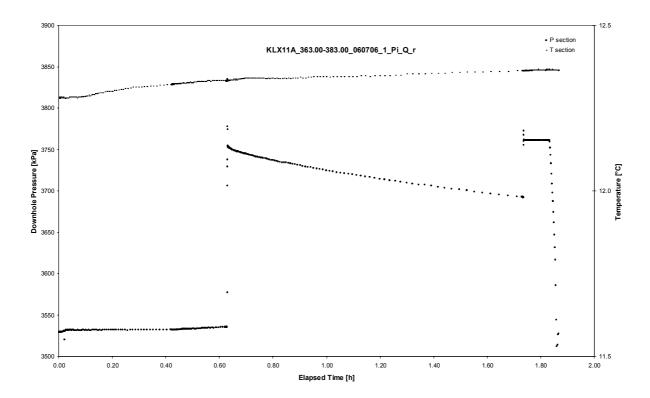
CHIR phase; log-log match (n1=2, n2=1.6)

Borehole: KLX11A Page 2-23/1

Test: 363.00 – 383.00 m

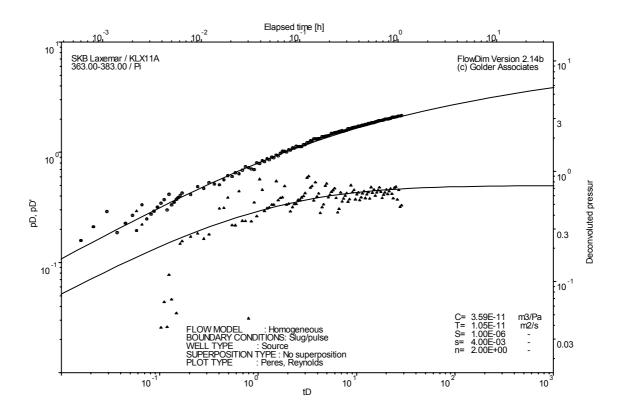

# **APPENDIX 2-23**

Test 363.00 – 383.00 m

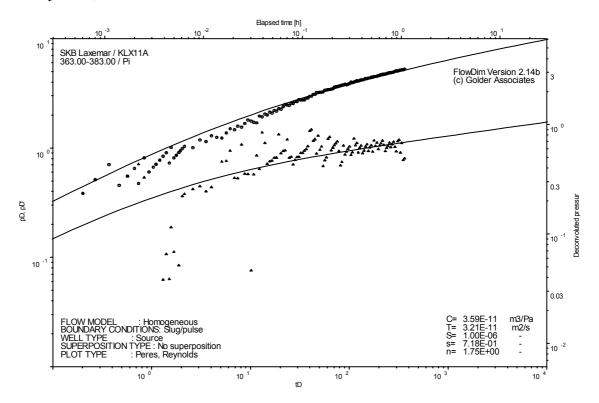

Page 2-23/2

Borehole: KLX11A

Test: 363.00 – 383.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

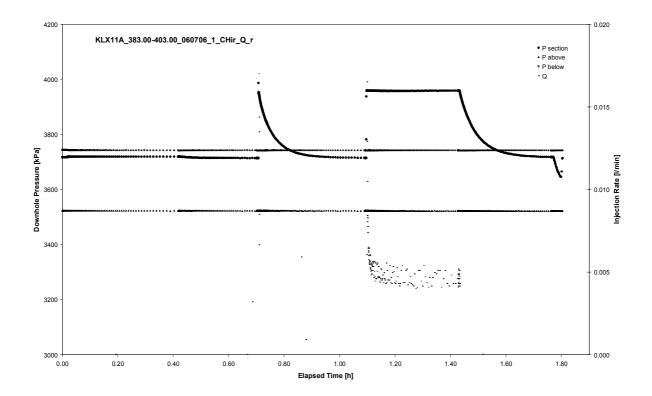
Test: 363.00 – 383.00 m



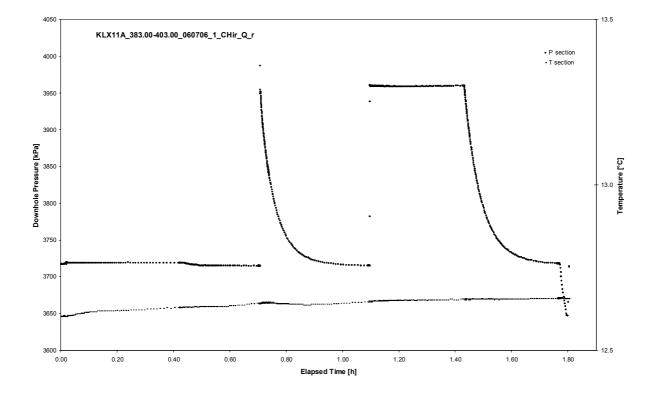
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n=1.75)


Borehole: KLX11A Page 2-24/1

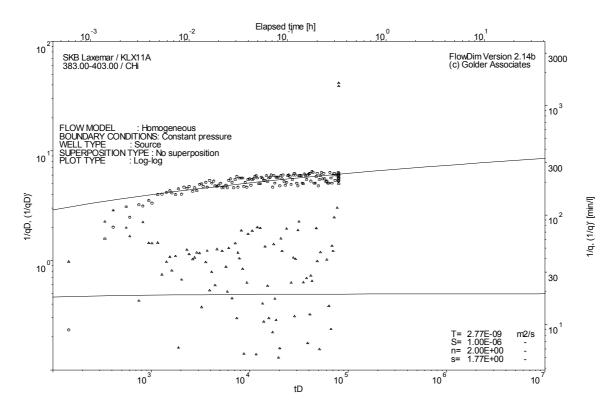
Test: 383.00 – 403.00 m


# **APPENDIX 2-24**

Test 383.00 – 403.00 m

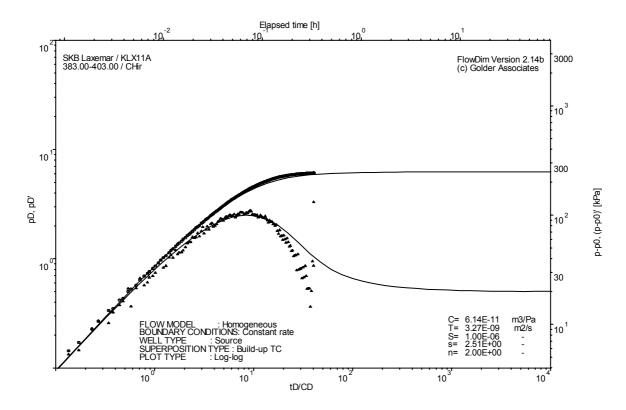
Test: 383.00 – 403.00 m



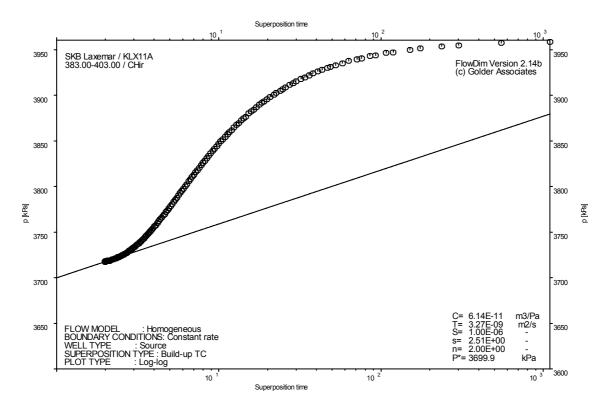

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-24/3

Test: 383.00 – 403.00 m




CHI phase; log-log match

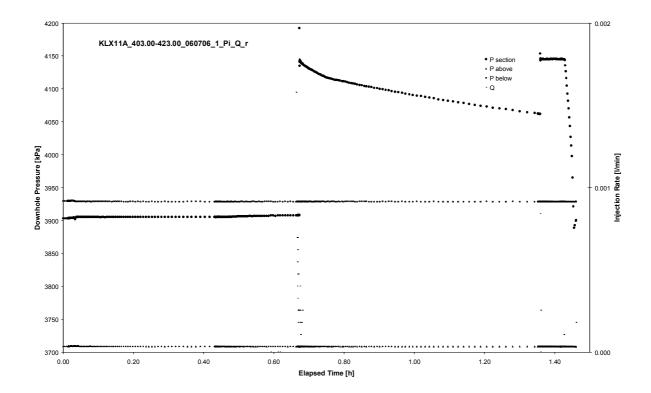
Test: 383.00 – 403.00 m



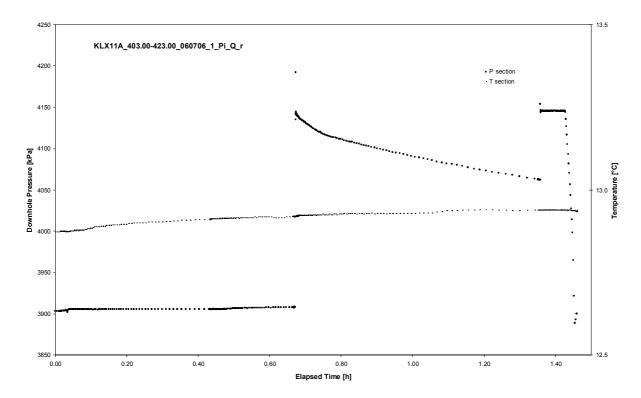
CHIR phase; log-log match



CHIR phase; HORNER match

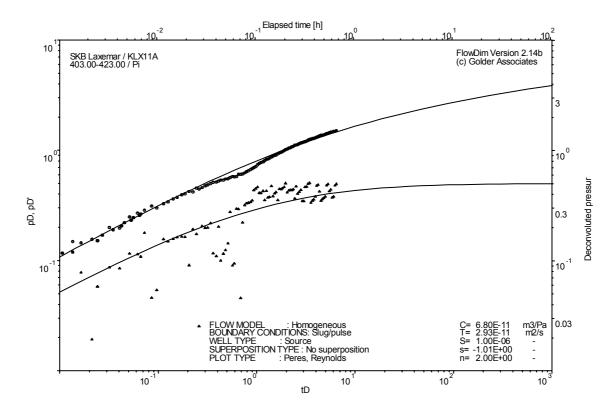

Borehole: KLX11A Page 2-25/1

Test: 403.00 – 423.00 m

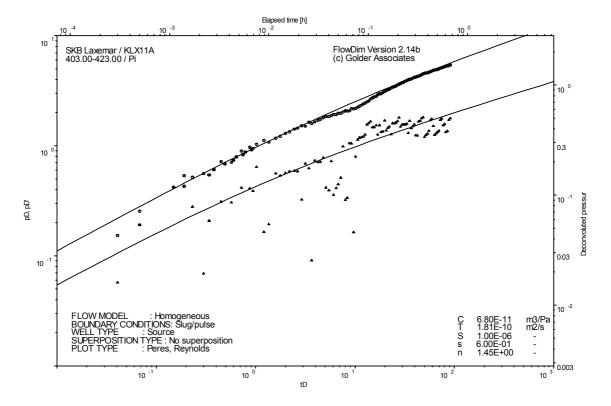

# **APPENDIX 2-25**

Test 403.00 – 423.00 m

Test: 403.00 – 423.00 m




### Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

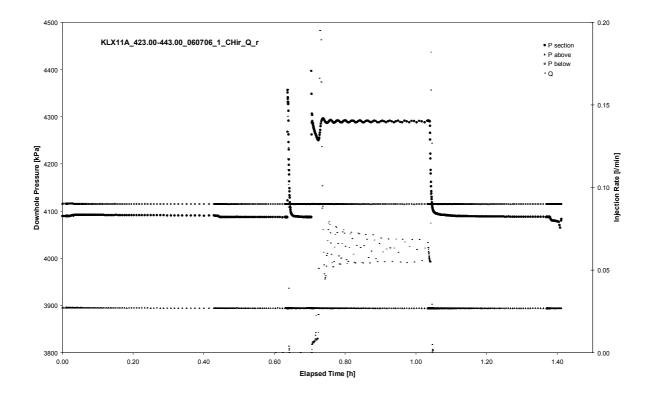
Test: 403.00 – 423.00 m



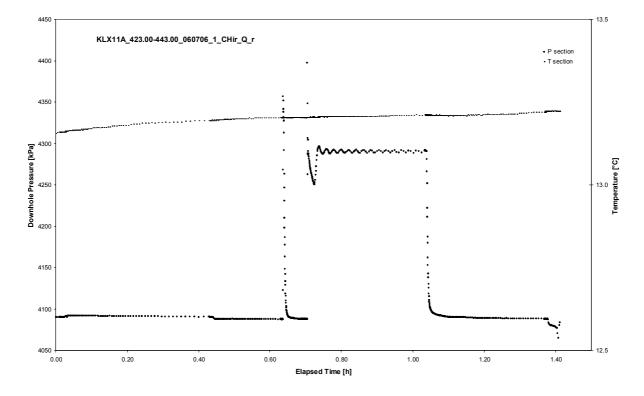
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n=1.45)


Borehole: KLX11A Page 2-26/1

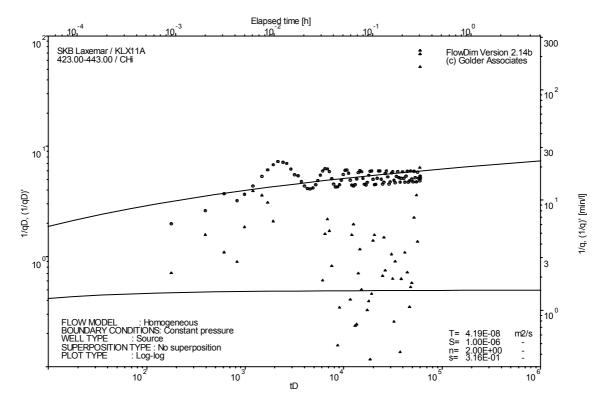
Test: 423.00 – 443.00 m


# **APPENDIX 2-26**

Test 423.00 – 443.00 m

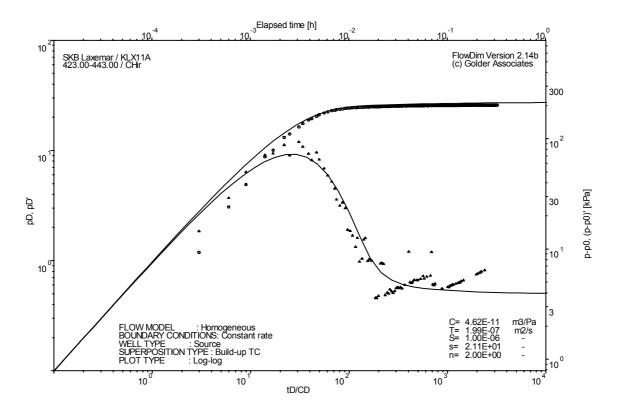
Test: 423.00 – 443.00 m



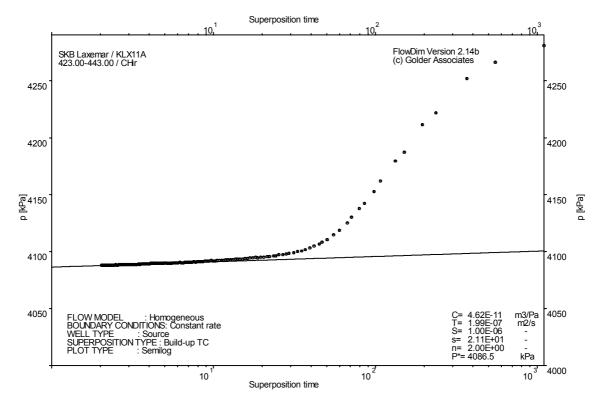

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-26/3

Test: 423.00 – 443.00 m




CHI phase; log-log match

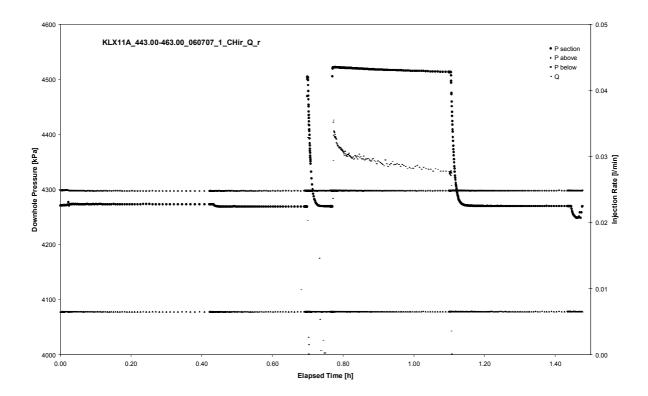
Test: 423.00 – 443.00 m



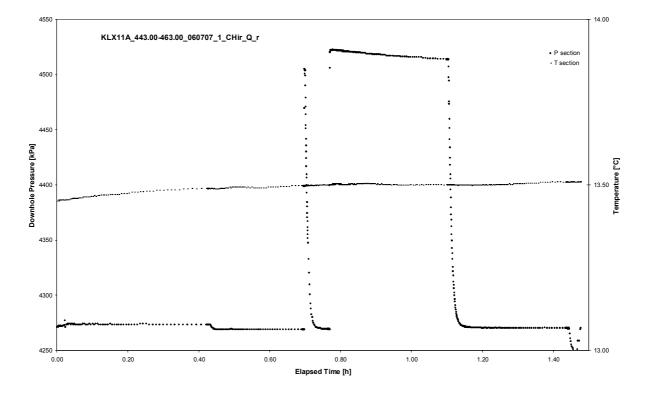
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-27/1

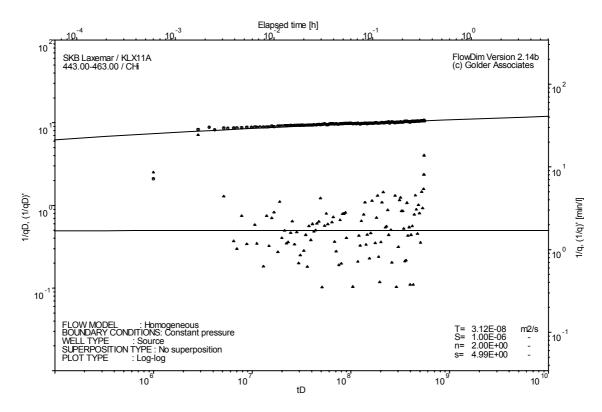
Test: 443.00 – 463.00 m


# **APPENDIX 2-27**

Test 443.00 – 463.00 m

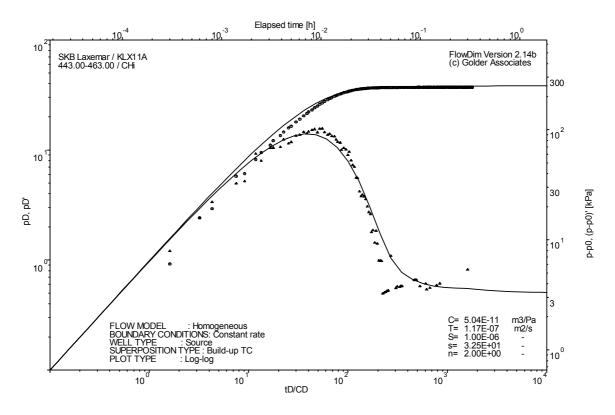
Test: 443.00 – 463.00 m



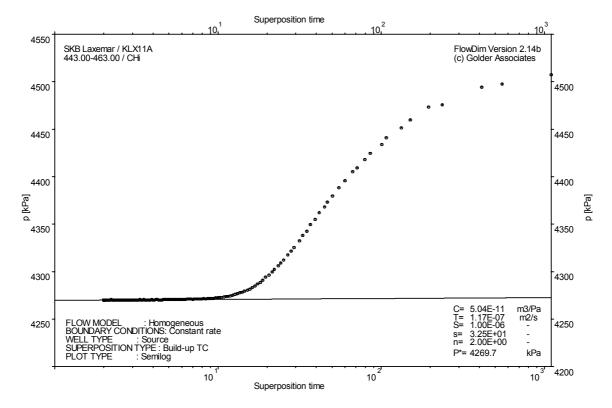

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-27/3

Test: 443.00 – 463.00 m




CHI phase; log-log match

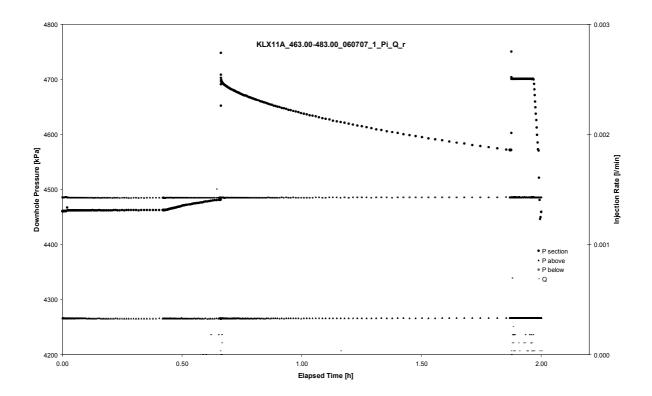
Test: 443.00 – 463.00 m



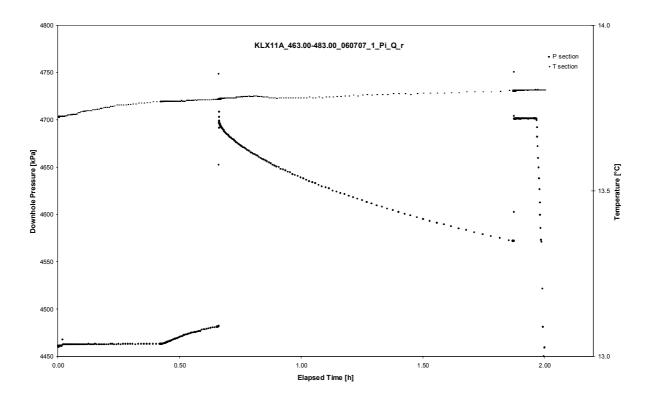
CHIR phase; log-log match



CHIR phase; HORNER match

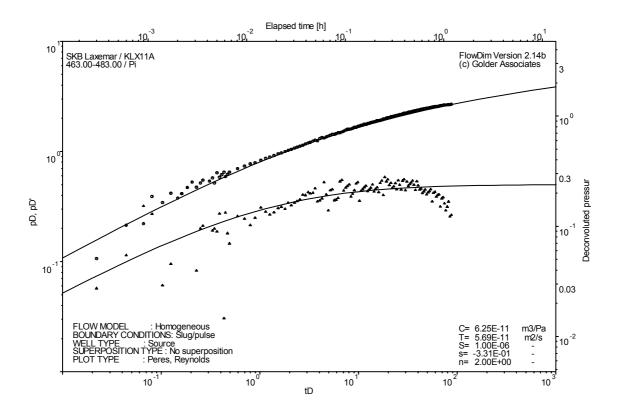

Borehole: KLX11A Page 2-28/1

Test: 463.00 – 483.00 m

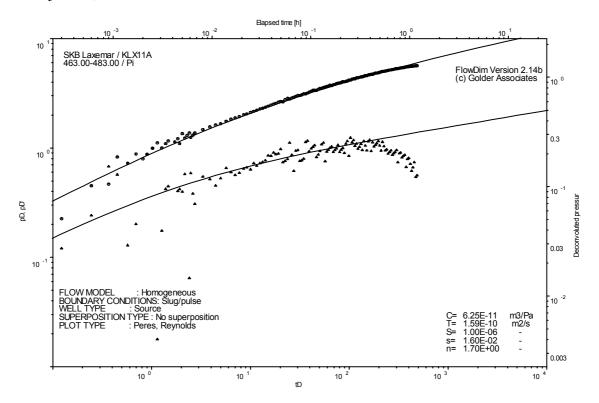

# **APPENDIX 2-28**

Test 463.00 – 483.00 m

Test: 463.00 – 483.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

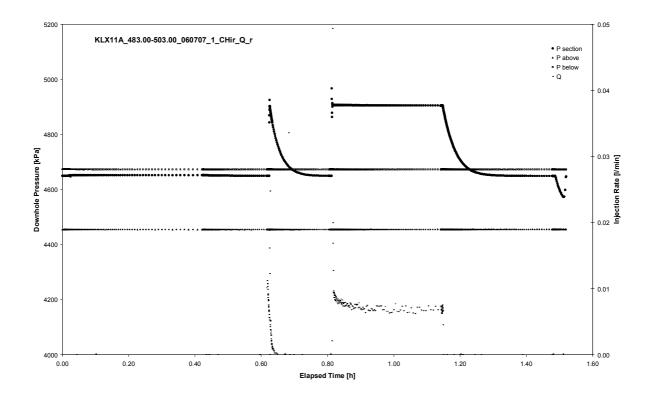
Test: 463.00 – 483.00 m



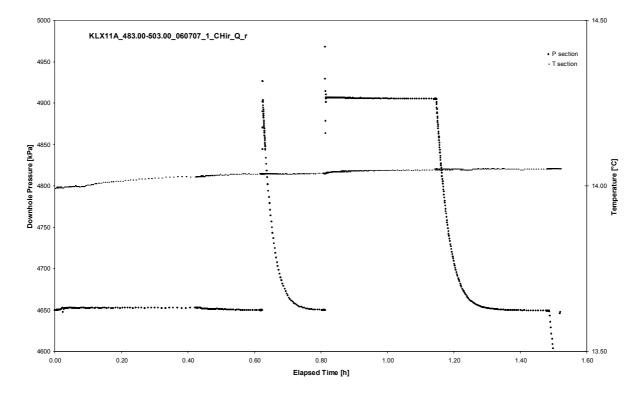
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n=1.7)


Borehole: KLX11A Page 2-29/1

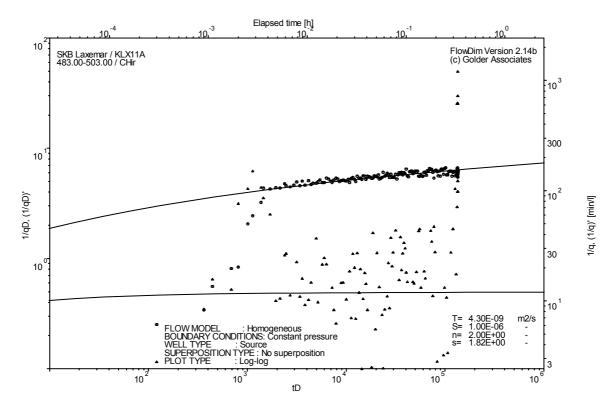
Test: 483.00 – 503.00 m


# **APPENDIX 2-29**

Test 483.00 – 503.00 m

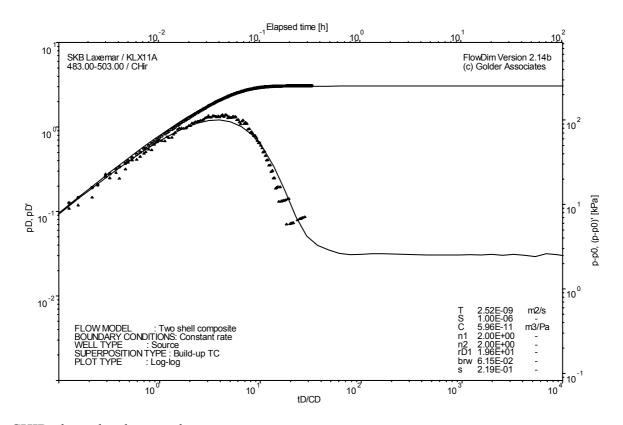
Test: 483.00 – 503.00 m



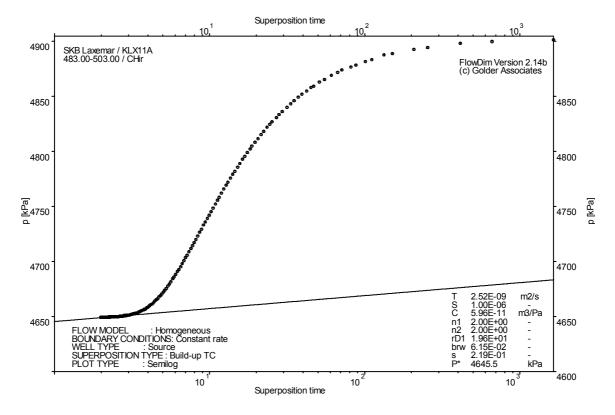

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-29/3

Test: 483.00 – 503.00 m




CHI phase; log-log match

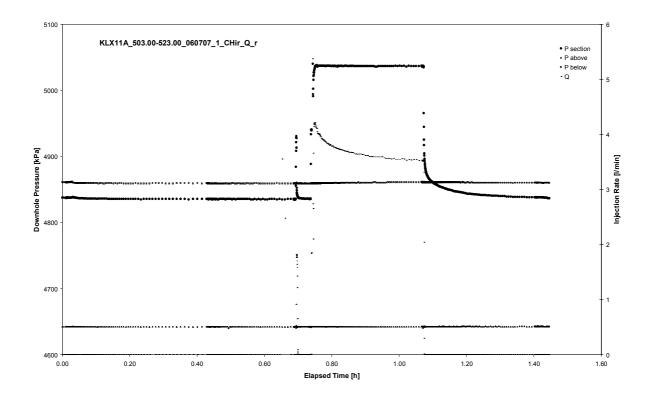
Test: 483.00 – 503.00 m



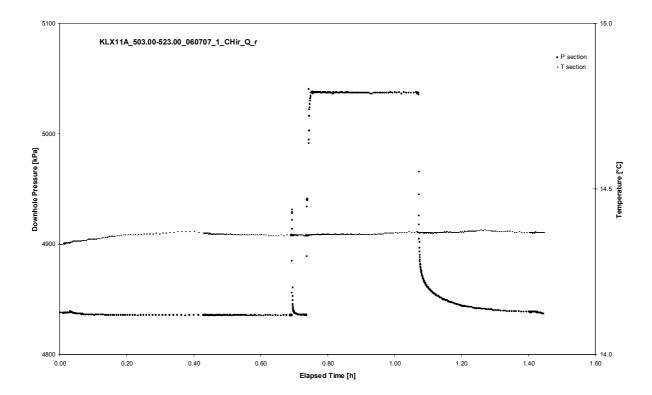
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-30/1

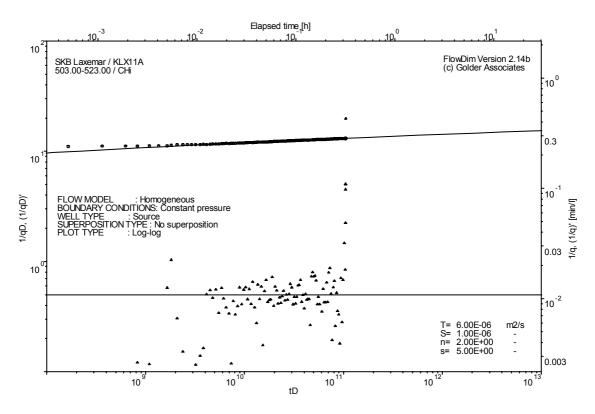
Test: 503.00 – 523.00 m


# **APPENDIX 2-30**

Test 503.00 – 523.00 m

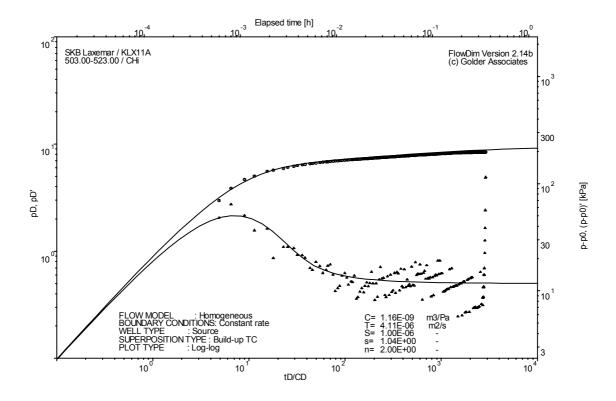
Test: 503.00 – 523.00 m



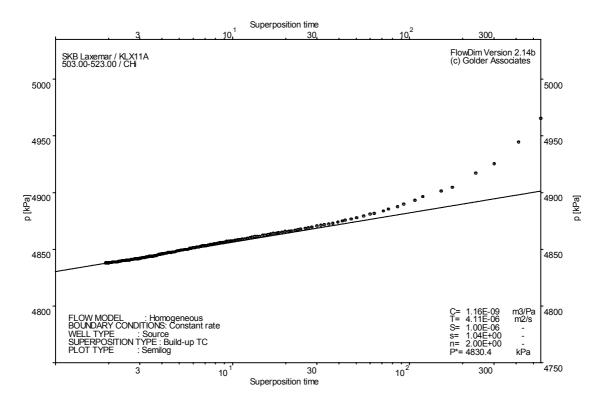

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-30/3

Test: 503.00 – 523.00 m




CHI phase; log-log match

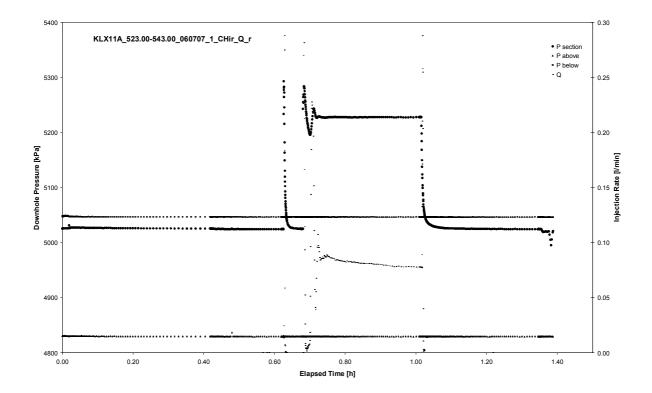
Test: 503.00 – 523.00 m



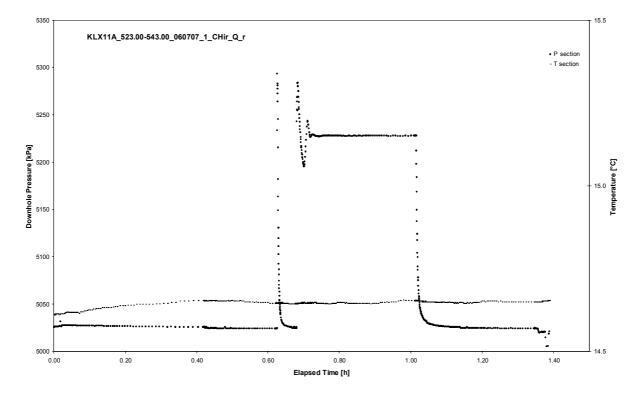
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-31/1

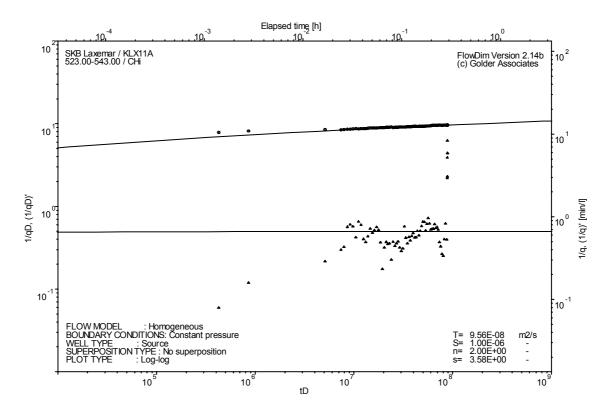
Test: 523.00 – 543.00 m


# **APPENDIX 2-31**

Test 523.00 – 543.00 m

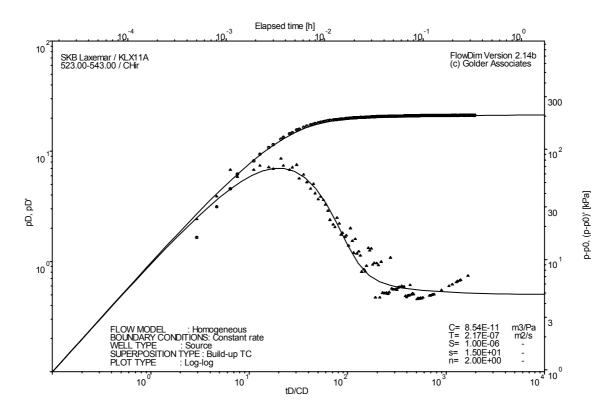
Test: 523.00 – 543.00 m



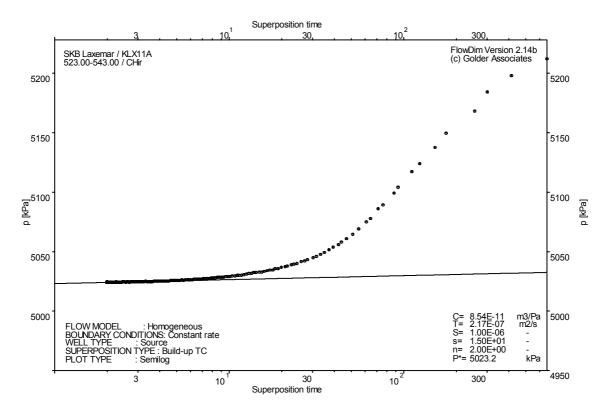

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-31/3

Test: 523.00 – 543.00 m




CHI phase; log-log match

Test: 523.00 – 543.00 m



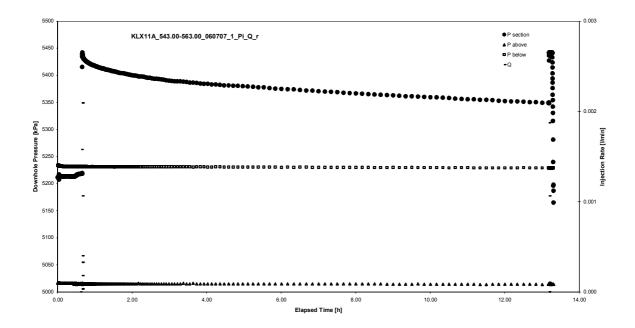
CHIR phase; log-log match



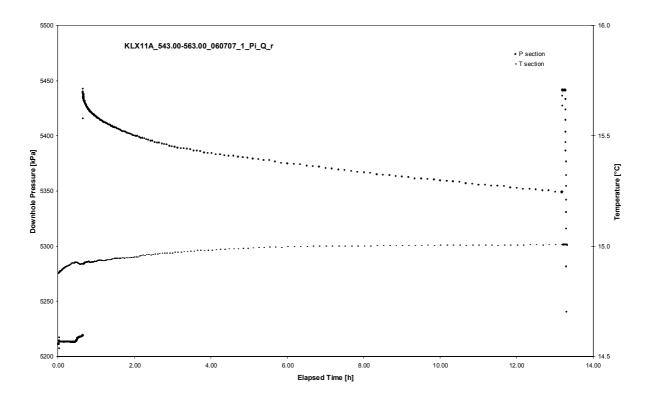
CHIR phase; HORNER match

Borehole: KLX11A Page 2-32/1

Test: 543.00 – 563.00 m

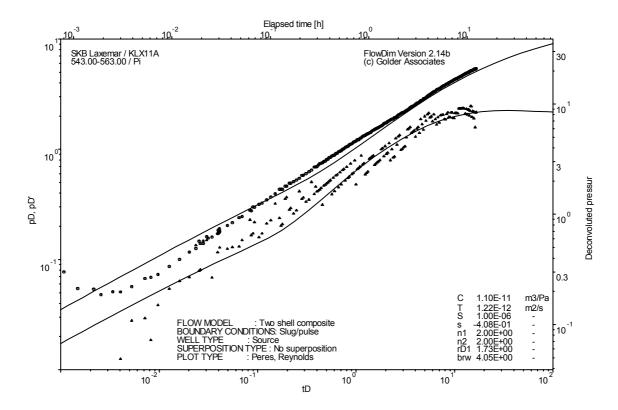

# **APPENDIX 2-32**

Test 543.00 – 563.00 m

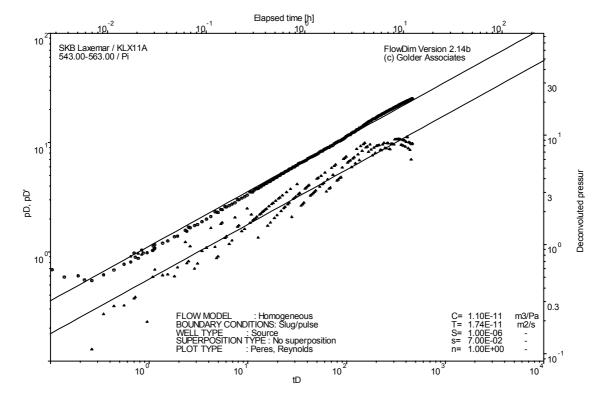

Page 2-32/2

Borehole: KLX11A

Test: 543.00 – 563.00 m




### Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

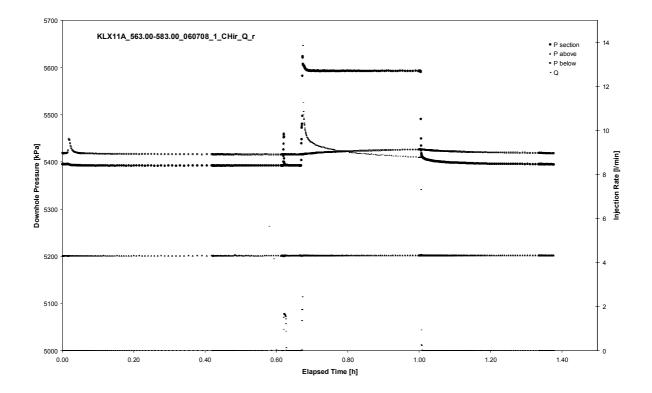
Test: 543.00 – 563.00 m



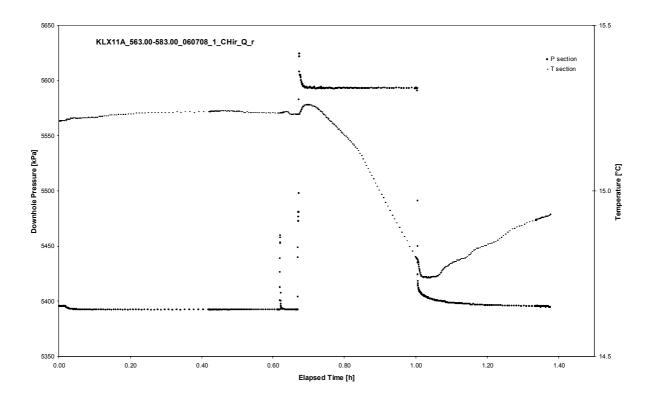
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n=1)


Borehole: KLX11A Page 2-33/1

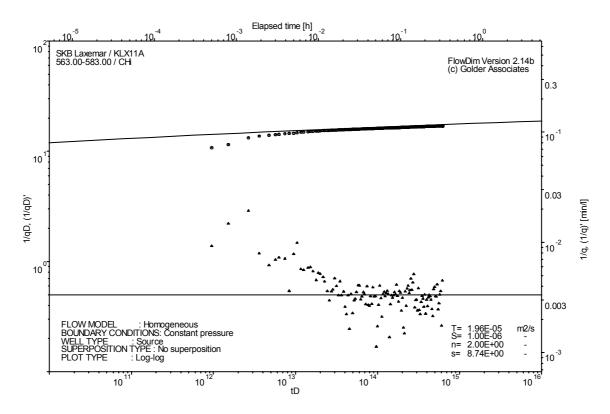
Test: 563.00 – 583.00 m


# **APPENDIX 2-33**

Test 563.00 – 583.00 m

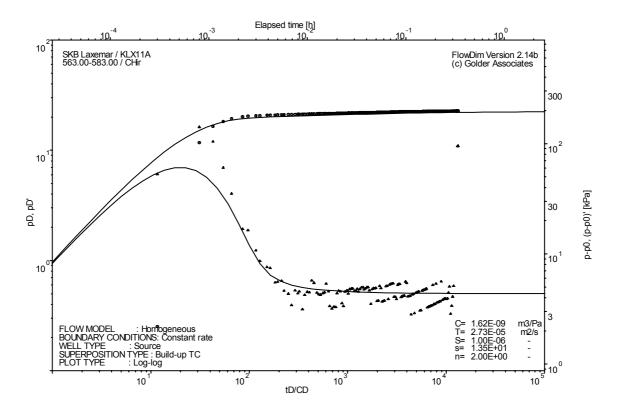
Test: 563.00 – 583.00 m



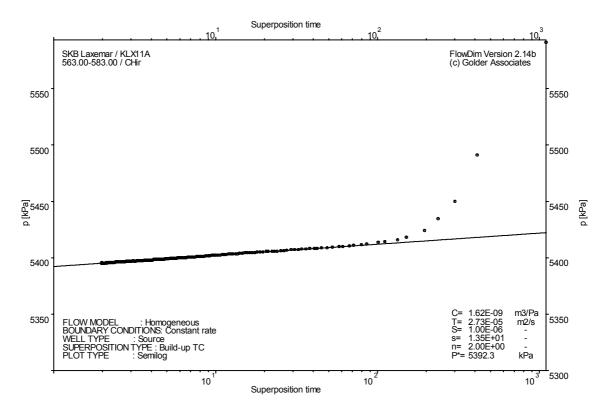

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

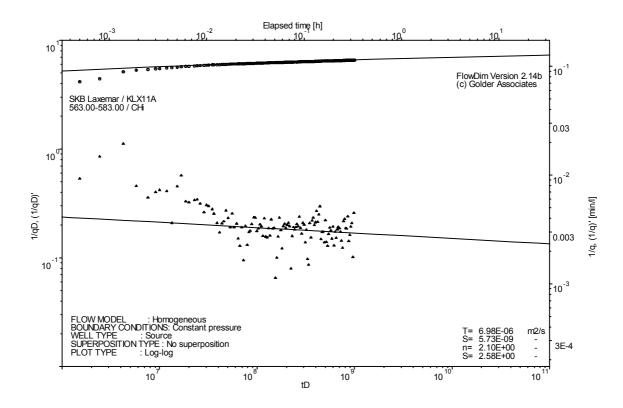

Borehole: KLX11A Page 2-33/3

Test: 563.00 – 583.00 m

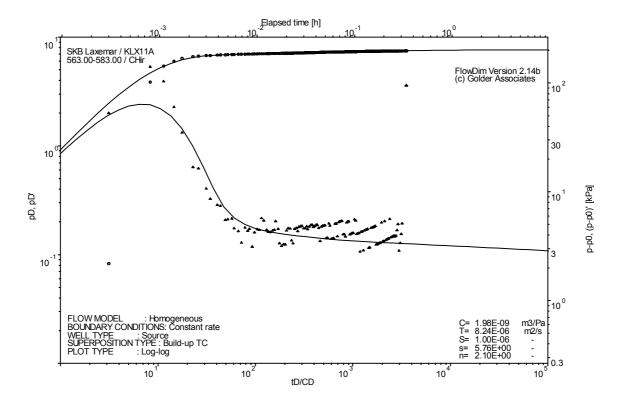



CHI phase; log-log match

Test: 563.00 – 583.00 m




CHIR phase; log-log match




CHIR phase; HORNER match

Test: 563.00 – 583.00 m



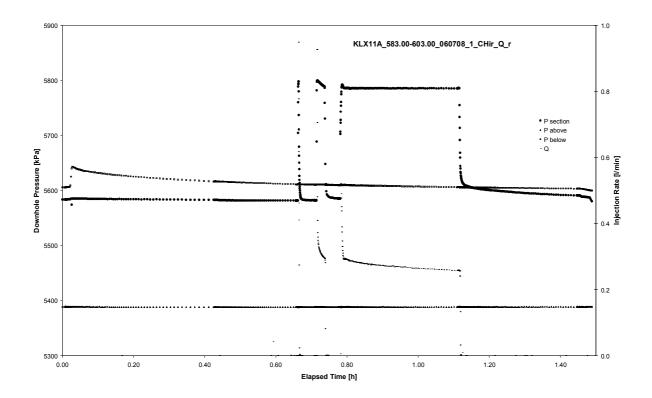
CHI phase; log-log match (n=2.1)



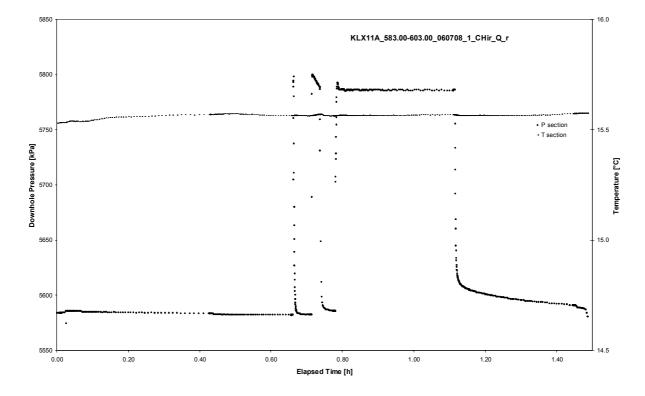
CHIR phase; log-log match (n=2.1)

Borehole: KLX11A Page 2-34/1

Test: 583.00 – 603.00 m


# **APPENDIX 2-34**

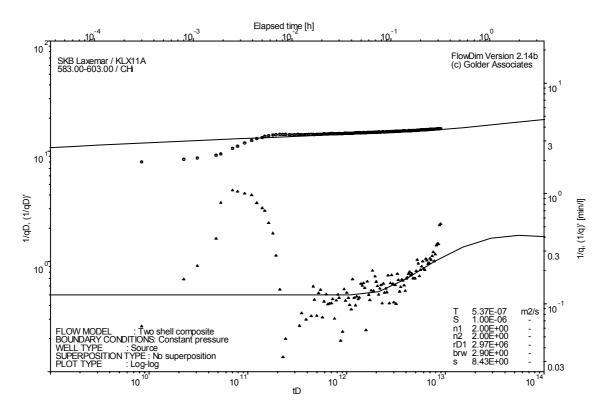
Test 583.00 – 603.00 m


Page 2-34/2

Borehole: KLX11A

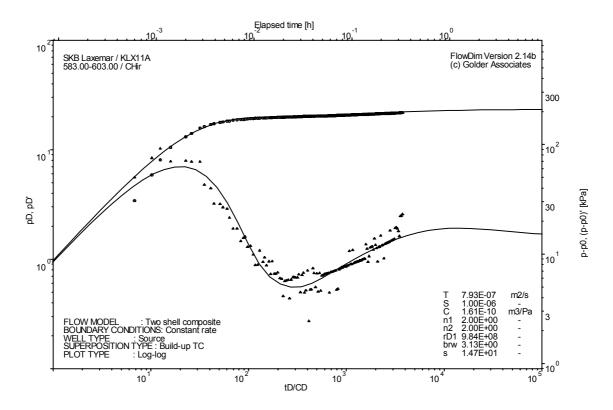
Test: 583.00 – 603.00 m



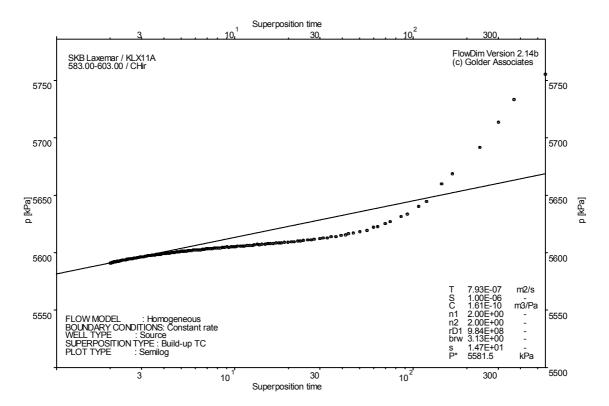

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

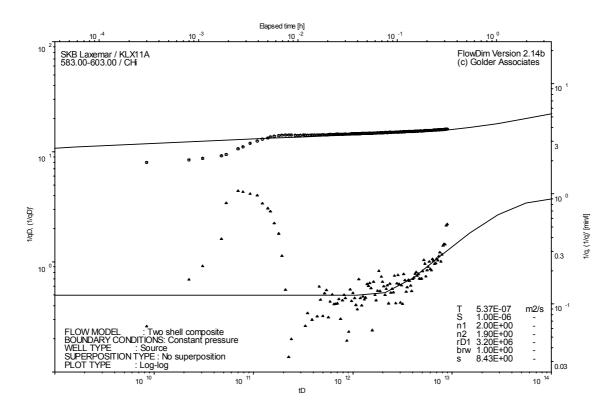

Borehole: KLX11A Page 2-34/3

Test: 583.00 – 603.00 m

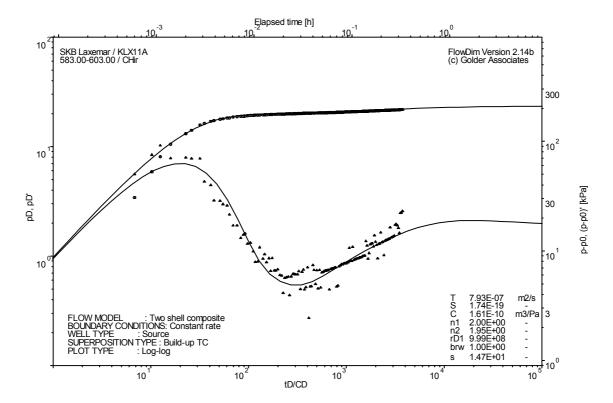



CHI phase; log-log match

Test: 583.00 - 603.00 m




CHIR phase; log-log match




CHIR phase; HORNER match

Test: 583.00 – 603.00 m



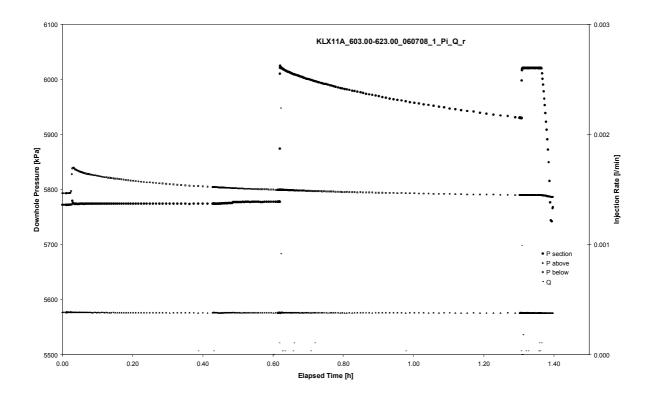
CHI phase; log-log match (n1=2, n2=1.9)



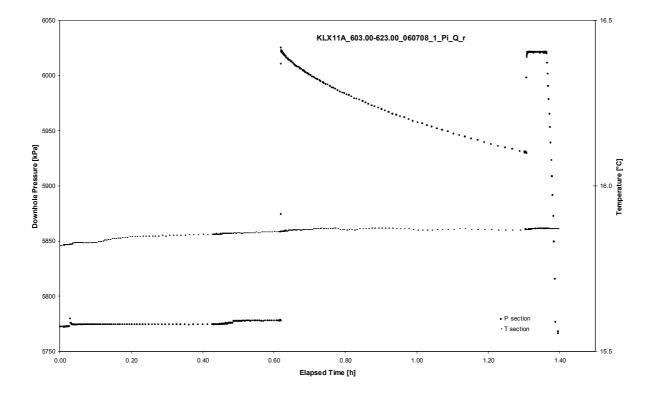
CHIR phase; log-log match (n1=2, n2=1.95)

Borehole: KLX11A Page 2-35/1

Test: 603.00 – 623.00 m

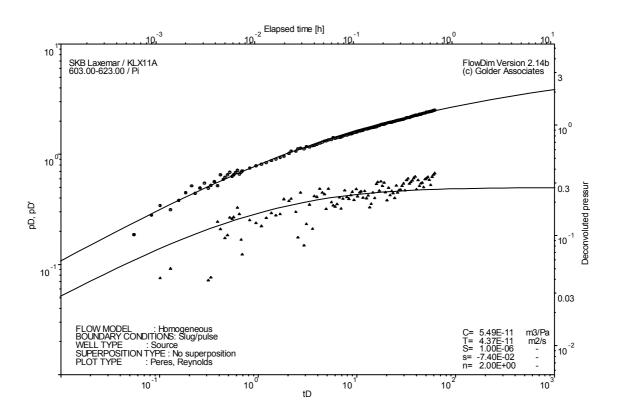

# **APPENDIX 2-35**

Test 603.00 – 623.00 m

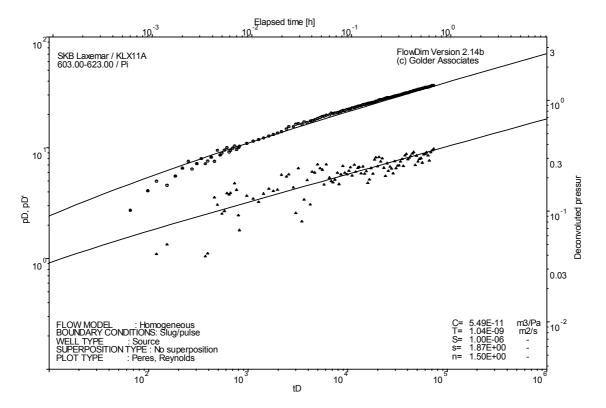

Page 2-35/2

Borehole: KLX11A

Test: 603.00 – 623.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Test: 603.00 – 623.00 m



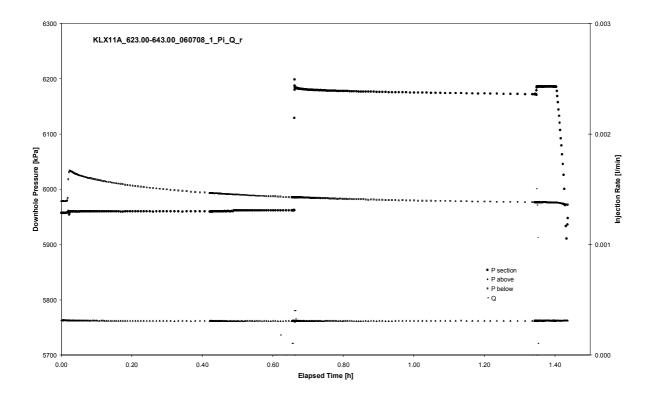
Pulse injection; deconvolution match



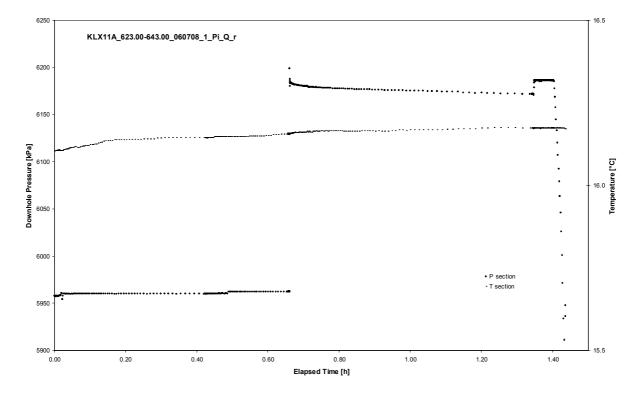
Pulse injection; deconvolution match (n=1.5)

Borehole: KLX11A Page 2-36/1

Test: 623.00 – 643.00 m


# **APPENDIX 2-36**

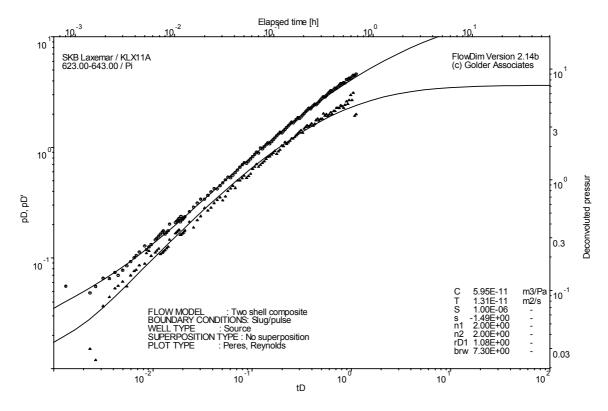
Test 623.00 – 643.00 m


Page 2-36/2

Borehole: KLX11A

Test: 623.00 – 643.00 m




Pressure and flow rate vs. time; cartesian plot



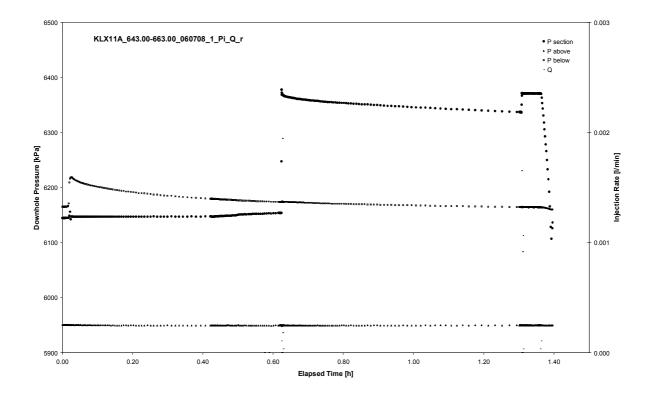
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-36/3

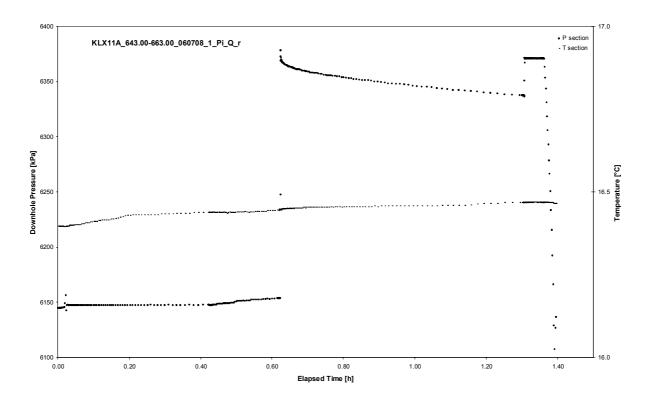
Test: 623.00 – 643.00 m



Pulse injection; deconvolution match

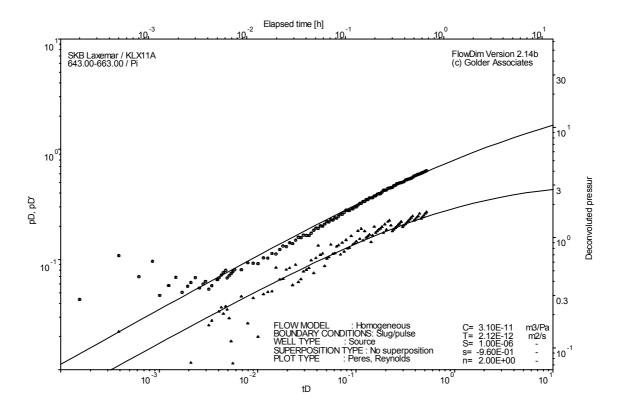

Borehole: KLX11A Page 2-37/1

Test: 643.00 – 663.00 m

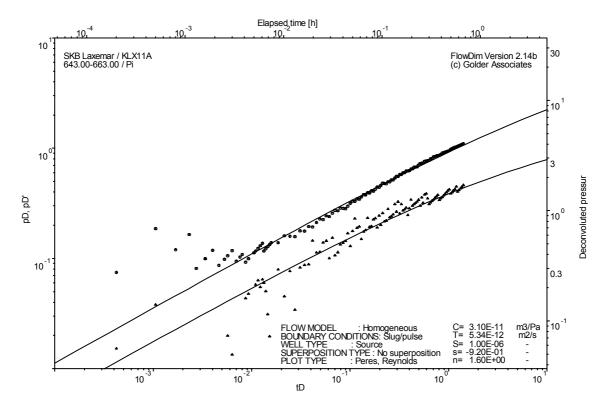

# **APPENDIX 2-37**

Test 643.00 – 663.00 m

Test: 643.00 – 663.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

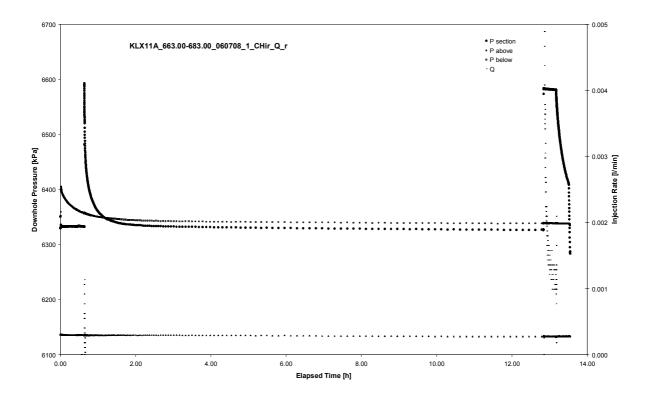
Test: 643.00 – 663.00 m



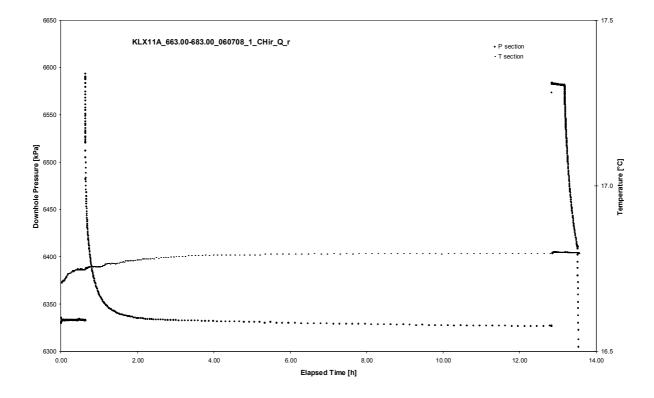
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n=1.6)


Borehole: KLX11A Page 2-38/1

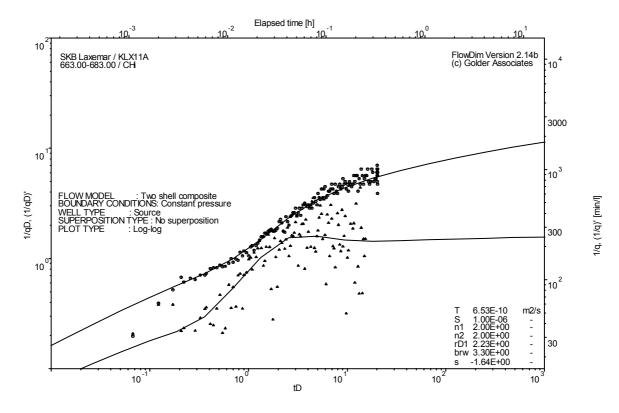
Test: 663.00 – 683.00 m


# **APPENDIX 2-38**

Test 663.00 – 683.00 m

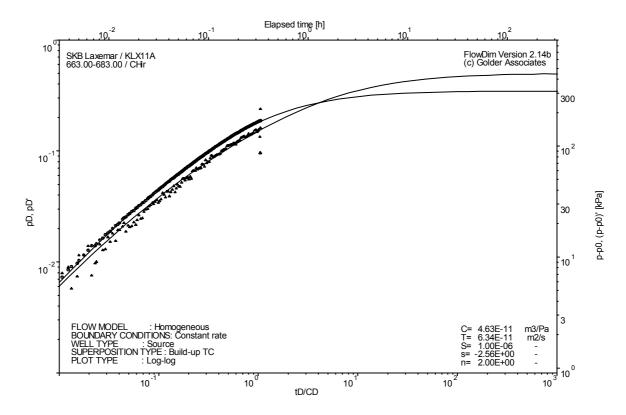
Test: 663.00 – 683.00 m



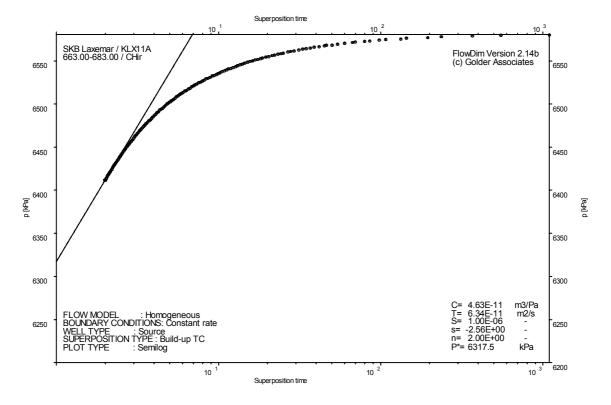

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-38/3

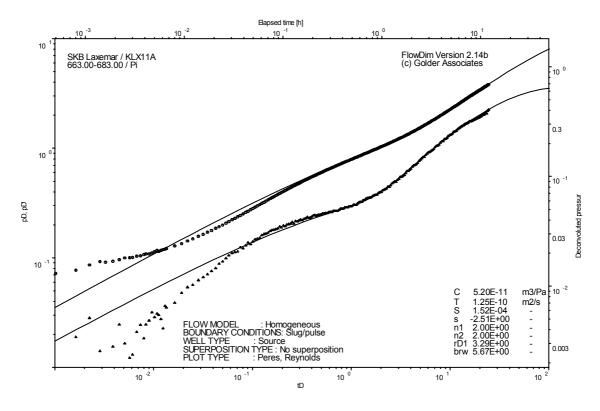
Test: 663.00 – 683.00 m




CHI phase; log-log match

Test: 663.00 – 683.00 m




CHIR phase; log-log match



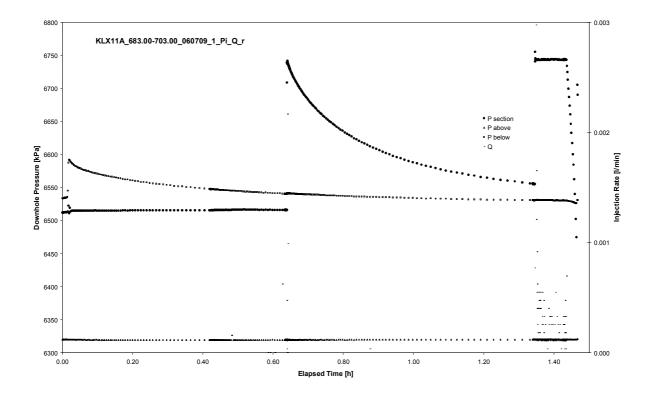
CHIR phase; HORNER match

Borehole: KLX11A Page 2-38/5

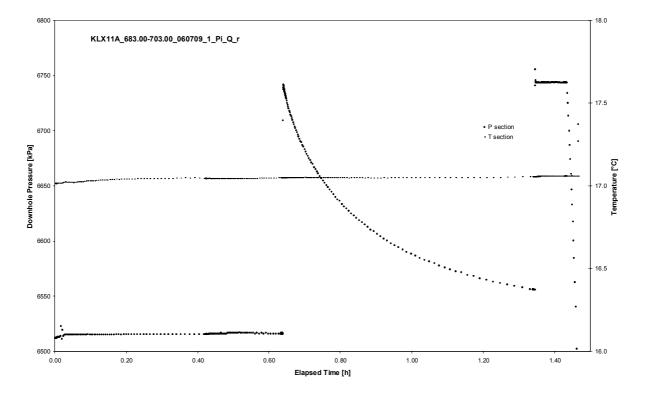
Test: 663.00 – 683.00 m



Pulse injection; deconvolution match

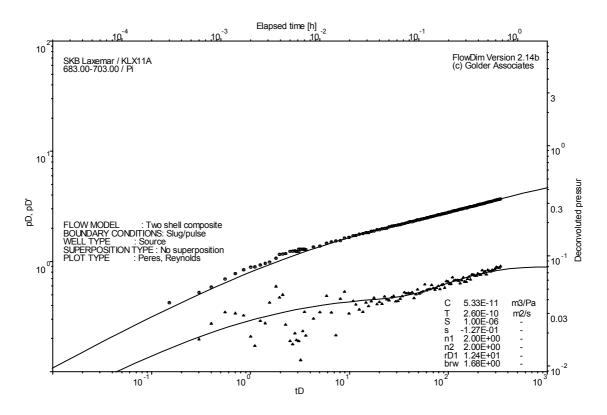

Borehole: KLX11A Page 2-39/1

Test: 683.00 – 703.00 m

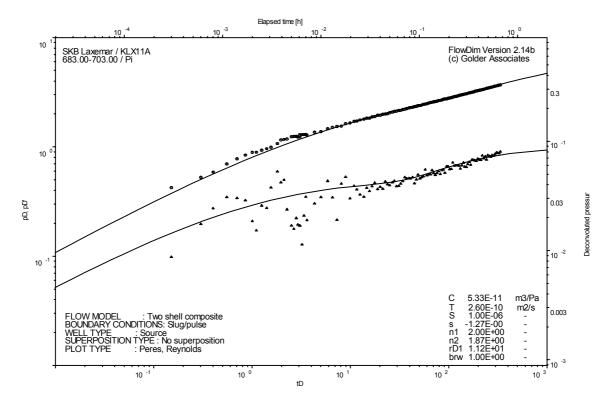

# **APPENDIX 2-39**

Test 683.00 – 703.00 m

Test: 683.00 – 703.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

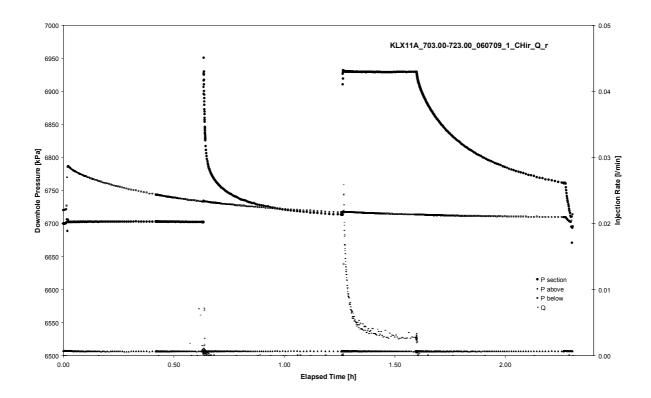
Test: 683.00 – 703.00 m



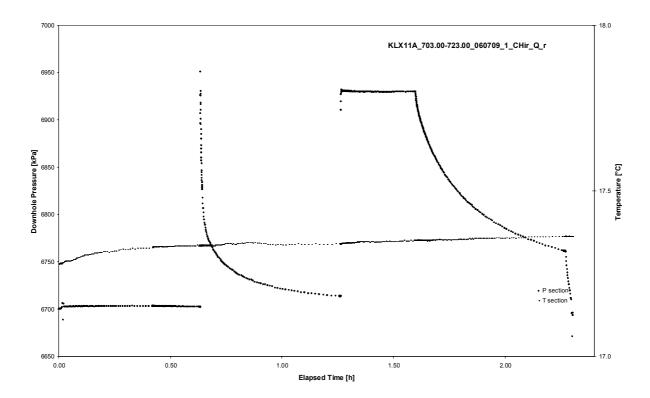
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n1=2, n2=1.87)


Borehole: KLX11A Page 2-40/1

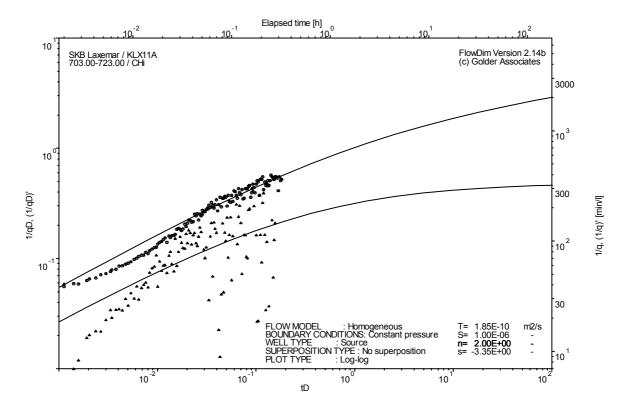
Test: 703.00 – 723.00 m


# **APPENDIX 2-40**

Test 703.00 – 723.00 m

Test: 703.00 – 723.00 m

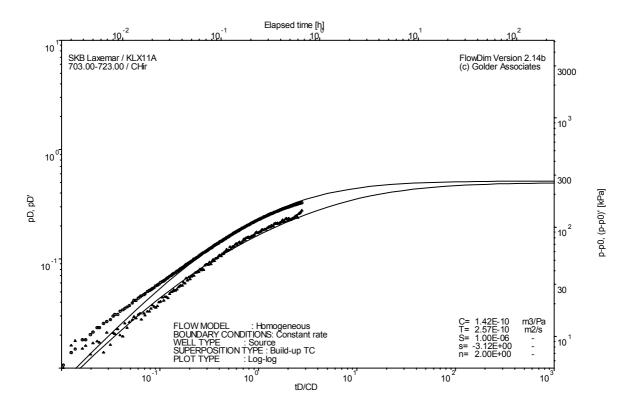



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-40/3


Test: 703.00 – 723.00 m



CHI phase; log-log match

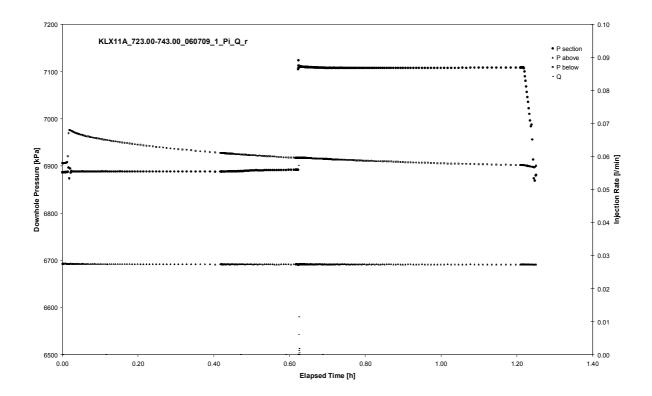
Borehole: KLX11A Page 2-40/4

Test: 703.00 – 723.00 m

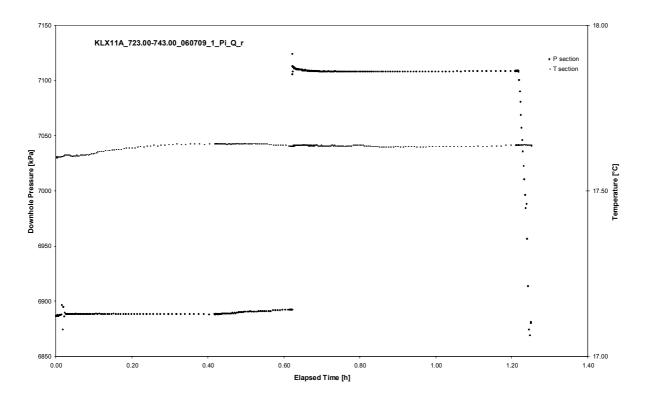


CHIR phase; log-log match

#### Not analysable


Borehole: KLX11A Page 2-41/1

Test: 723.00 – 743.00 m


# **APPENDIX 2-41**

Test 723.00 – 743.00 m

Test: 723.00 – 743.00 m



#### Pressure and flow rate vs. time; cartesian plot

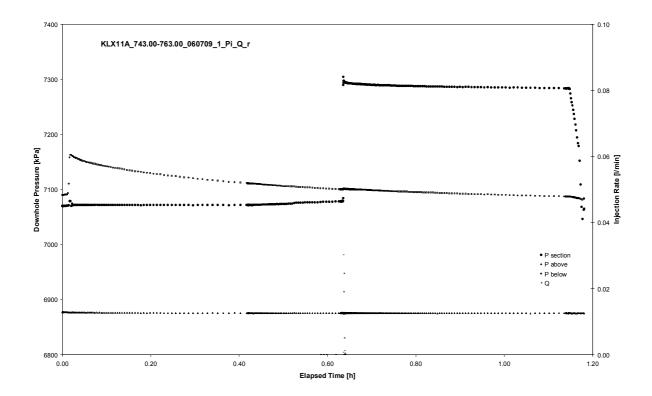


Interval pressure and temperature vs. time; cartesian plot

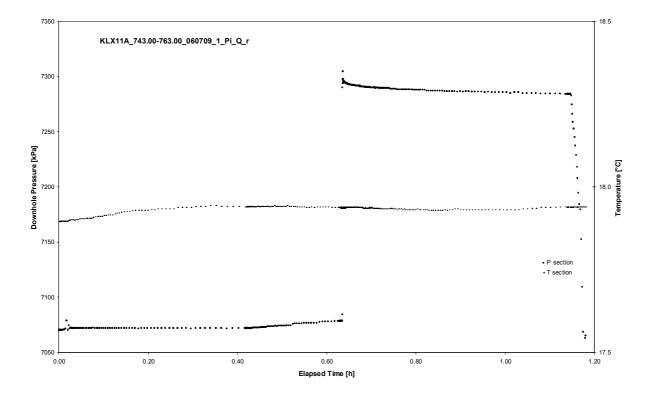
Borehole: KLX11A Page 2-41/3 Test: 723.00 – 743.00 m

Not analysed

Pulse injection; deconvolution match


Borehole: KLX11A Page 2-42/1

Test: 743.00 – 763.00 m


# **APPENDIX 2-42**

Test 743.00 – 763.00 m

Test: 743.00 – 763.00 m



Pressure and flow rate vs. time; cartesian plot

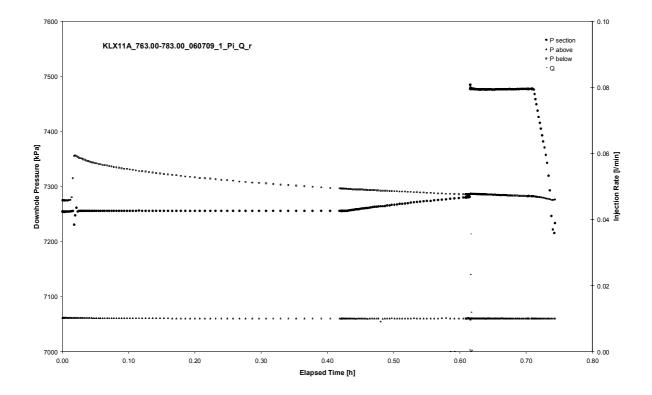


Interval pressure and temperature vs. time; cartesian plot

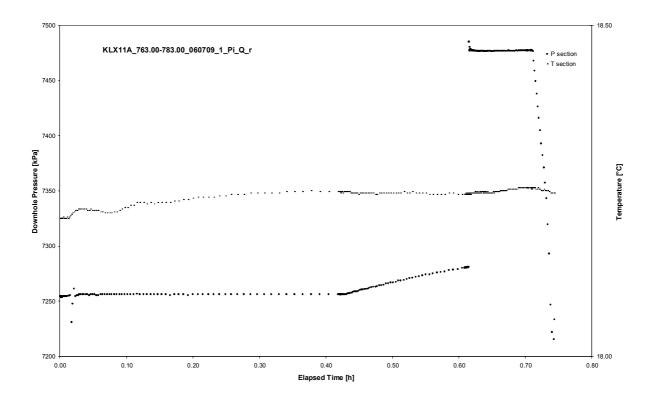
Borehole: KLX11A Page 2-42/3 Test: 743.00 – 763.00 m

Not analysed

Pulse injection; deconvolution match


Borehole: KLX11A Page 2-43/1

Test: 763.00 – 783.00 m


# **APPENDIX 2-43**

Test 763.00 – 783.00 m

Test: 763.00 – 783.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

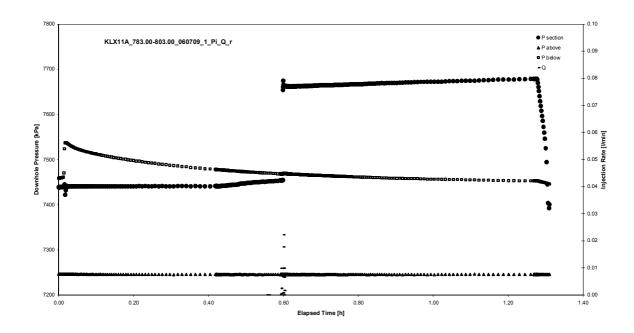
Borehole: KLX11A Page 2-43/3 Test: 763.00 – 783.00 m

Not analysed

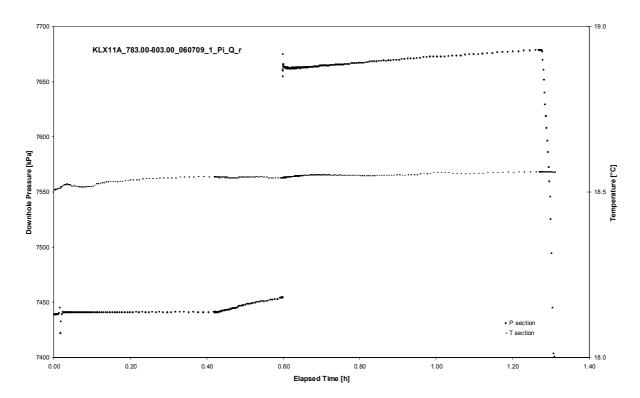
Pulse injection; deconvolution match

Borehole: KLX11A Page 2-44/1

Test: 783.00 – 803.00 m


# **APPENDIX 2-44**

Test 783.00 – 803.00 m


Page 2-44/2

Borehole: KLX11A

Test: 783.00 – 803.00 m



#### Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

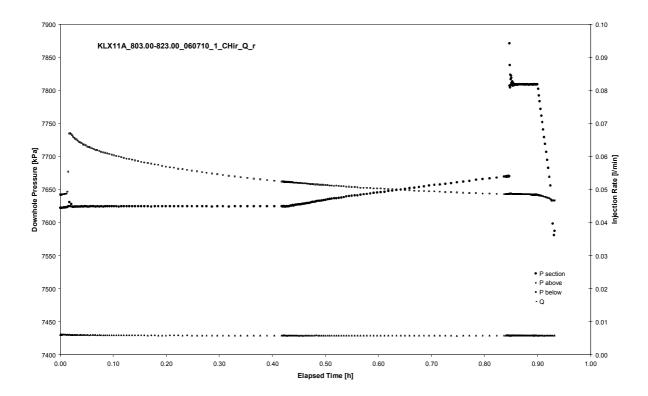
Borehole: KLX11A Page 2-44/3
Test: 783.00 – 803.00 m

Not analysed

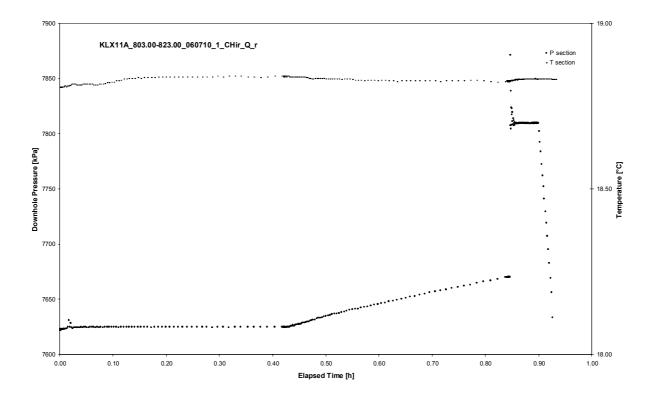
Pulse injection; deconvolution match

Borehole: KLX11A Page 2-45/1

Test: 803.00 – 823.00 m


# **APPENDIX 2-45**

Test 803.00 – 823.00 m


Page 2-45/2

Borehole: KLX11A

Test: 803.00 – 823.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-45/3

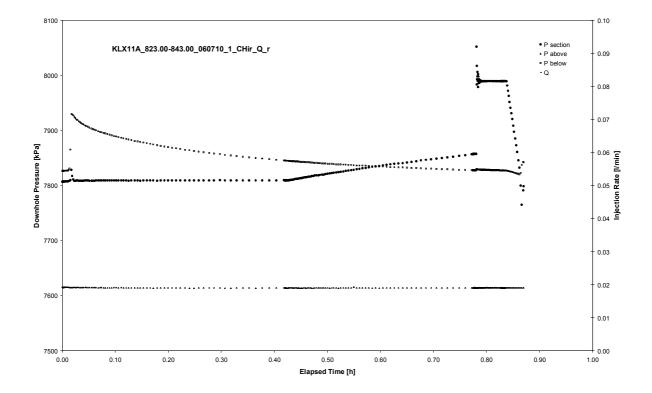
Test: 803.00 – 823.00 m

Not analysed

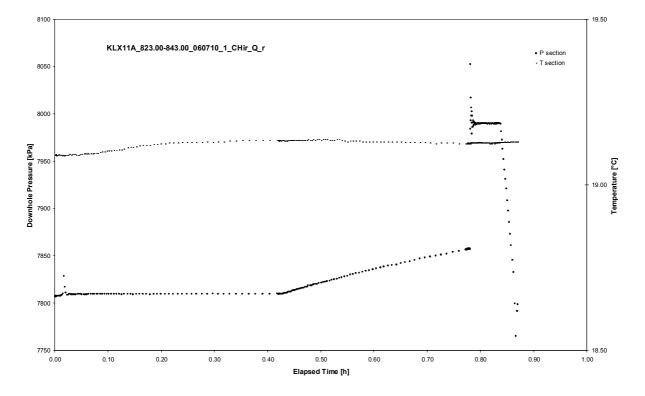
| Borehole:<br>Test: | KLX11A<br>803.00 – 823.00 m |              | Page 2-45/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |

Borehole: KLX11A Page 2-46/1

Test: 823.00 – 843.00 m


# **APPENDIX 2-46**

Test 823.00 – 843.00 m


Page 2-46/2

Borehole: KLX11A

Test: 823.00 – 843.00 m



Pressure and flow rate vs. time; cartesian plot



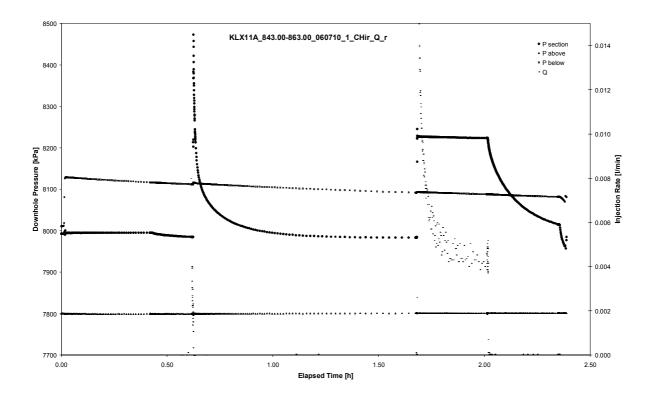
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-46/3

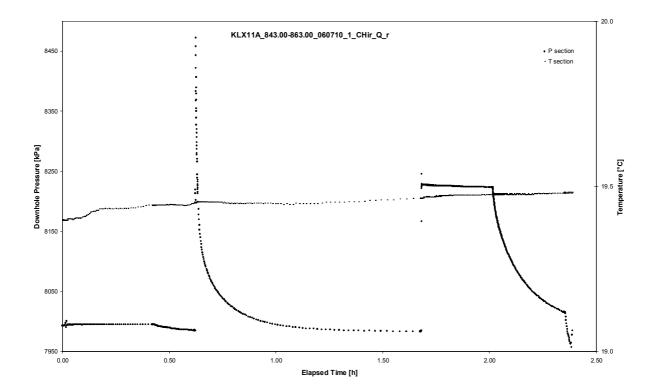
Test: 823.00 – 843.00 m

Not analysed

| Borehole:<br>Test: | KLX11A<br>823.00 – 843.00 m |              | Page 2-46/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |


Borehole: KLX11A Page 2-47/1

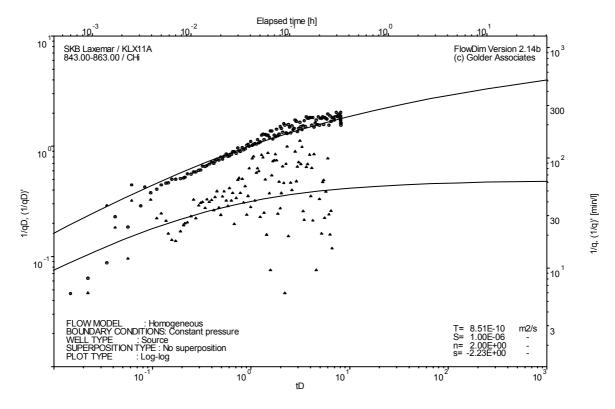
Test: 843.00 – 863.00 m


# **APPENDIX 2-47**

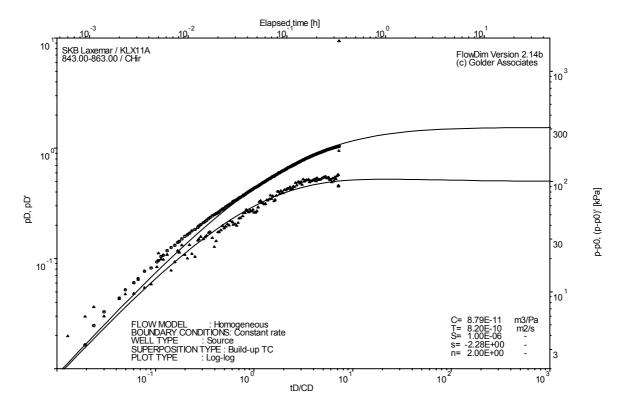
Test 843.00 – 863.00 m

Test: 843.00 – 863.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-47/3

Test: 843.00 – 863.00 m



Test: 843.00 – 863.00 m

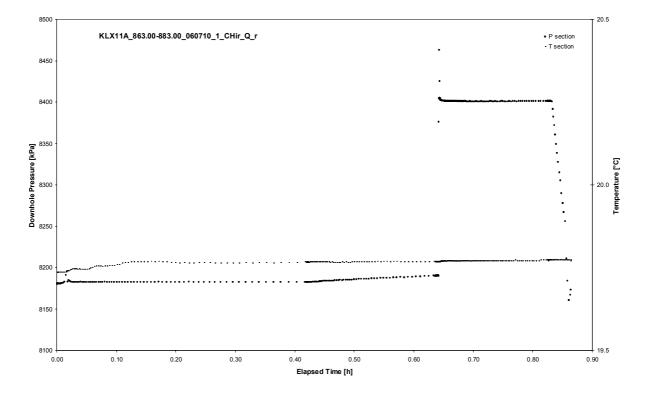


CHIR phase; log-log match

## Not analysable


Borehole: KLX11A Page 2-48/1

Test: 863.00 – 883.00 m


# **APPENDIX 2-48**

Test 863.00 – 883.00 m

Test: 863.00 – 883.00 m



Pressure and flow rate vs. time; cartesian plot



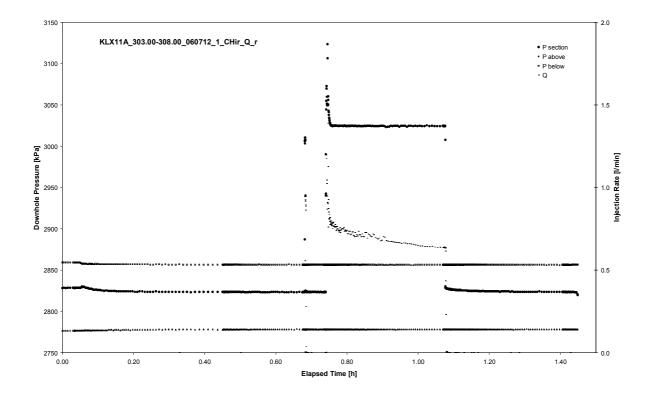
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-48/3

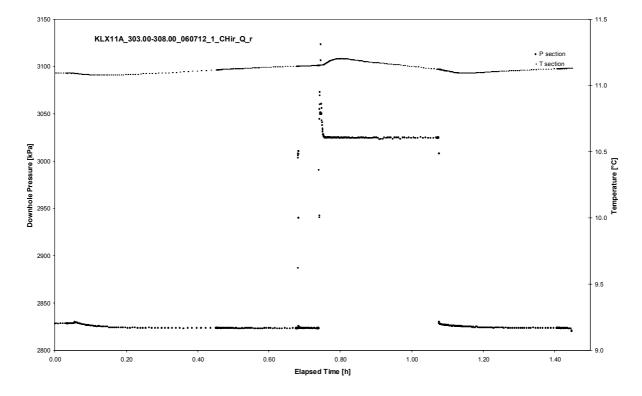
Test: 863.00 – 883.00 m

Not analysed

| Borehole: Test: | KLX11A<br>863.00 – 883.00 m |              | Page 2-48/4 |
|-----------------|-----------------------------|--------------|-------------|
| T CSt.          | 003.00 003.00 III           |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             | N            |             |
|                 |                             | Not analysed |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
| CHIR pha        | se; log-log match           |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             |              |             |
|                 |                             | Not analysed |             |
|                 |                             |              |             |


Borehole: KLX11A Page 2-49/1

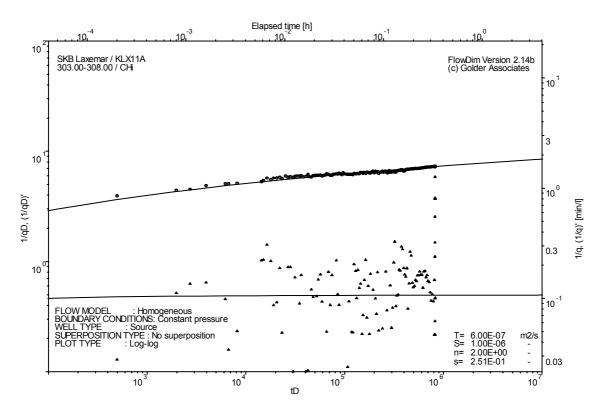
Test: 303.00 – 308.00 m


# **APPENDIX 2-49**

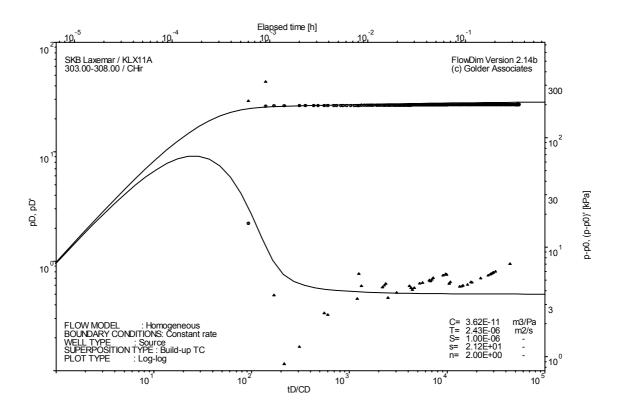
Test 303.00 – 308.00 m

Test: 303.00 – 308.00 m

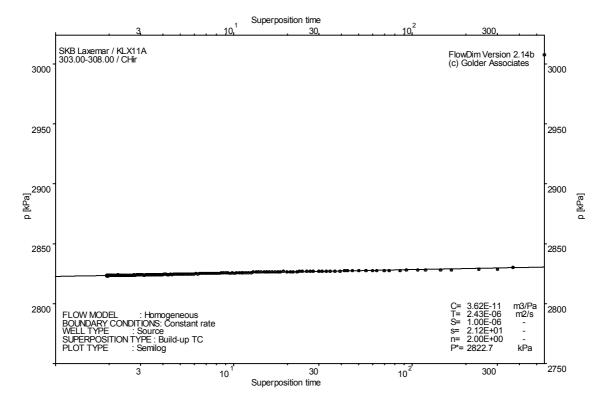



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

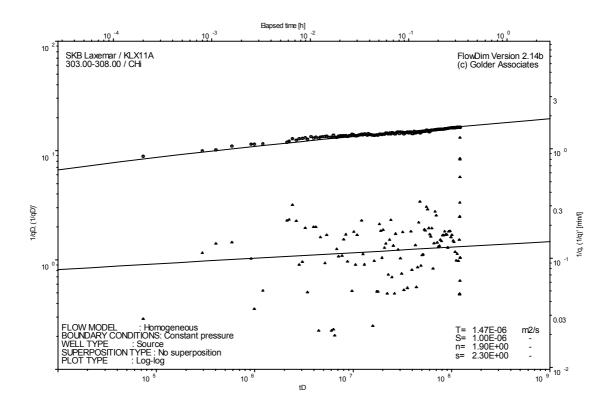
Borehole: KLX11A Page 2-49/3


Test: 303.00 – 308.00 m



Test: 303.00 - 308.00 m




CHIR phase; log-log match



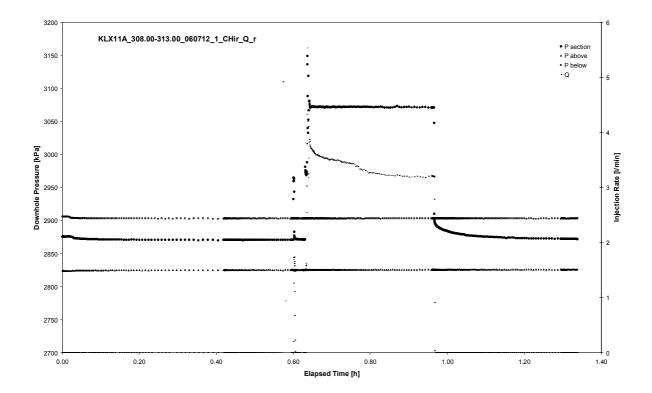
CHIR phase; HORNER match

Borehole: KLX11A Page 2-49/5

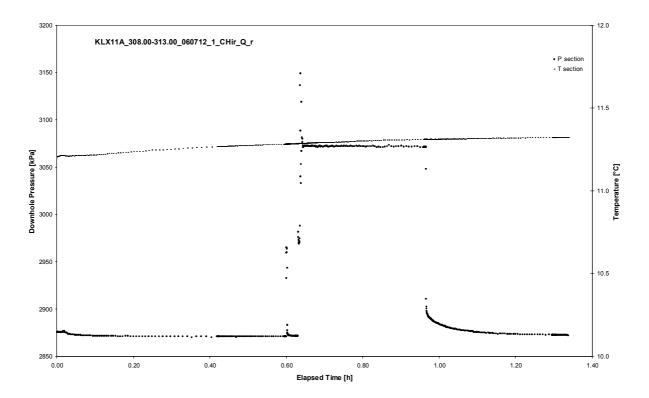
Test: 303.00 – 308.00 m



CHI phase; log-log match (n=1.9)


Borehole: KLX11A Page 2-50/1

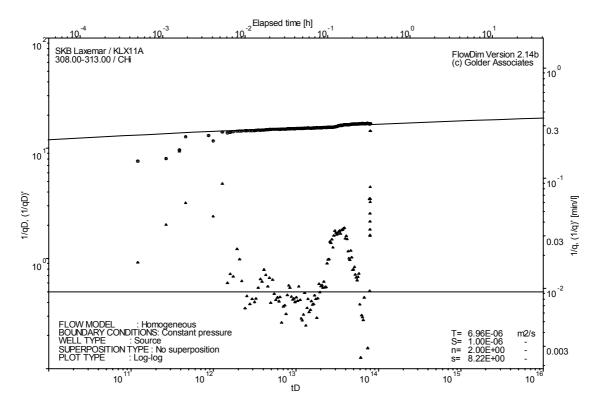
Test: 308.00 - 313.00 m


# **APPENDIX 2-50**

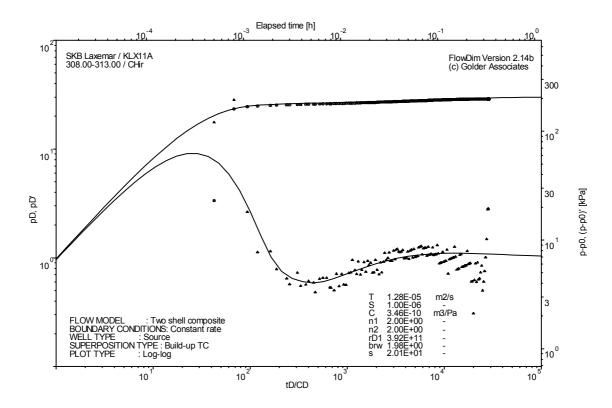
Test 308.00 – 313.00 m

Test: 308.00 - 313.00 m

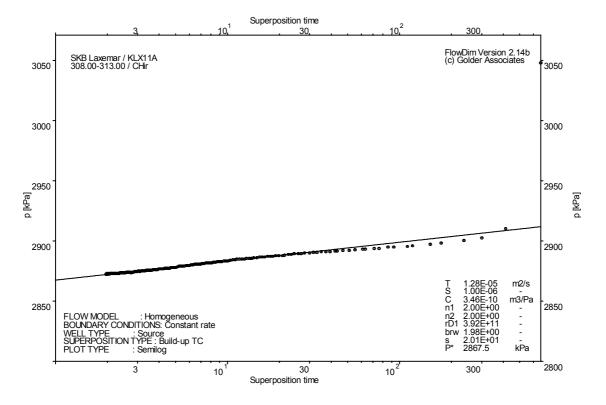



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

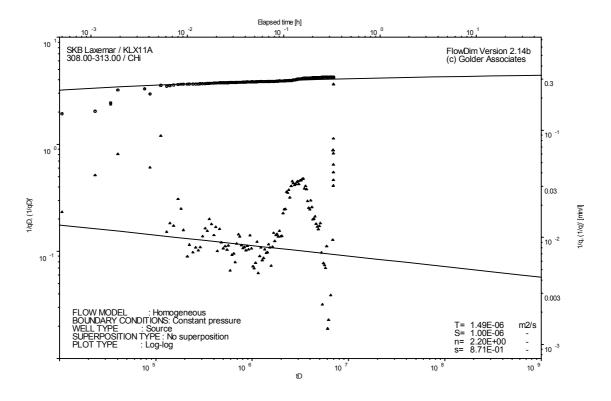
Borehole: KLX11A Page 2-50/3


Test: 308.00 - 313.00 m



Test: 308.00 - 313.00 m




CHIR phase; log-log match



CHIR phase; HORNER match

Borehole: KLX11A Page 2-50/5

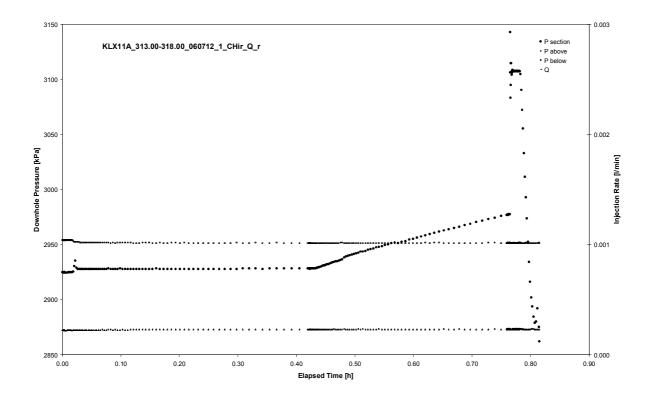
Test: 308.00 - 313.00 m



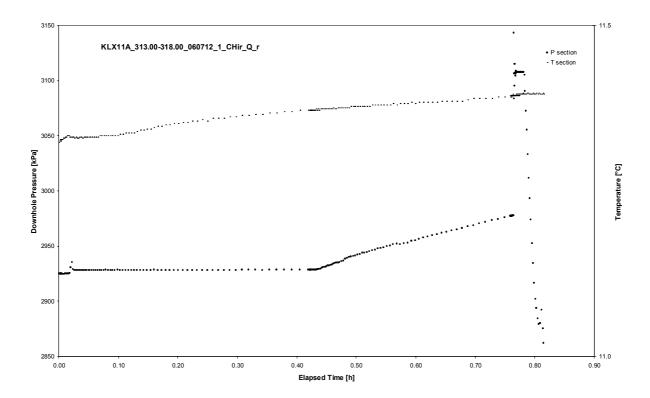
CHI phase; log-log match (n=2.2)

Borehole: KLX11A Page 2-51/1

Test: 313.00 – 318.00 m


# **APPENDIX 2-51**

Test 313.00 – 318.00 m


Page 2-51/2

Borehole: KLX11A

Test: 313.00 – 318.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

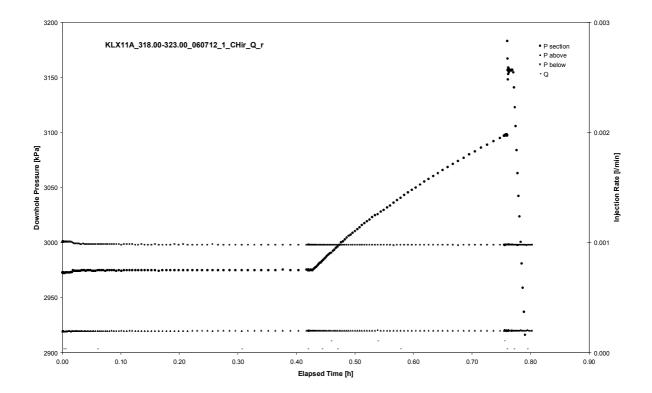
Borehole: KLX11A Page 2-51/3

Test: 313.00 – 318.00 m

Not analysed

| Test:    | 313.00 – 318.00 m |              |
|----------|-------------------|--------------|
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   | Not analysed |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
| CHIR pha | se; log-log match |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   | Not analysed |
|          |                   |              |

Page 2-51/4


Borehole: KLX11A Page 2-52/1

Test: 318.00 – 323.00 m

# **APPENDIX 2-52**

Test 318.00 – 323.00 m

Test: 318.00 – 323.00 m



Pressure and flow rate vs. time; cartesian plot



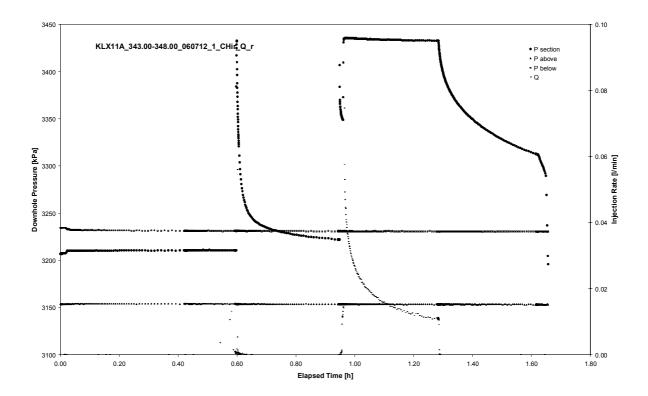
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-52/3

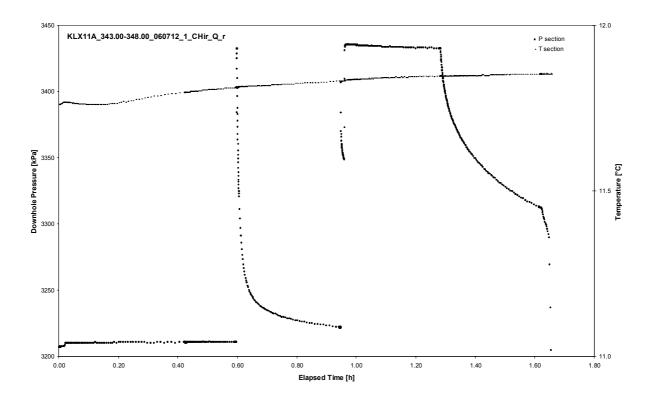
Test: 318.00 – 323.00 m

Not analysed

| Borehole:<br>Test: | KLX11A<br>318.00 – 323.00 m |              | Page 2-52/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             | ·            |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |


Borehole: KLX11A Page 2-53/1

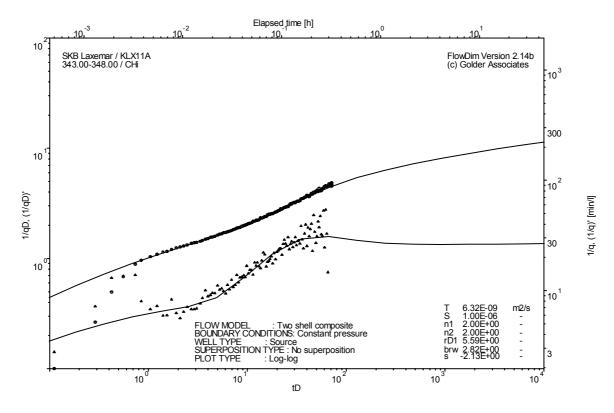
Test: 343.00 – 348.00 m


# **APPENDIX 2-53**

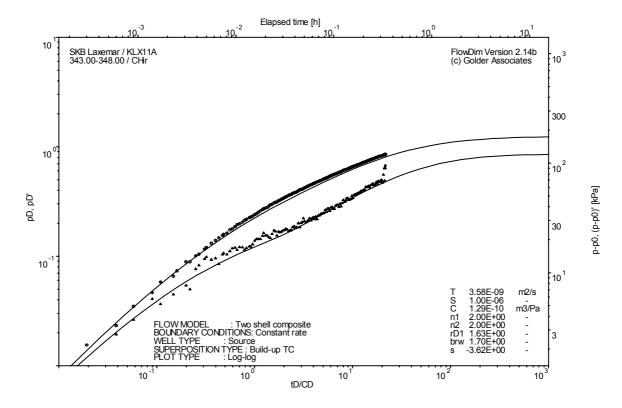
Test 343.00 – 348.00 m

Test: 343.00 – 348.00 m




Pressure and flow rate vs. time; cartesian plot

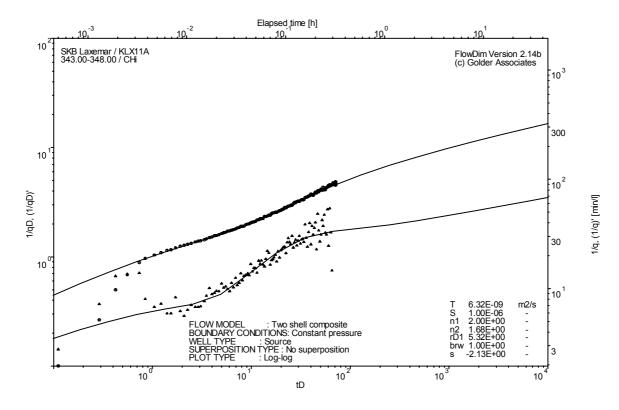



Interval pressure and temperature vs. time; cartesian plot

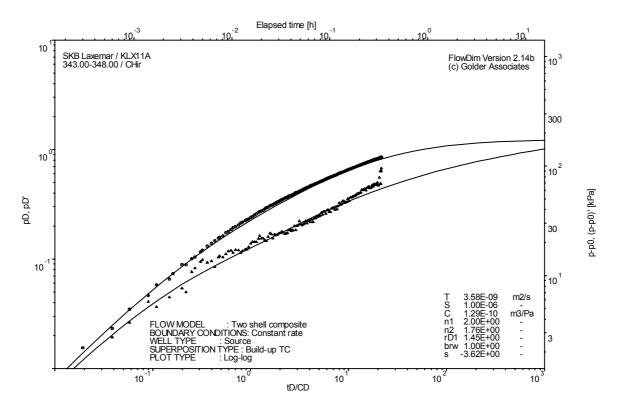
Borehole: KLX11A Page 2-53/3

Test: 343.00 – 348.00 m




Test: 343.00 – 348.00 m




CHIR phase; log-log match

### Not analysable

Test: 343.00 – 348.00 m



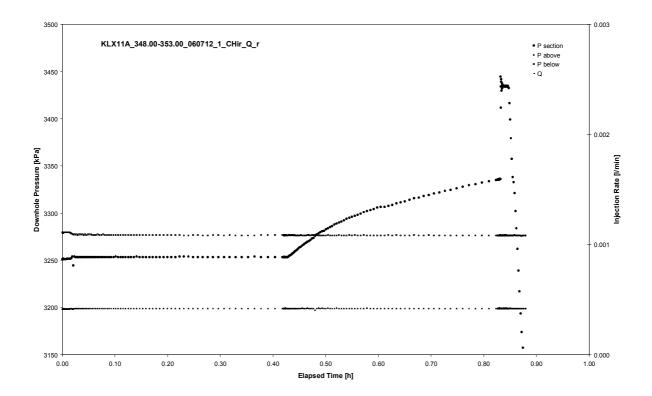
CHI phase; log-log match (n1=2, n2=1.68)



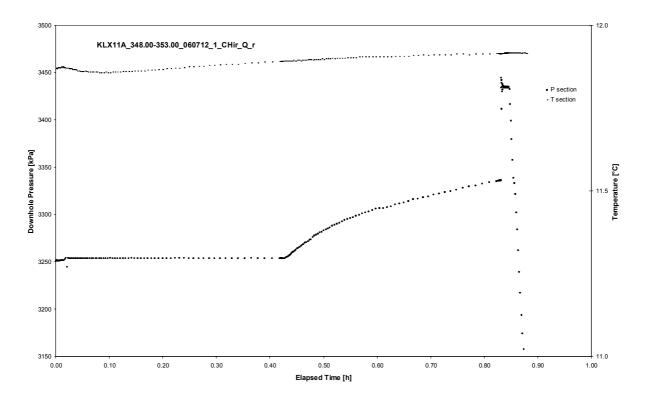
CHIR phase; log-log match (n1=2, n2=1.76)

Borehole: KLX11A Page 2-54/1

Test: 348.00 - 353.00 m


# **APPENDIX 2-54**

Test 348.00 – 353.00 m


Page 2-54/2

Borehole: KLX11A

Test: 348.00 – 353.00 m



Pressure and flow rate vs. time; cartesian plot



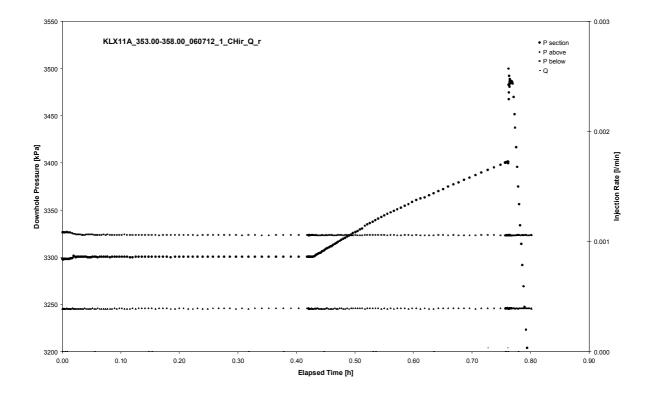
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-54/3

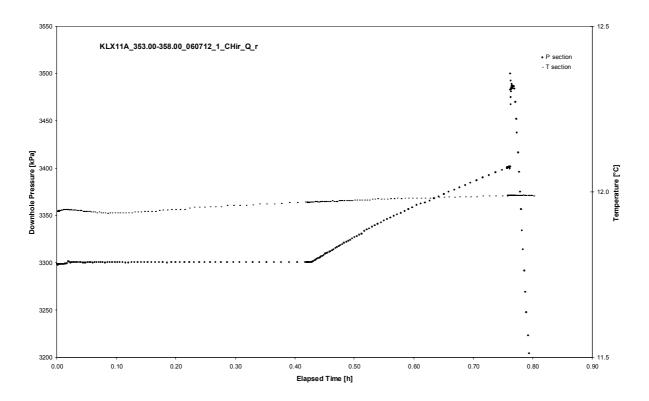
Test: 348.00 – 353.00 m

Not analysed

| Borehole:<br>Test: | KLX11A<br>348.00 – 353.00 m |              | Page 2-54/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR phas          | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |


Borehole: KLX11A Page 2-55/1

Test: 353.00 – 358.00 m


# **APPENDIX 2-55**

Test 353.00 – 358.00 m

Test: 353.00 – 358.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-55/3

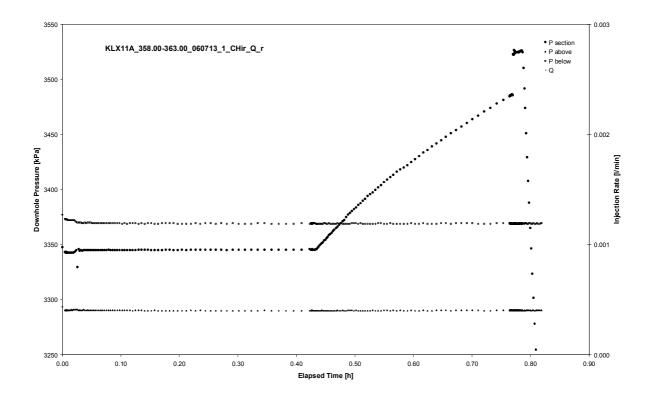
Test: 353.00 – 358.00 m

Not analysed

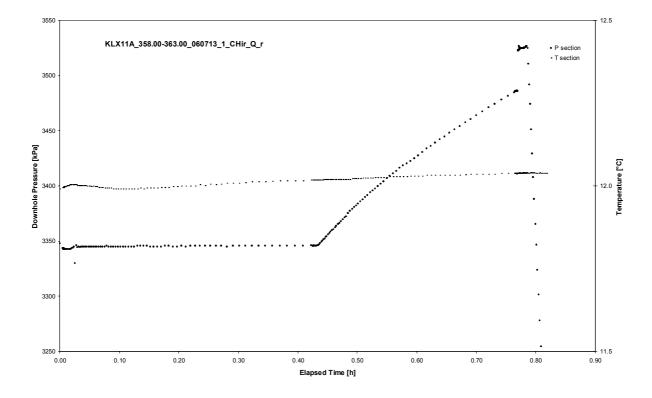
| Borehole:<br>Test: | KLX11A<br>353.00 – 358.00 m |               | Page 2-55/4 |
|--------------------|-----------------------------|---------------|-------------|
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             | Not analysed  |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
| CHIR pha           | se; log-log match           |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             | Not analysed  |             |
|                    |                             | riot anaryscu |             |

Borehole: KLX11A Page 2-56/1

Test: 358.00 – 363.00 m


# **APPENDIX 2-56**

Test 358.00 – 363.00 m


Page 2-56/2

Borehole: KLX11A

Test: 358.00 – 363.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

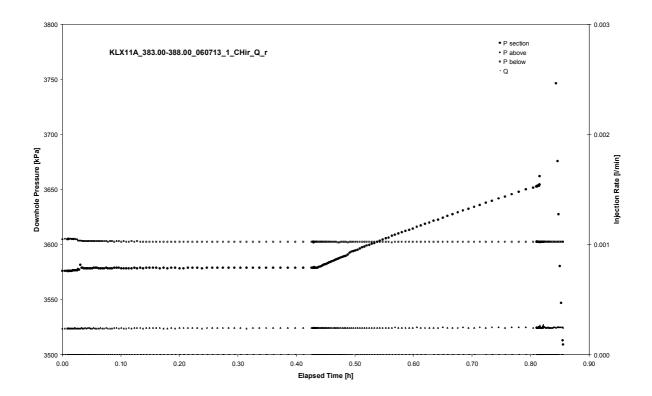
Borehole: KLX11A Page 2-56/3

Test: 358.00 – 363.00 m

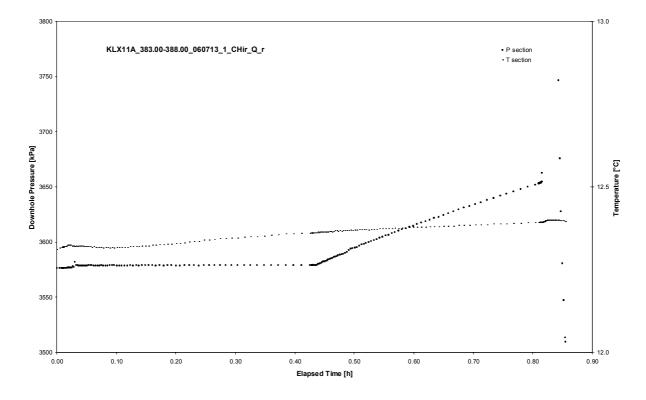
Not analysed

| Test:    | 358.00 –    | 363.00 m |              |  |
|----------|-------------|----------|--------------|--|
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          | Not analysed |  |
|          |             |          | J            |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
| CHIR pha | se; log-log | match    |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          |              |  |
|          |             |          | Not analysed |  |
|          |             |          |              |  |

Page 2-56/4


Borehole: KLX11A Page 2-57/1

Test: 383.00 – 388.00 m


# **APPENDIX 2-57**

Test 383.00 – 388.00 m

Test: 383.00 – 388.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

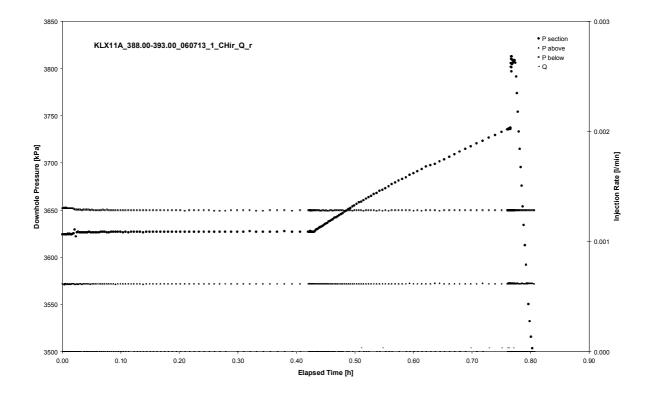
Borehole: KLX11A Page 2-57/3

Test: 383.00 – 388.00 m

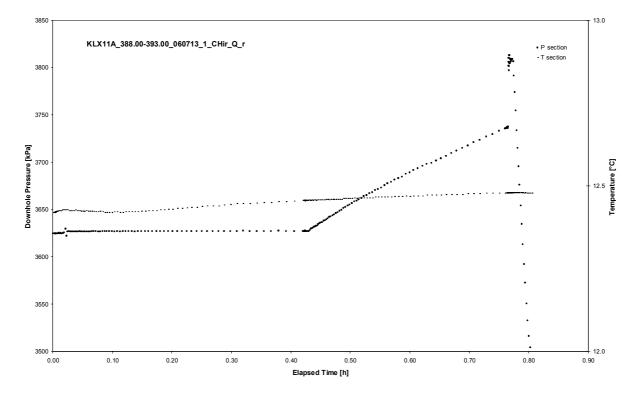
Not analysed

| Borehole:<br>Test: | KLX11A<br>383.00 – 388.00 m |              | Page 2-57/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | NI-4 l       |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |

Page 2-57/4


Borehole: KLX11A Page 2-58/1

Test: 388.00 – 393.00 m


# **APPENDIX 2-58**

Test 388.00 – 393.00 m

Test: 388.00 – 393.00 m



Pressure and flow rate vs. time; cartesian plot



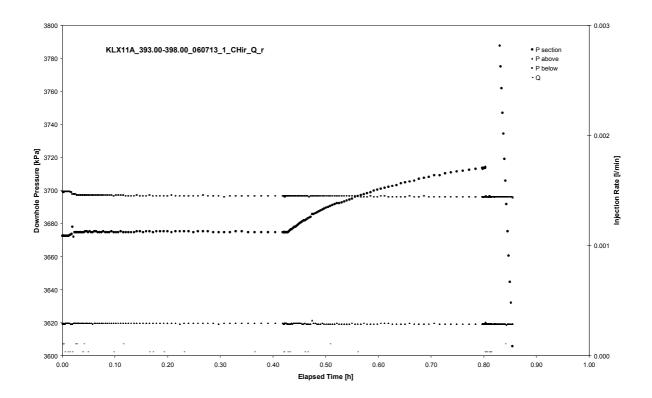
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-58/3

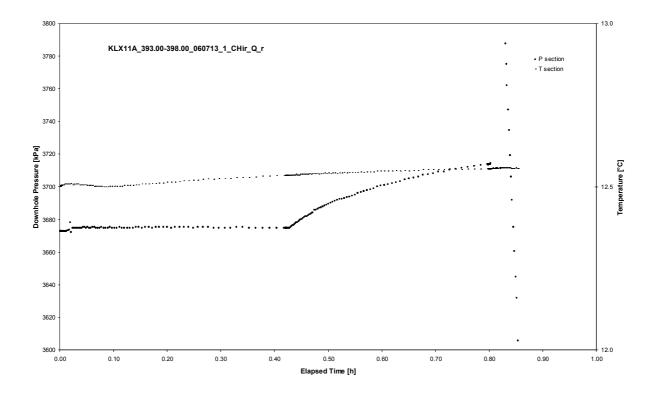
Test: 388.00 – 393.00 m

Not analysed

| Borehole:<br>Test: | KLX11A<br>388.00 – 393.00 m |              | Page 2-58/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |


Borehole: KLX11A Page 2-59/1

Test: 393.00 – 398.00 m


# **APPENDIX 2-59**

Test 393.00 – 398.00 m

Test: 393.00 – 398.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

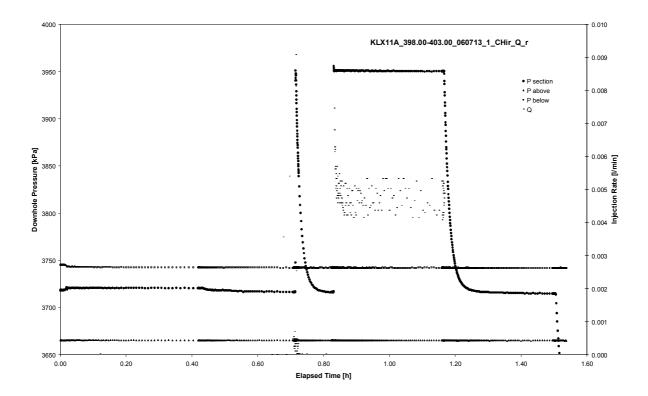
Borehole: KLX11A Page 2-59/3

Test: 393.00 – 398.00 m

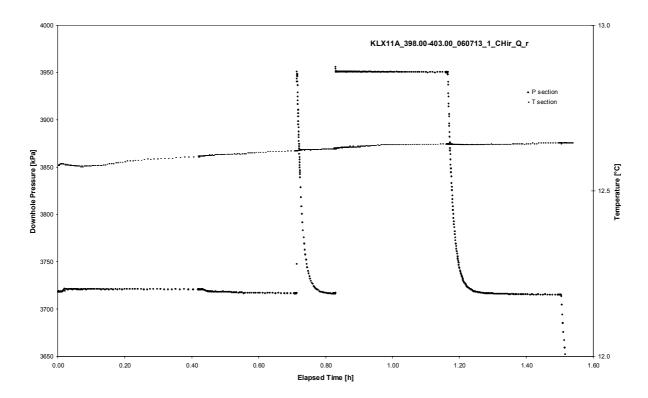
Not analysed

| Test:      | 393.00 – 398.00 m |              |
|------------|-------------------|--------------|
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   | Not analysed |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
| CHIR nha   | se; log-log match |              |
| CITIK plia | se, log-log matem |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   |              |
|            |                   | Not analysed |
|            |                   |              |
|            |                   |              |

Page 2-59/4


Borehole: KLX11A Page 2-60/1

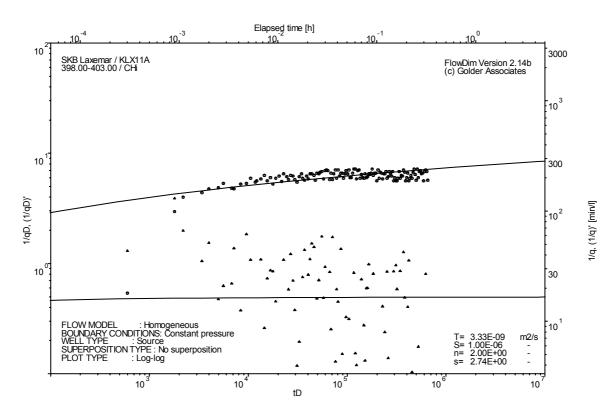
Test: 398.00 – 403.00 m


# **APPENDIX 2-60**

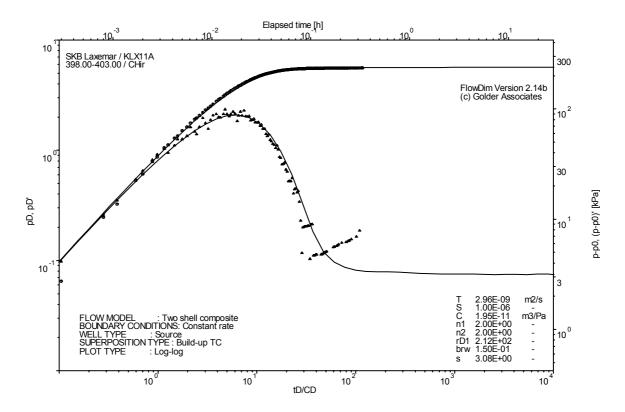
Test 398.00 – 403.00 m

Test: 398.00 – 403.00 m

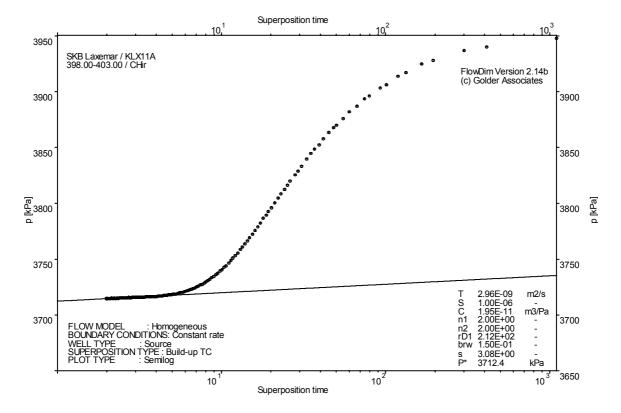



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-60/3


Test: 398.00 – 403.00 m



Test: 398.00 – 403.00 m



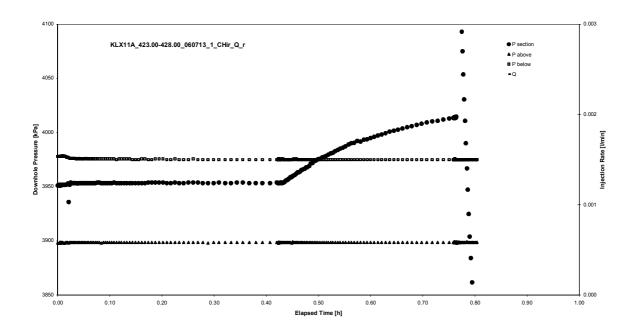
CHIR phase; log-log match



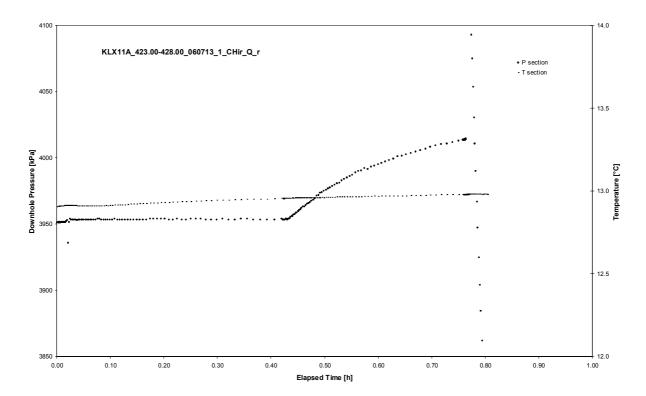
CHIR phase; HORNER match

Borehole: KLX11A Page 2-61/1

Test: 423.00 – 428.00 m


# **APPENDIX 2-61**

Test 423.00 – 428.00 m


Page 2-61/2

Borehole: KLX11A

Test: 423.00 – 428.00 m



### Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

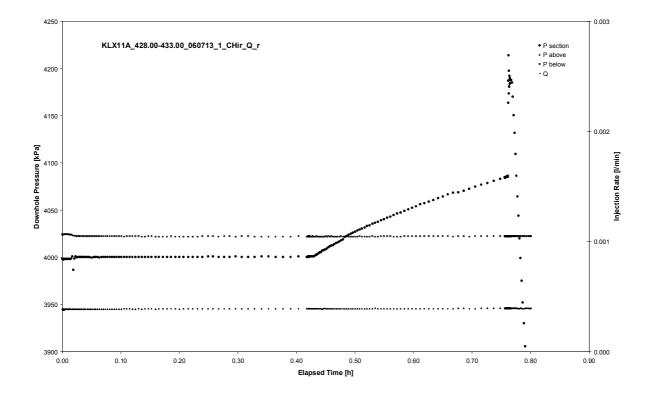
Borehole: KLX11A Page 2-61/3

Test: 423.00 – 428.00 m

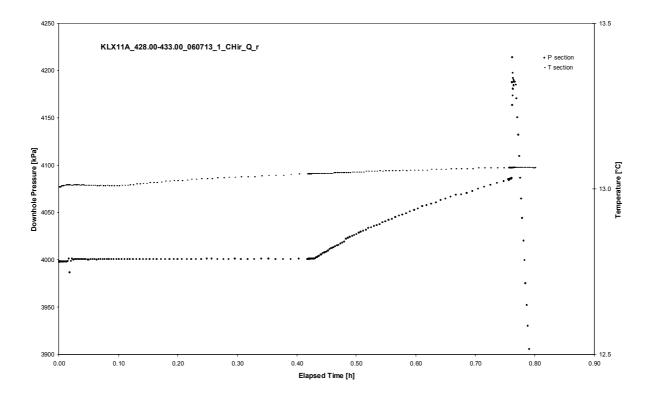
Not analysed

| Test:       | 423.00 – 428.00 m |              |
|-------------|-------------------|--------------|
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   | Not analysed |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
| CHIR pha    | se; log-log match |              |
| CTITIC pila | se, log log maten |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   |              |
|             |                   | Not analysed |
|             |                   |              |
|             |                   |              |

Page 2-61/4


Borehole: KLX11A Page 2-62/1

Test: 428.00 – 433.00 m


# **APPENDIX 2-62**

Test 428.00 – 433.00 m

Test: 428.00 – 433.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

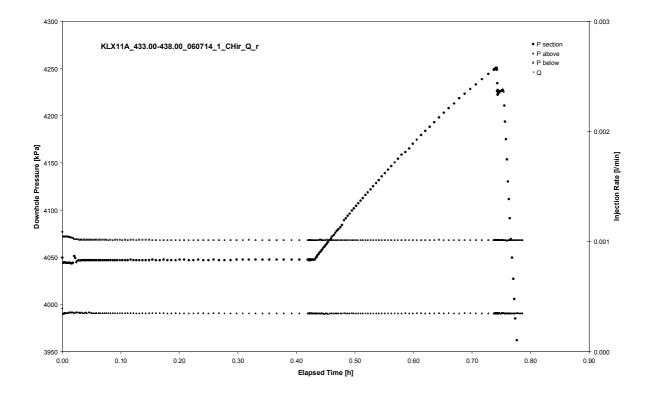
Borehole: KLX11A Page 2-62/3

Test: 428.00 – 433.00 m

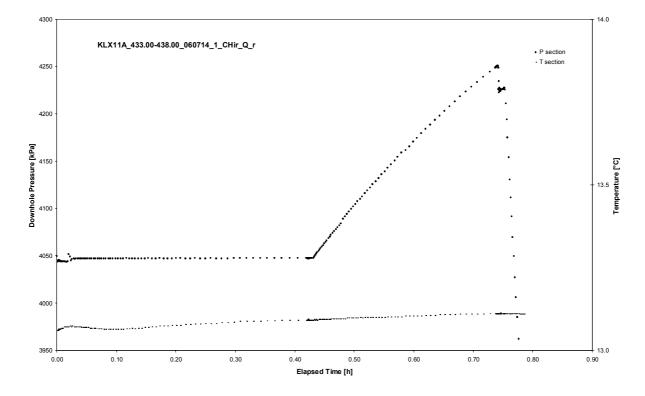
Not analysed

| Test:     | 428.00 – 433.00 m | Page 2-62/4 |
|-----------|-------------------|-------------|
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           | Not analysed      |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
| CHIR phas | se; log-log match |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |
|           |                   |             |

Not analysed


Borehole: KLX11A Page 2-63/1

Test: 433.00 – 438.00 m


# **APPENDIX 2-63**

Test 433.00 – 438.00 m

Test: 433.00 – 438.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

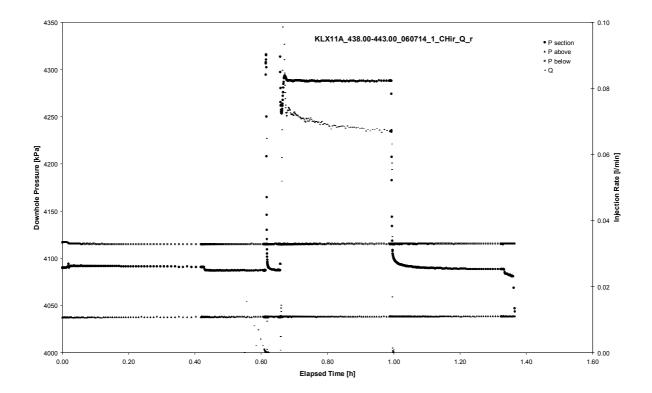
Borehole: KLX11A Page 2-63/3

Test: 433.00 – 438.00 m

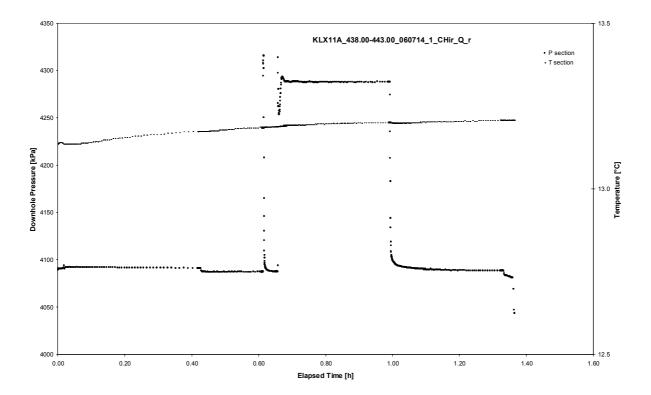
Not analysed

| Test:    | 433.00 – 438.00 m |              | C |
|----------|-------------------|--------------|---|
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   | Not analysed |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
| CHIR pha | se; log-log match |              |   |
| · r      | , -6 -6           |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   | Not analysed |   |
|          |                   |              |   |
|          |                   |              |   |

Page 2-63/4


Borehole: KLX11A Page 2-64/1

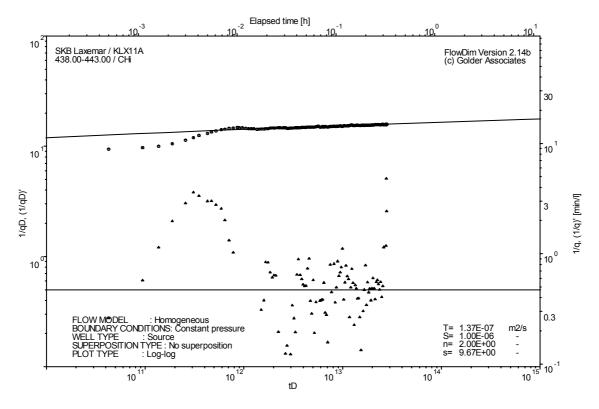
Test: 438.00 – 443.00 m


# **APPENDIX 2-64**

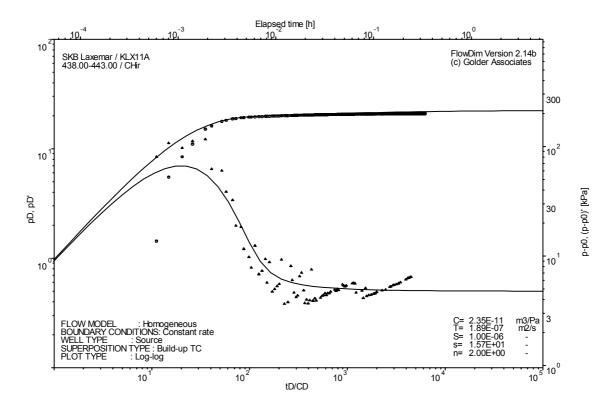
Test 438.00 – 443.00 m

Test: 438.00 – 443.00 m

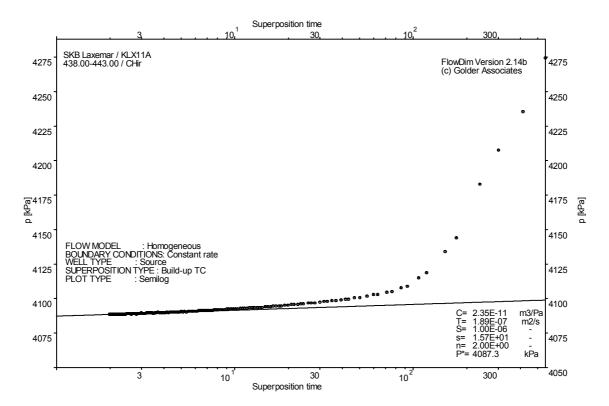



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

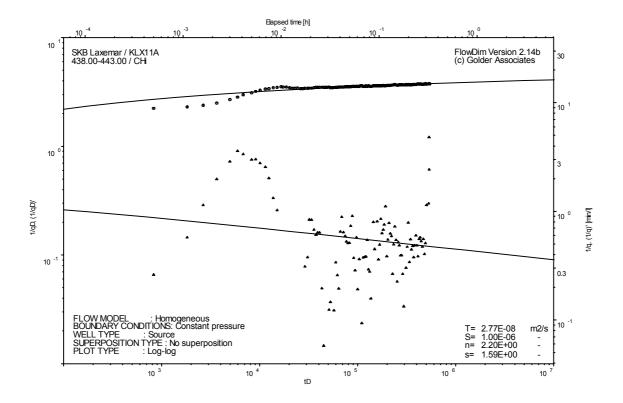
Borehole: KLX11A Page 2-64/3


Test: 438.00 – 443.00 m



Test: 438.00 – 443.00 m




CHIR phase; log-log match



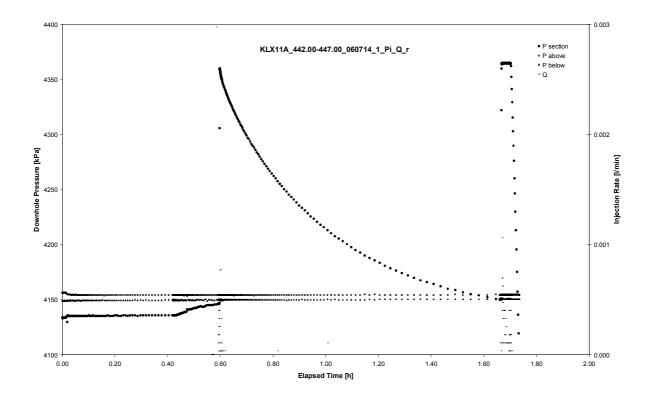
CHIR phase; HORNER match

Borehole: KLX11A Page 2-64/5

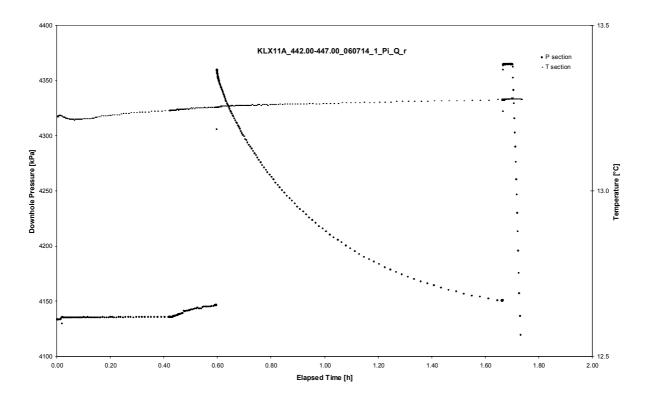
Test: 438.00 – 443.00 m



CHI phase; log-log match (n=2.2)

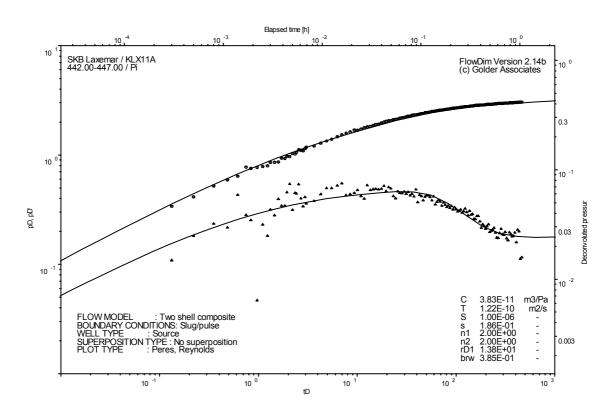

Borehole: KLX11A Page 2-65/1

Test: 442.00 – 447.0 m

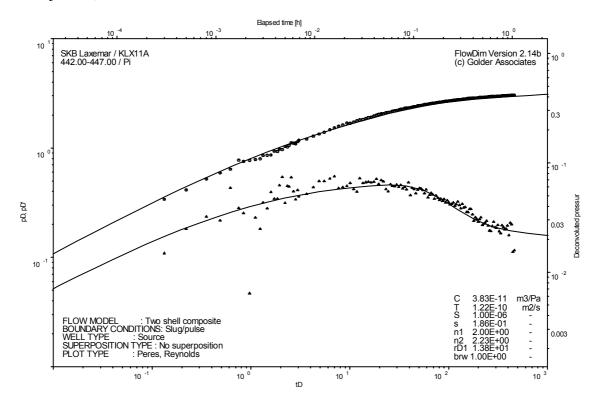

# **APPENDIX 2-65**

Test 442.00 – 447.00 m

Borehole: KLX11A Test: 442.00 – 447.0 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

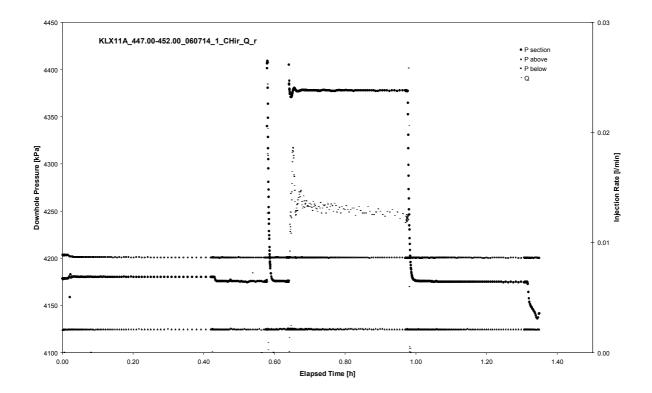
Test: 442.00 – 447.0 m



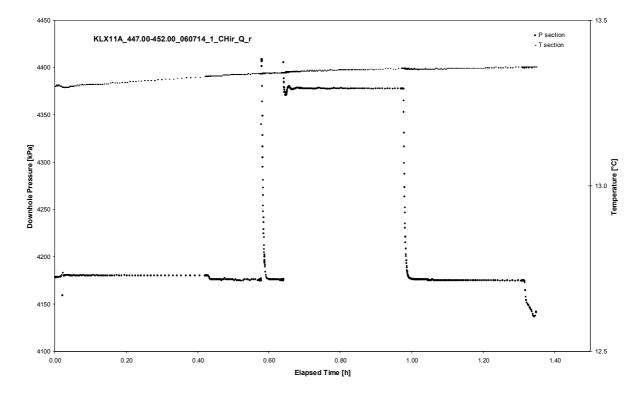
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n1=2, n2=2.23)


Borehole: KLX11A Page 2-66/1

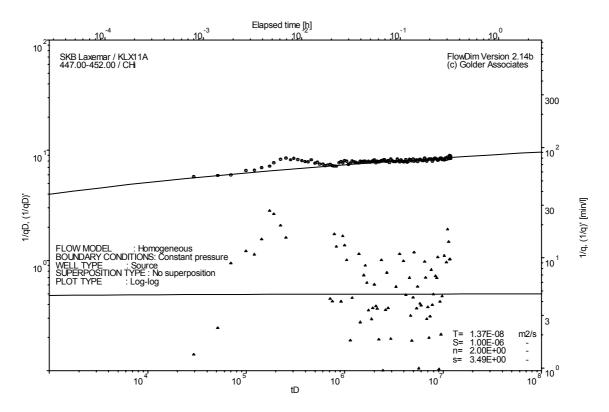
Test: 447.00 – 452.00 m


# **APPENDIX 2-66**

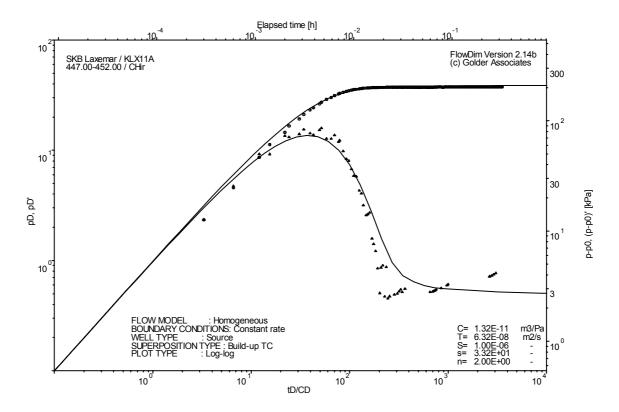
Test 447.00 – 452.00 m

Test: 447.00 – 452.00 m

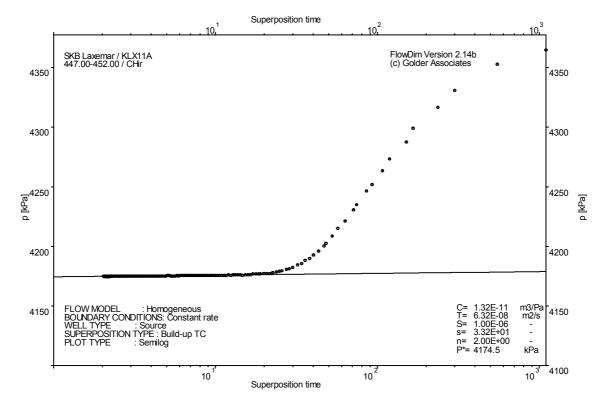



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-66/3


Test: 447.00 – 452.00 m



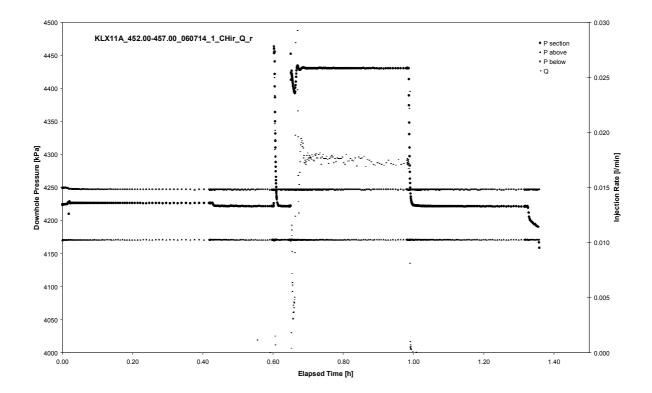
Test: 447.00 – 452.00 m



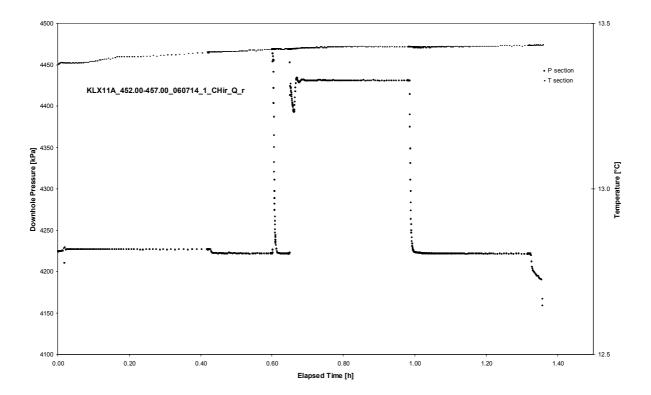
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-67/1

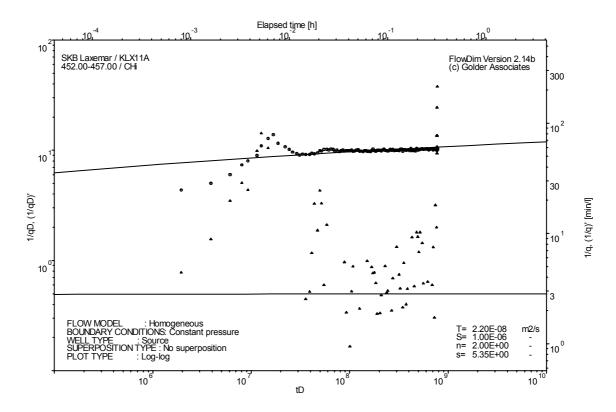
Test: 452.00 – 457.00 m


# **APPENDIX 2-67**

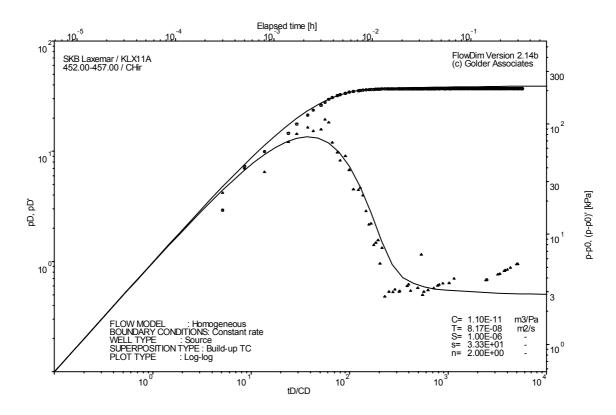
Test 452.00 – 457.00 m

Test: 452.00 – 457.00 m

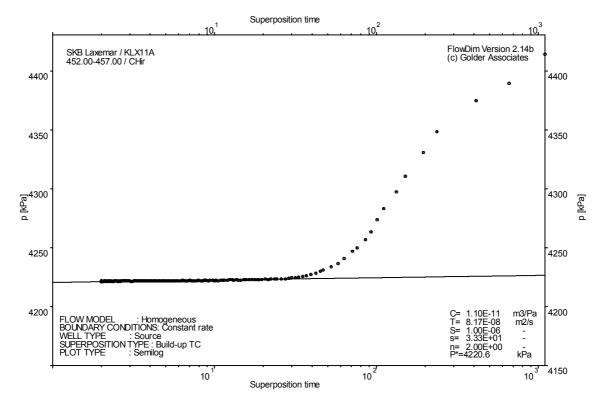



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-67/3


Test: 452.00 – 457.00 m



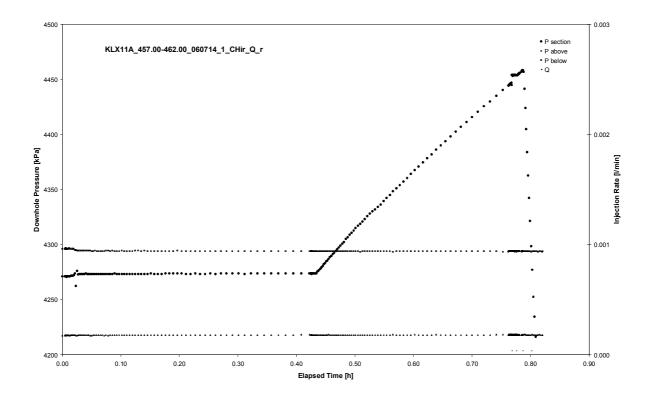
Test: 452.00 – 457.00 m



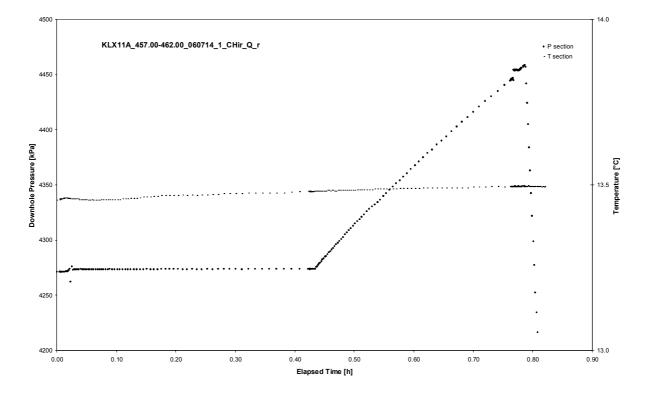
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-68/1

Test: 457.00 – 462.00 m


# **APPENDIX 2-68**

Test 457.00 – 462.00 m

Test: 457.00 – 462.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

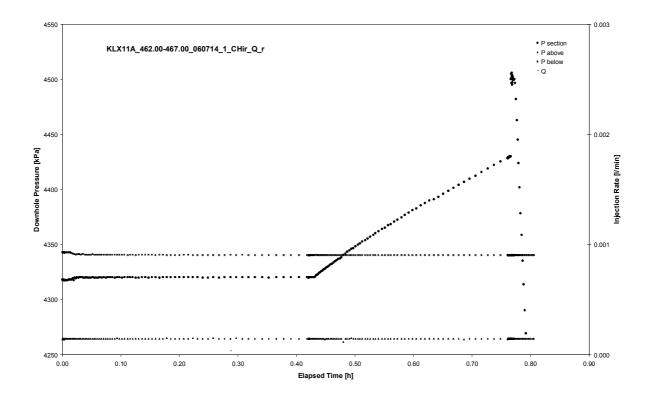
Borehole: KLX11A Page 2-68/3

Test: 457.00 – 462.00 m

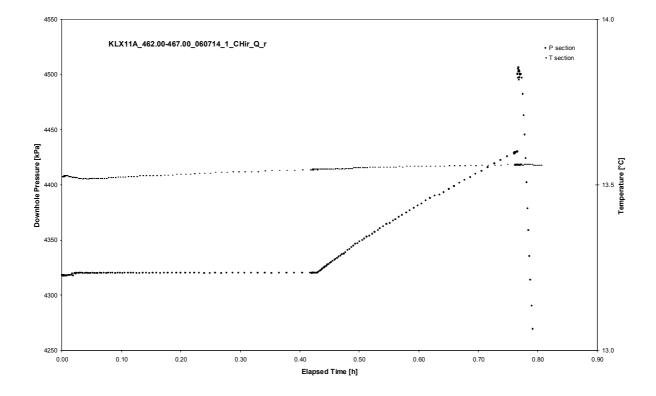
Not analysed

| Test:    | 457.00 – 462.00 m |              | C |
|----------|-------------------|--------------|---|
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   | Not analysed |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
| CHIR pha | se; log-log match |              |   |
| F        | ,                 |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   |              |   |
|          |                   | Not analysed |   |
|          |                   |              |   |

Page 2-68/4


Borehole: KLX11A Page 2-69/1

Test: 462.00 – 467.00 m


# **APPENDIX 2-69**

Test 462.00 – 467.00 m

Test: 462.00 – 467.00 m



Pressure and flow rate vs. time; cartesian plot



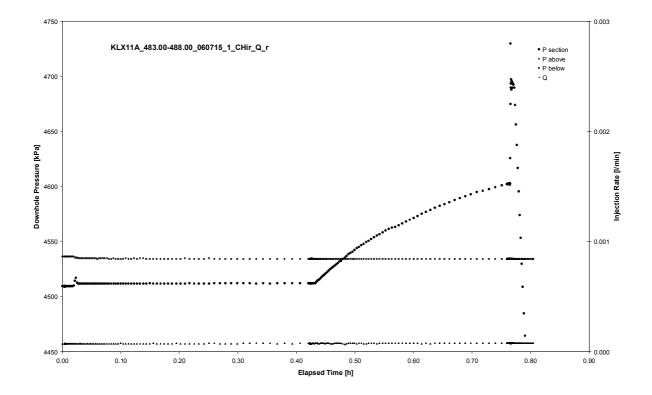
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-69/3

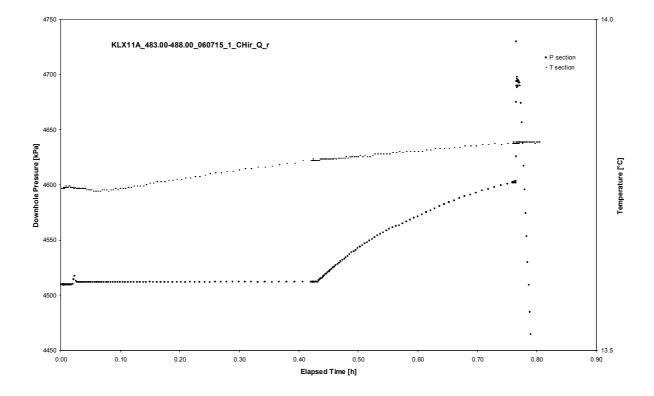
Test: 462.00 – 467.00 m

Not analysed

| Borehole:<br>Test: | KLX11A<br>462.00 – 467.00 m |              | Page 2-69/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |


Borehole: KLX11A Page 2-70/1

Test: 483.00 – 488.00 m


# **APPENDIX 2-70**

Test 483.00 – 488.00 m

Test: 483.00 – 488.00 m



Pressure and flow rate vs. time; cartesian plot



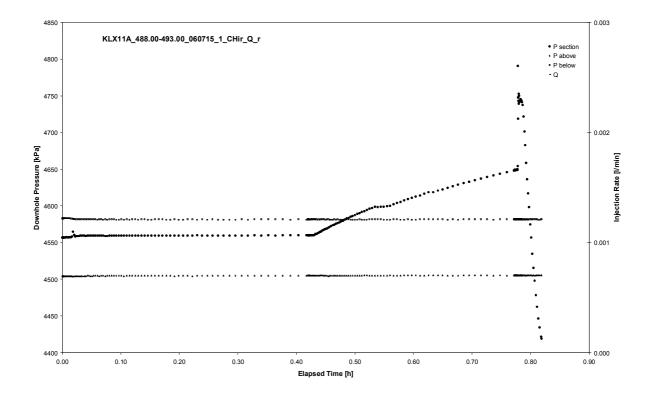
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-70/3

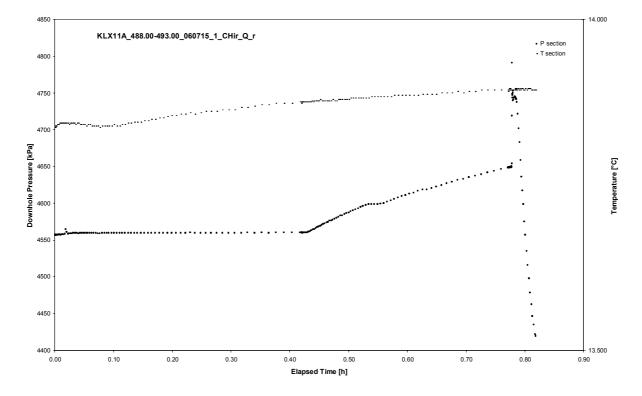
Test: 483.00 – 488.00 m

Not analysed

| Borehole:<br>Test: | KLX11A<br>483.00 – 488.00 m |              | Page 2-70/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR phas          | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |


Borehole: KLX11A Page 2-71/1

Test: 488.00 – 493.00 m


# **APPENDIX 2-71**

Test 488.00 – 493.00 m

Test: 488.00 – 493.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-71/3

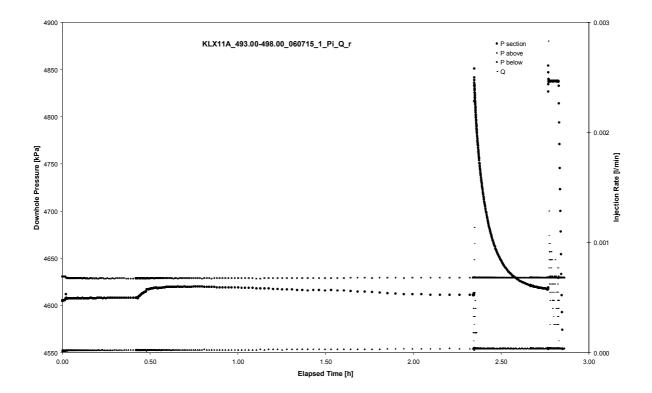
Test: 488.00 – 493.00 m

Not analysed

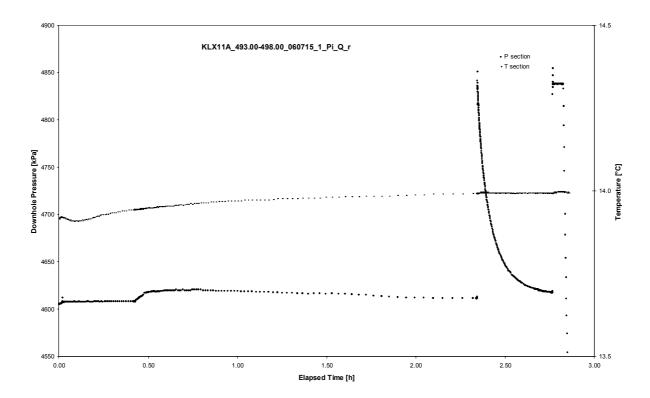
CHI phase; log-log match

| Test:    | 488.00 – 493.00 m |               | Č |
|----------|-------------------|---------------|---|
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   | Not analysed  |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
| CHIR pha | se; log-log match |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   |               |   |
|          |                   | Not analysed  |   |
|          |                   | Thot analysed |   |

Page 2-71/4


Borehole: KLX11A Page 2-72/1

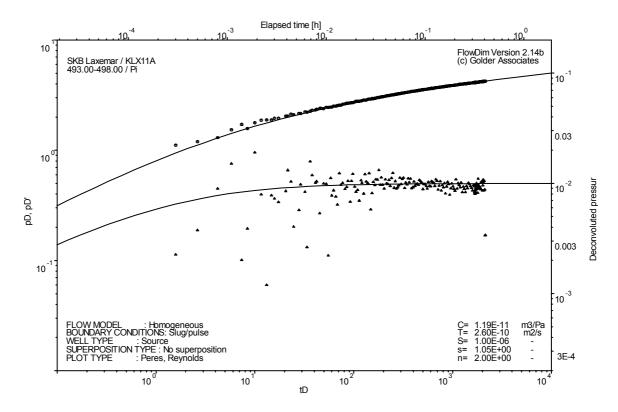
Test: 493.00 – 498.0 m


# **APPENDIX 2-72**

Test 493.00 – 498.00 m

Test: 493.00 – 498.0 m




Pressure and flow rate vs. time; cartesian plot



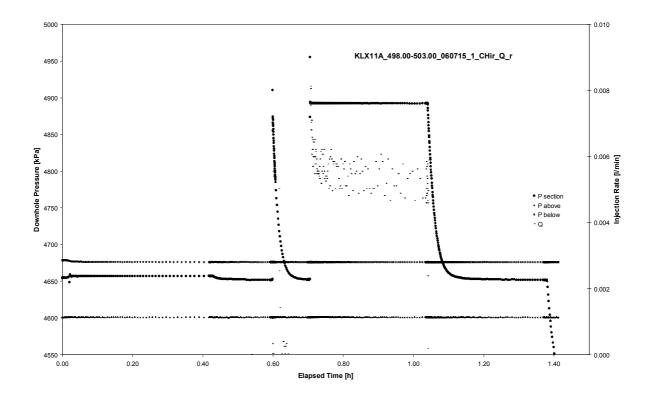
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A Page 2-72/3

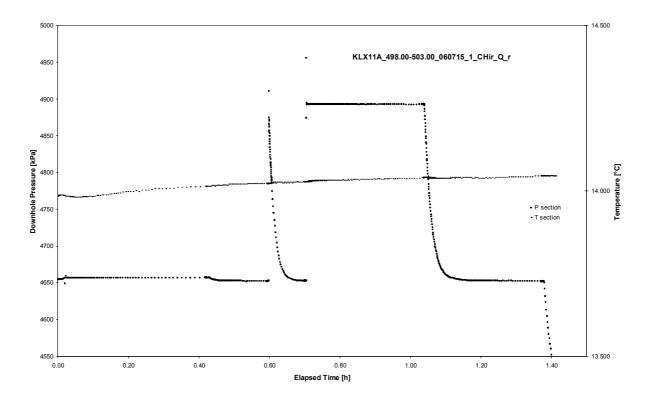
Test: 493.00 – 498.0 m



Pulse injection; deconvolution match


Borehole: KLX11A Page 2-73/1

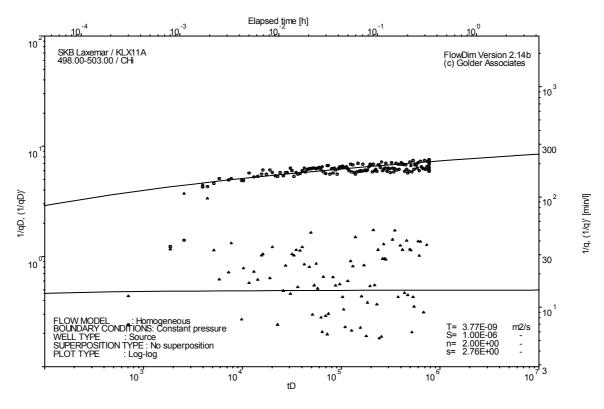
Test: 498.00 – 503.00 m


# **APPENDIX 2-73**

Test 498.00 – 503.00 m

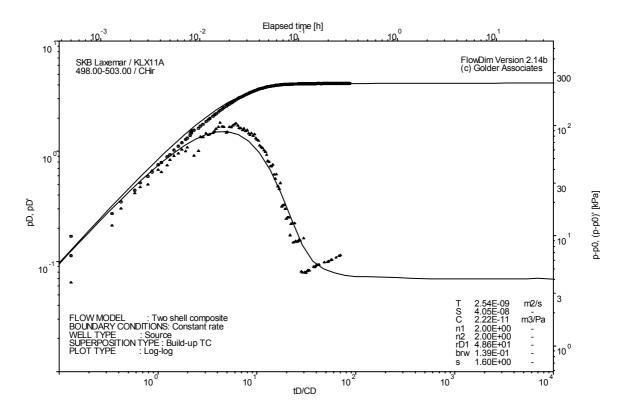
Test: 498.00 – 503.00 m



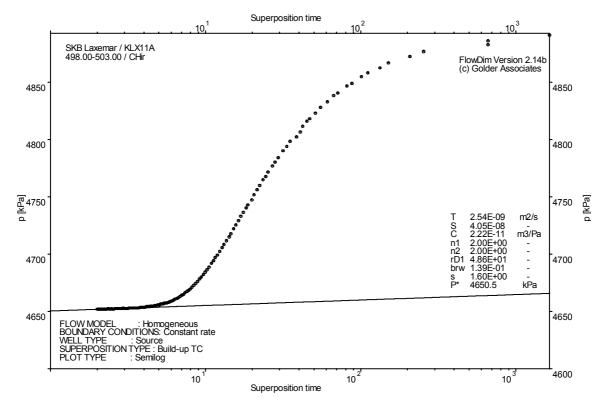

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-73/3

Test: 498.00 – 503.00 m




CHI phase; log-log match

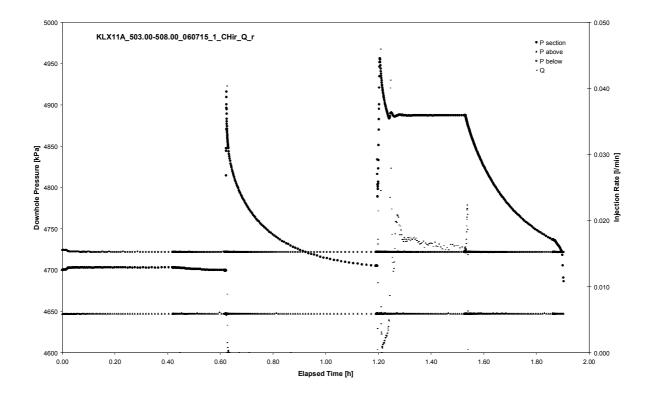
Test: 498.00 - 503.00 m



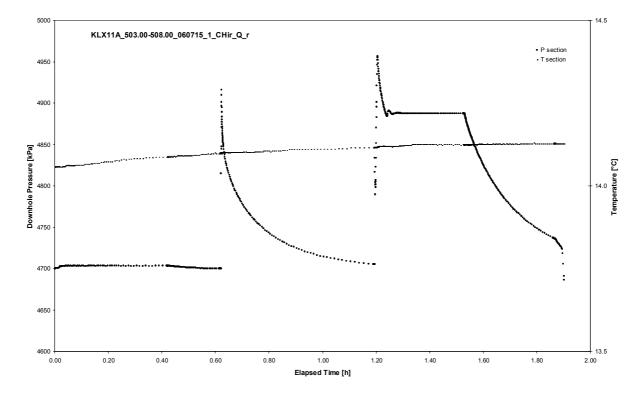
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-74/1

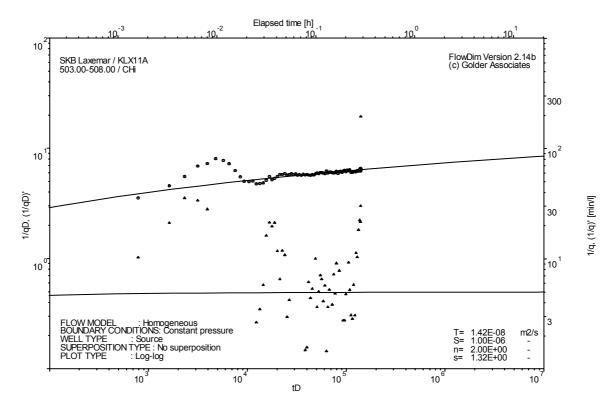
Test: 503.00 – 508.00 m


# **APPENDIX 2-74**

Test 503.00 – 508.00 m

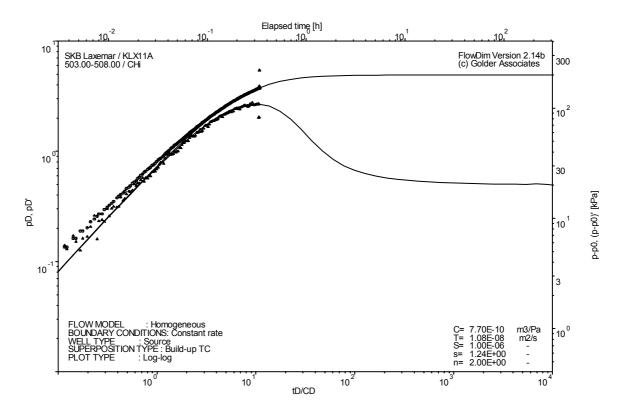
Test: 503.00 – 508.00 m



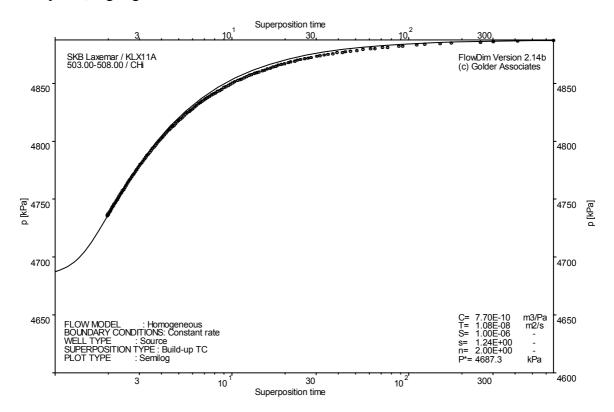

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-74/3

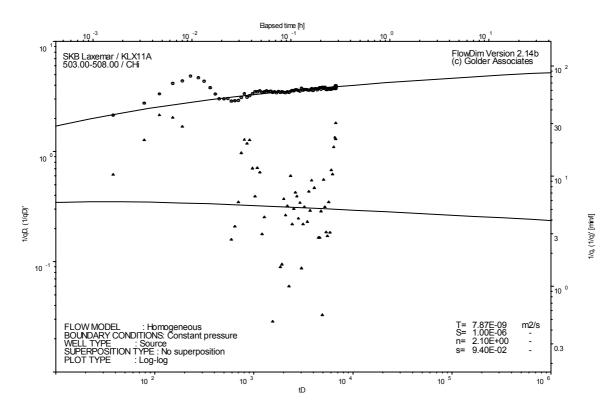
Test: 503.00 – 508.00 m




CHI phase; log-log match

Test: 503.00 – 508.00 m




CHIR phase; log-log match



CHIR phase; HORNER match

Borehole: KLX11A Page 2-74/5

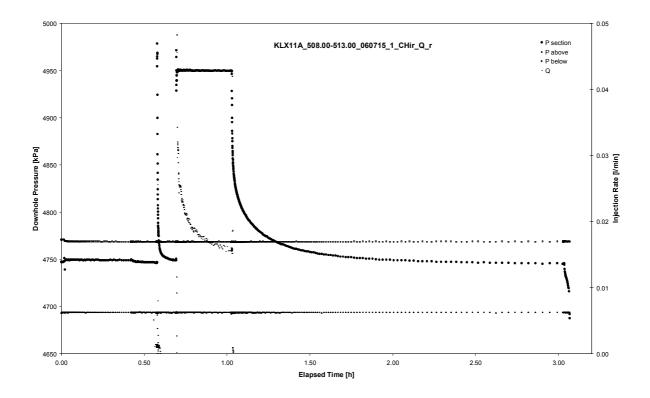
Test: 503.00 – 508.00 m



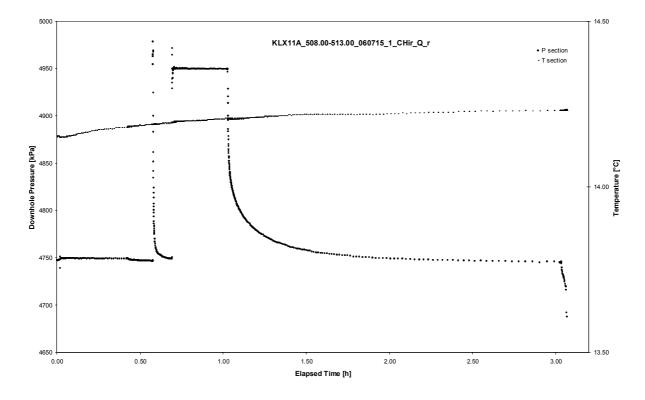
CHI phase; log-log match (n=2.1)

Borehole: KLX11A Page 2-75/1

Test: 508.00 - 513.00 m


# **APPENDIX 2-75**

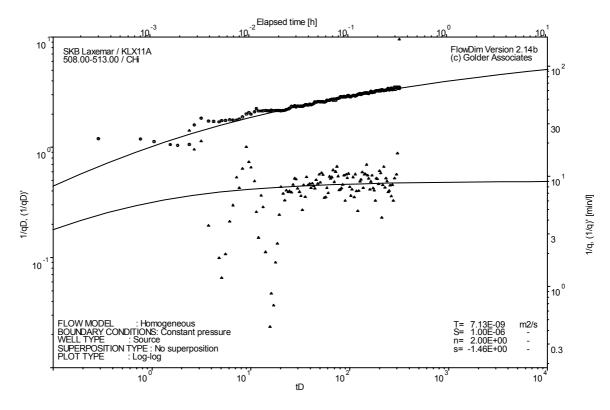
Test 508.00 – 513.00 m


Page 2-75/2

Borehole: KLX11A

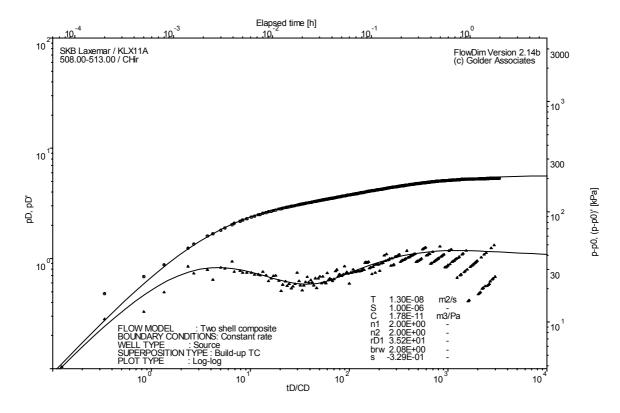
Test: 508.00 – 513.00 m



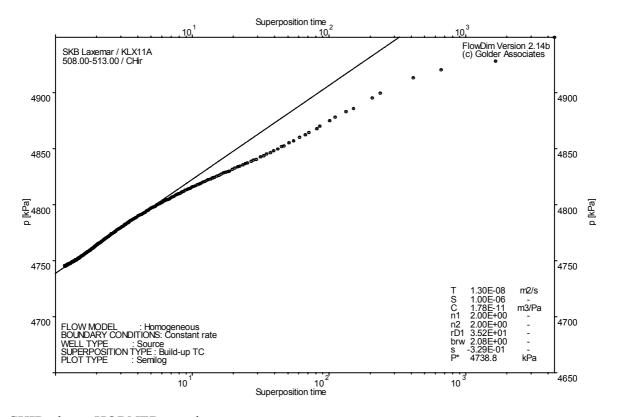

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

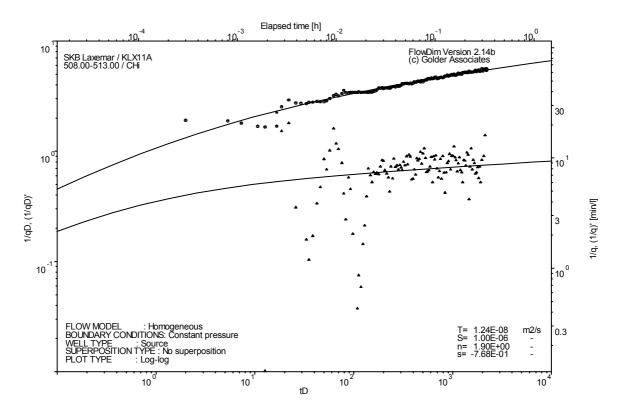

Borehole: KLX11A Page 2-75/3

Test: 508.00 – 513.00 m

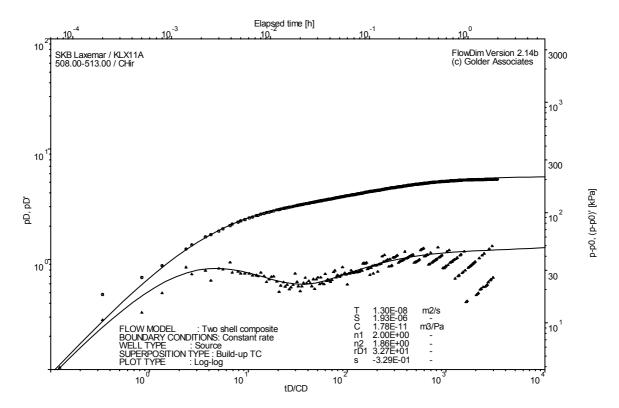



CHI phase; log-log match

Test: 508.00 – 513.00 m




CHIR phase; log-log match




CHIR phase; HORNER match

Test: 508.00 – 513.00 m



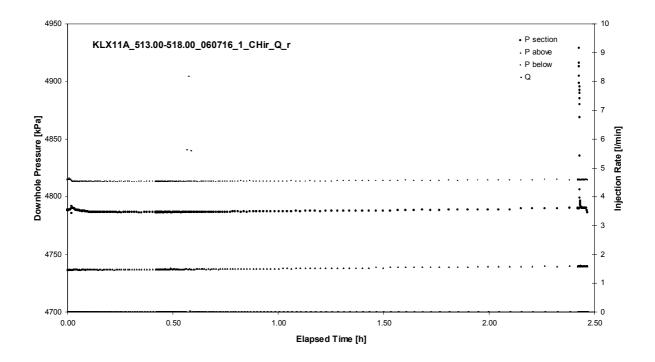
CHI phase; log-log match (n=1.9)



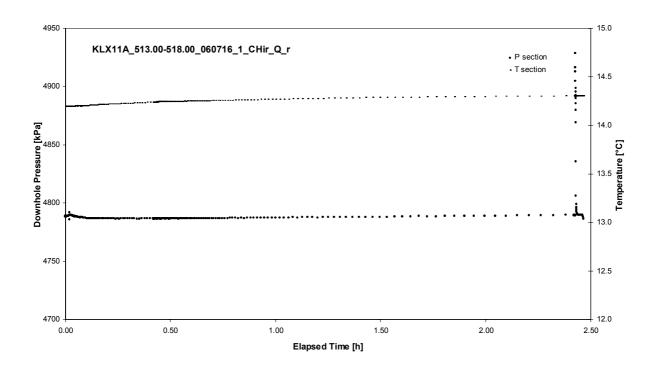
CHIR phase; log-log match (n1=2, n2=1.86)

Borehole: KLX11A Page 2-76/1

Test: 513.00 – 518.00 m


# **APPENDIX 2-76**

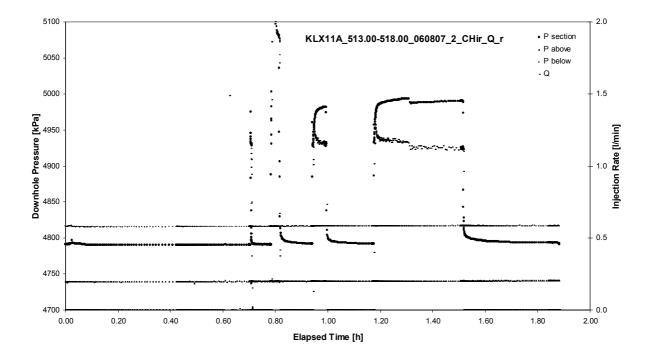
Test 513.00 – 518.00 m


Page 2-76/2

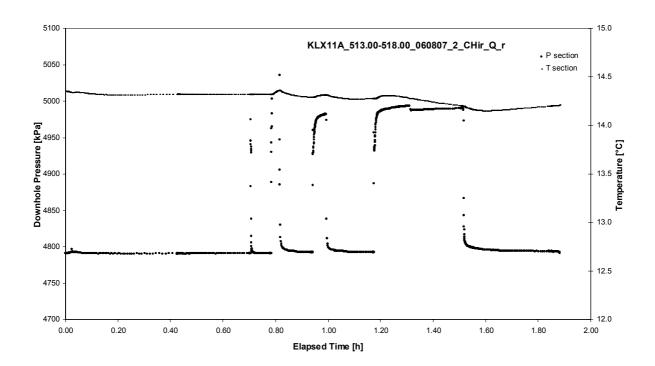
Borehole: KLX11A

Test: 513.00 – 518.00 m




Pressure and flow rate vs. time; cartesian plot (test repeated)



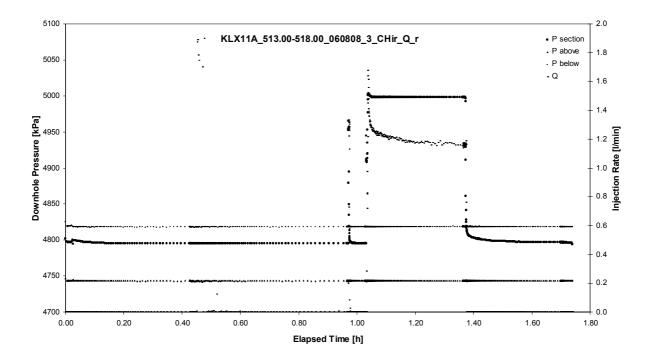

Interval pressure and temperature vs. time; cartesian plot (test repeated)

Borehole: KLX11A Page 2-76/3

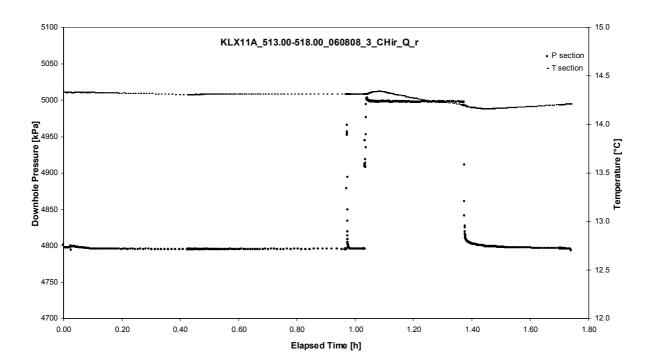
Test: 513.00 – 518.00 m



Pressure and flow rate vs. time; cartesian plot (test repeated)



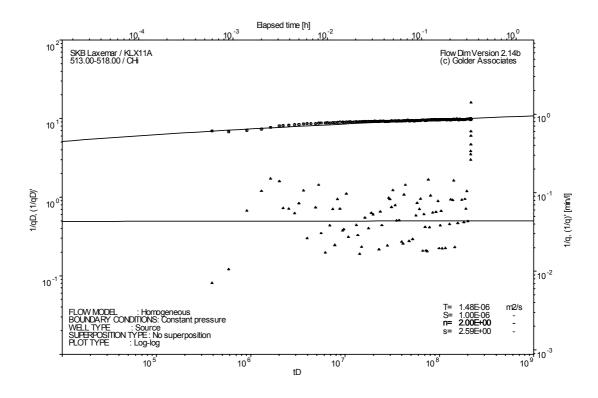

Interval pressure and temperature vs. time; cartesian plot (test repeated)


Page 2-76/4

Borehole: KLX11A

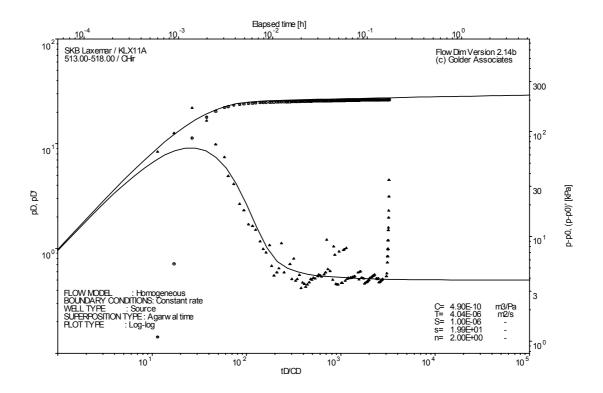
Test: 513.00 – 518.00 m



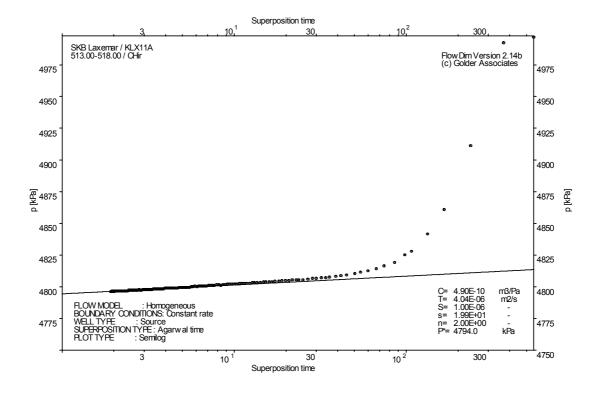

Pressure and flow rate vs. time; cartesian plot (analysed)



Interval pressure and temperature vs. time; cartesian plot (analysed)


Borehole: KLX11A Page 2-76/5

Test: 513.00 – 518.00 m




CHI phase; log-log match

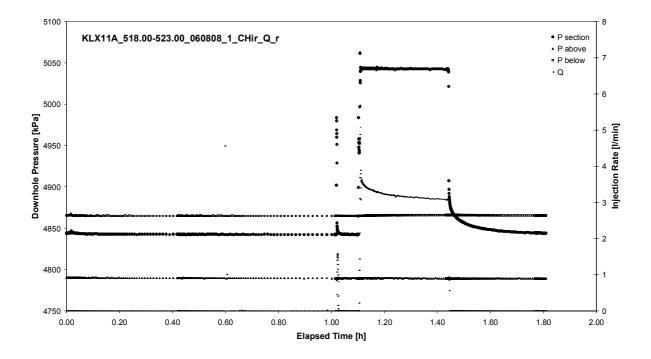
Test: 513.00 – 518.00 m



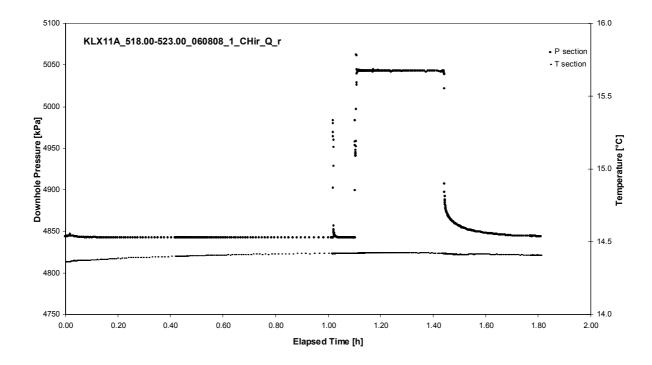
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-77/1

Test: 518.00 – 523.00 m


# **APPENDIX 2-77**

Test 518.00 – 523.00 m

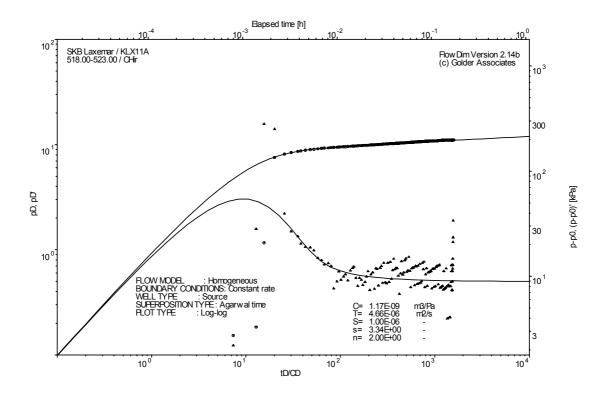
Test: 518.00 – 523.00 m



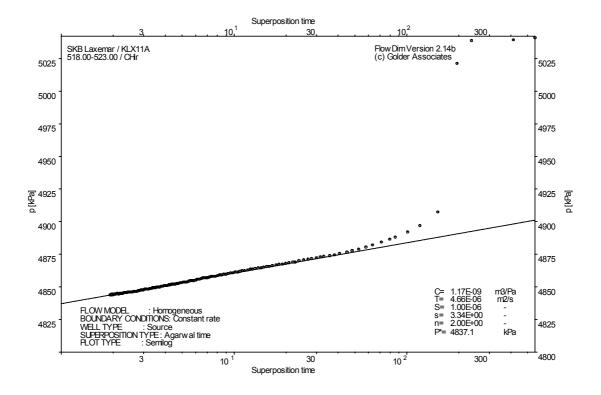
Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-77/3

Test: 518.00 – 523.00 m




CHI phase; log-log match

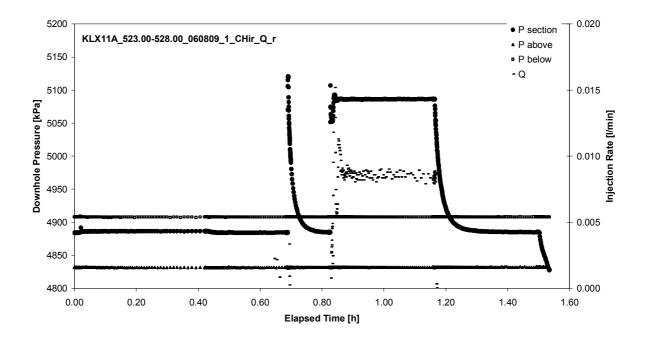
Test: 518.00 – 523.00 m



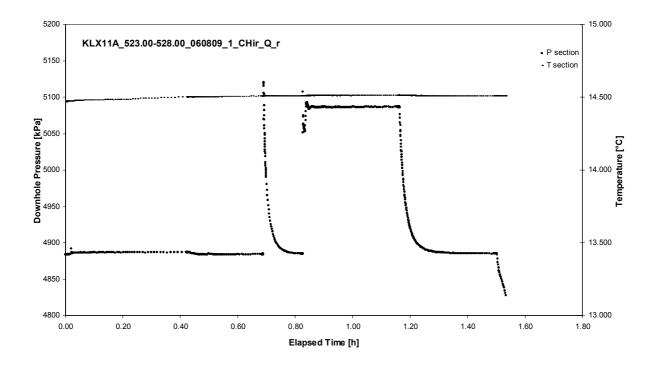
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-78/1

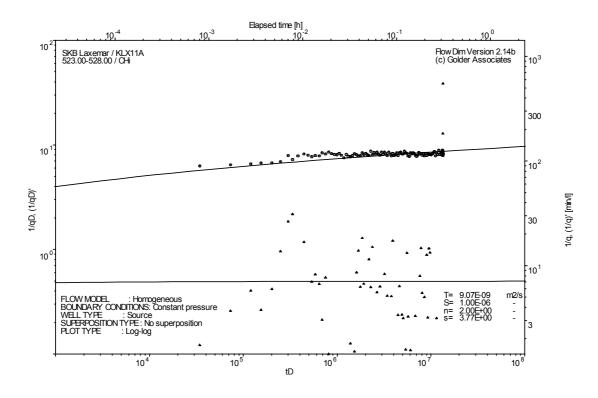
Test: 523.00 – 528.00 m


# **APPENDIX 2-78**

Test 523.00 – 528.00 m

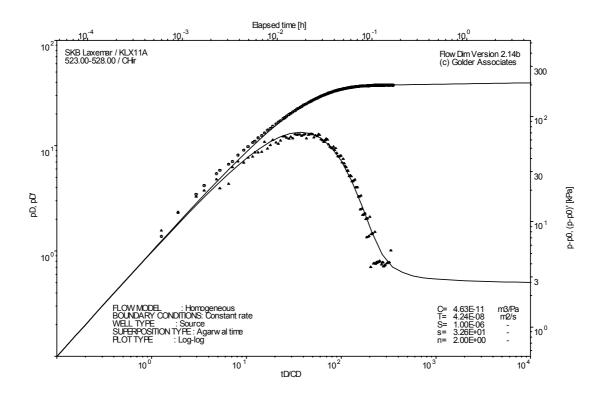
Test: 523.00 – 528.00 m



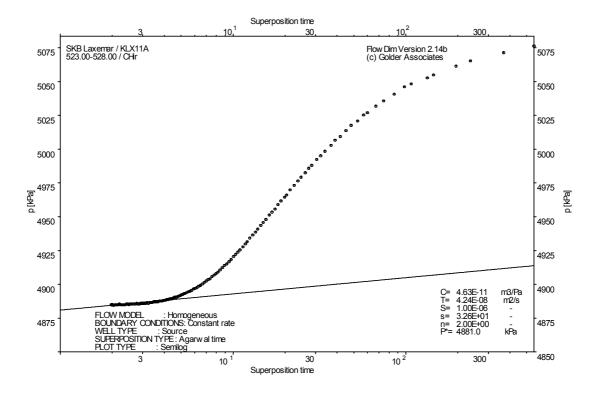

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-78/3

Test: 523.00 – 528.00 m




CHI phase; log-log match

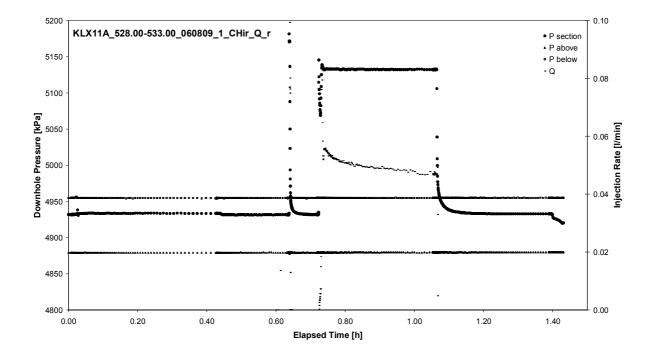
Test: 523.00 – 528.00 m



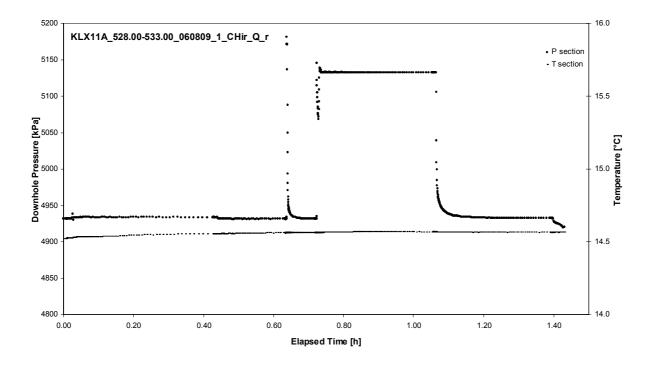
CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX11A Page 2-79/1

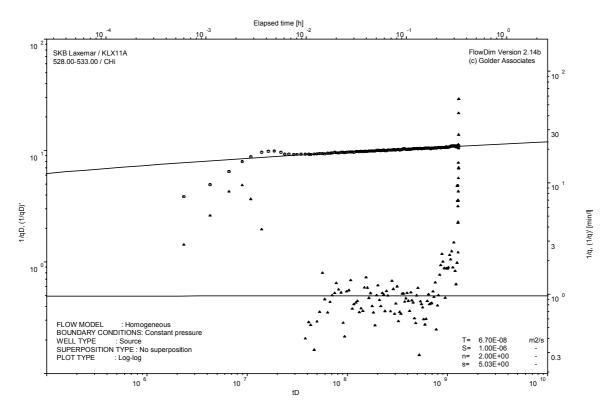
Test: 528.00 – 533.00 m


# **APPENDIX 2-79**

Test 528.00 – 533.00 m

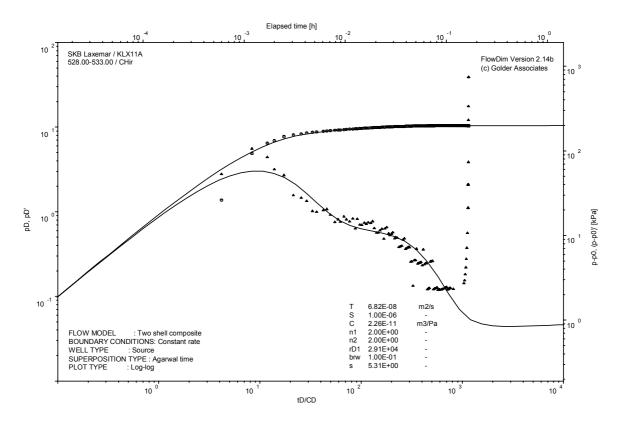
Test: 528.00 – 533.00 m



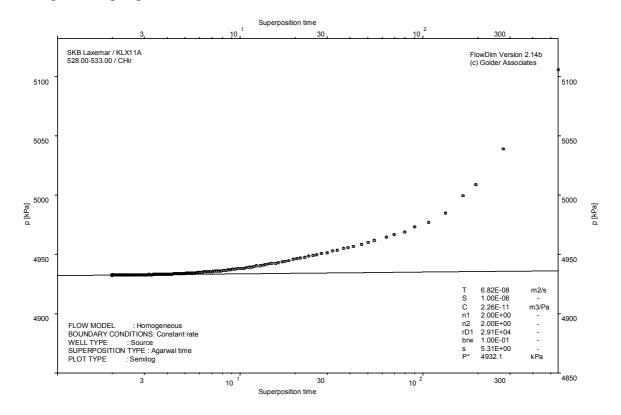

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX11A Page 2-79/3

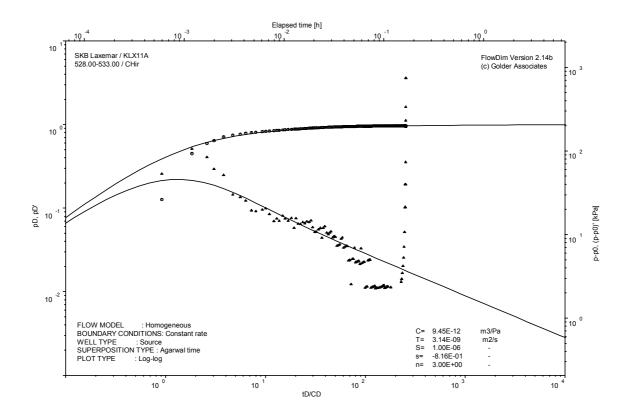
Test: 528.00 – 533.00 m




CHI phase; log-log match

Test: 528.00 – 533.00 m




CHIR phase; log-log match



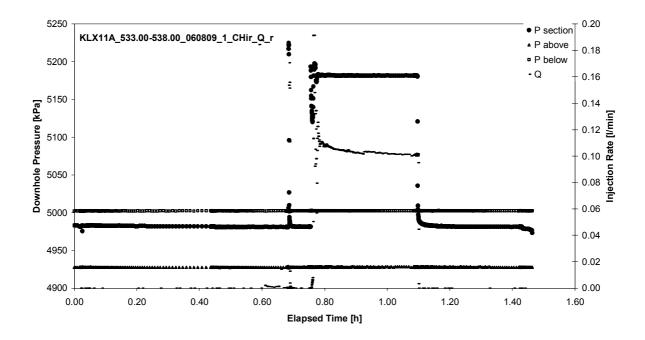
CHIR phase; HORNER match

Borehole: KLX11A Page 2-79/5

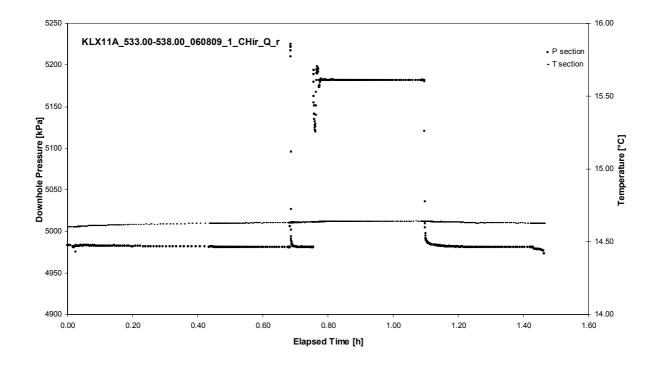
Test: 528.00 – 533.00 m



CHIR phase; log-log match (n=3)

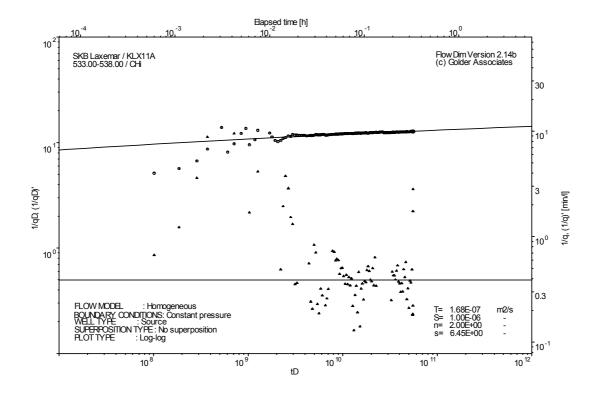

Borehole: KLX11A Page 2-80/1

Test: 533.00 – 538.00 m


# **APPENDIX 2-80**

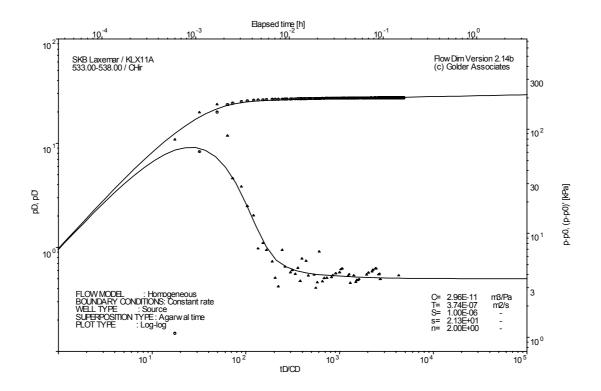
Test 533.00 – 538.00 m

Test: 533.00 – 538.00 m

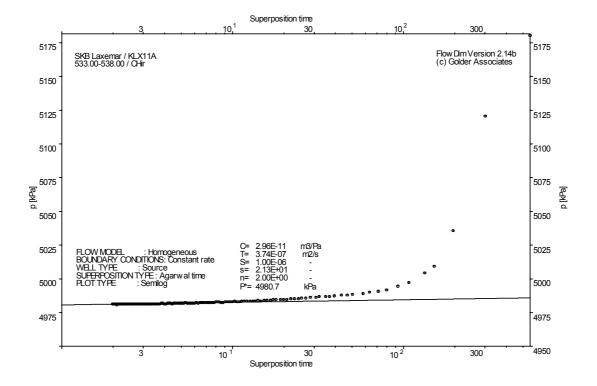



Pressure and flow rate vs. time; cartesian plot




Borehole: KLX11A Page 2-80/3

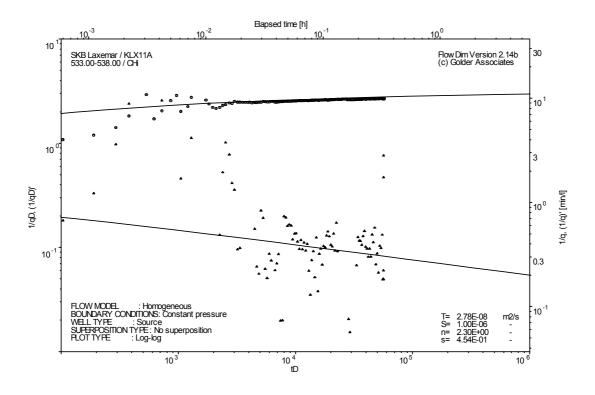
Test: 533.00 – 538.00 m




CHI phase; log-log match

Test: 533.00 – 538.00 m




CHIR phase; log-log match



CHIR phase; HORNER match

Borehole: KLX11A Page 2-80/5

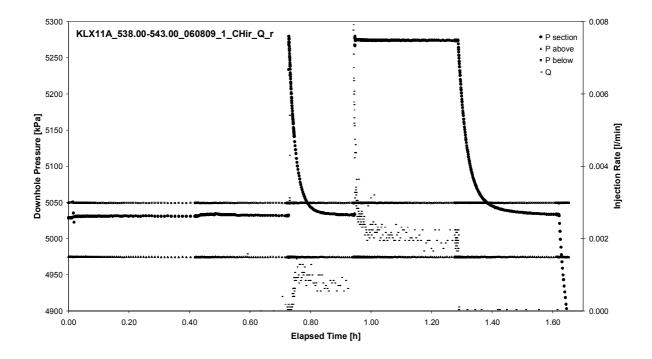
Test: 533.00 – 538.00 m



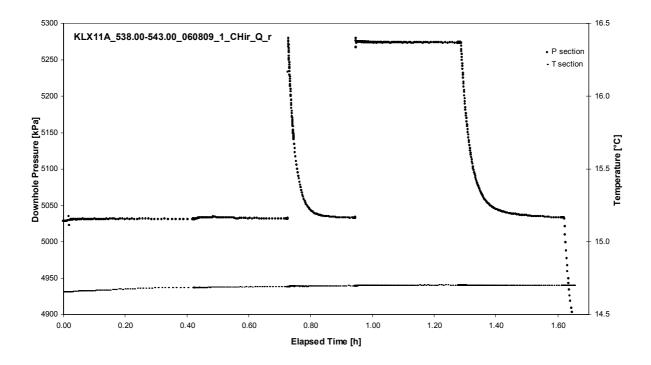
CHI phase; log-log match (n=2.3)

Borehole: KLX11A Page 2-81/1

Test: 538.00 – 543.00 m

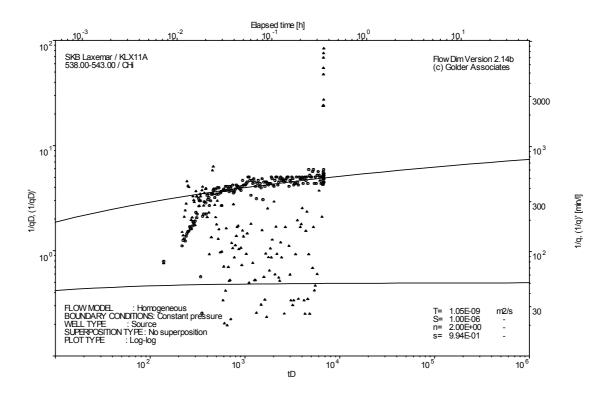

# **APPENDIX 2-81**

Test 538.00 – 543.00 m


Page 2-81/2

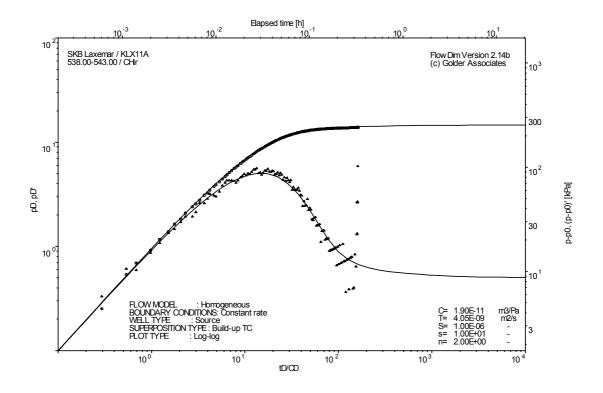
Borehole: KLX11A

Test: 538.00 – 543.00 m

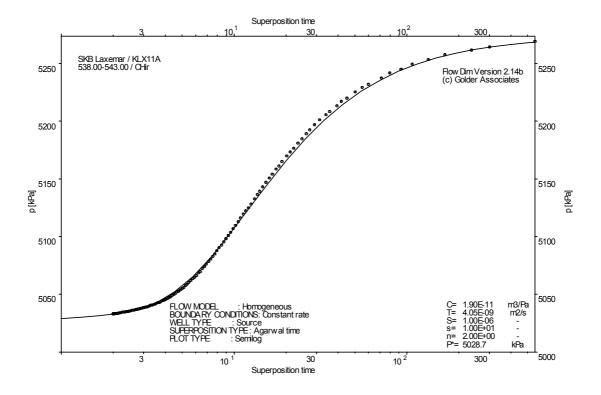



Pressure and flow rate vs. time; cartesian plot




Borehole: KLX11A Page 2-81/3

Test: 538.00 – 543.00 m




CHI phase; log-log match

Test: 538.00 – 543.00 m



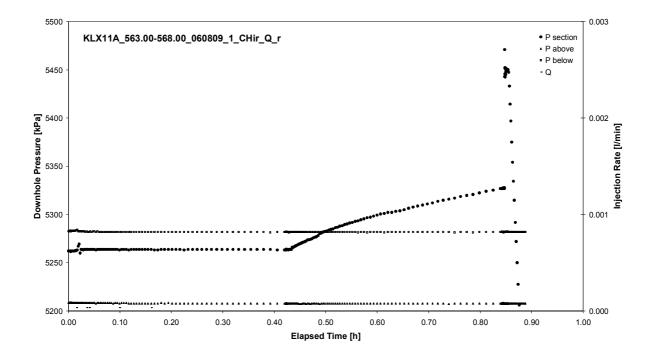
CHIR phase; log-log match



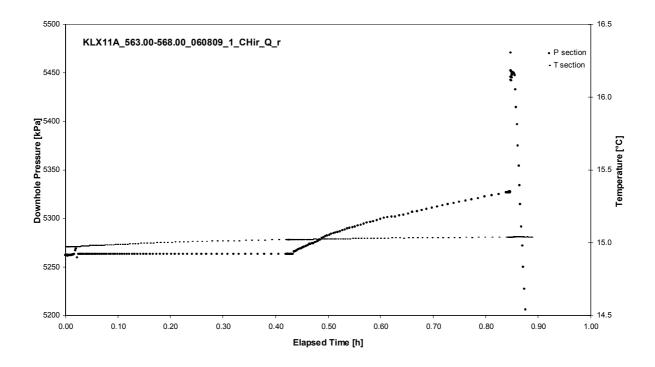
CHIR phase; HORNER match

Borehole: KLX11A Page 2-82/1

Test: 563.00 – 568.00 m


# **APPENDIX 2-82**

Test 563.00 – 568.00 m


Page 2-82/2

Borehole: KLX11A

Test: 563.00 – 568.00 m



Pressure and flow rate vs. time; cartesian plot



Borehole: KLX11A Page 2-82/3

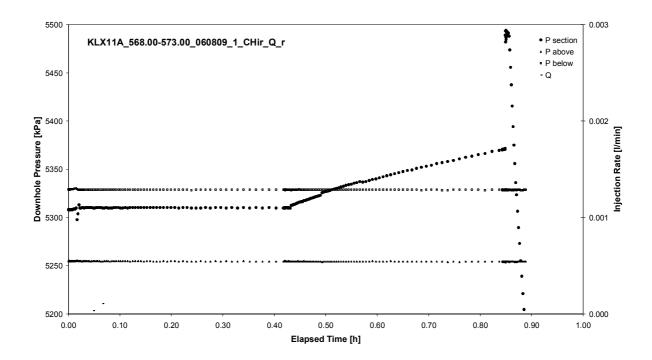
Test: 563.00 – 568.00 m

Not analysed

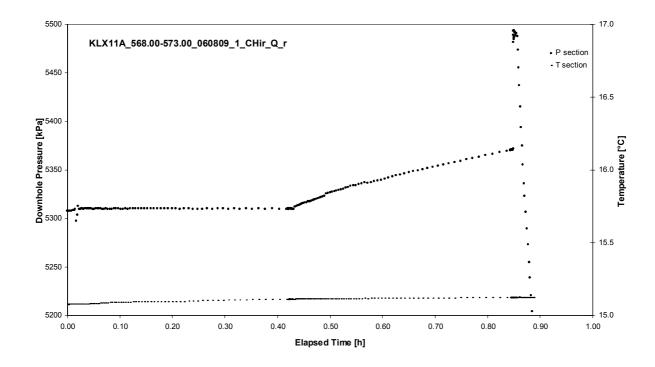
CHI phase; log-log match

| Borehole:<br>Test: | KLX11A<br>563.00 – 568.00 m |              | Page 2-82/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |

Borehole: KLX11A Page 2-83/1


Test: 568.00 - 573.00 m

# **APPENDIX 2-83**


Test 568.00 – 573.00 m

Page 2-83/2

Borehole: KLX11A Test: 568.00 – 573.00 m



Pressure and flow rate vs. time; cartesian plot



Borehole: KLX11A Page 2-83/3

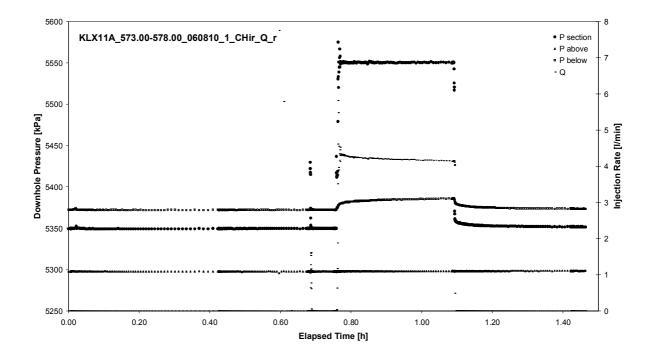
Test: 568.00 – 573.00 m

Not analysed

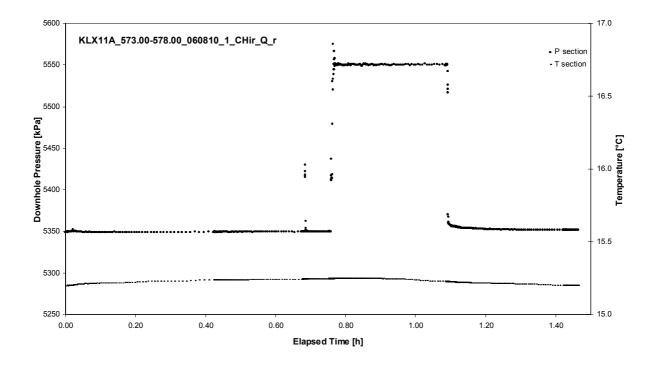
CHI phase; log-log match

| Test:    | 568.00 – 573.00 m |              |
|----------|-------------------|--------------|
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   | Not analysed |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
| CHIR pha | se; log-log match |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   |              |
|          |                   | Not analysed |
|          |                   |              |

Page 2-83/4

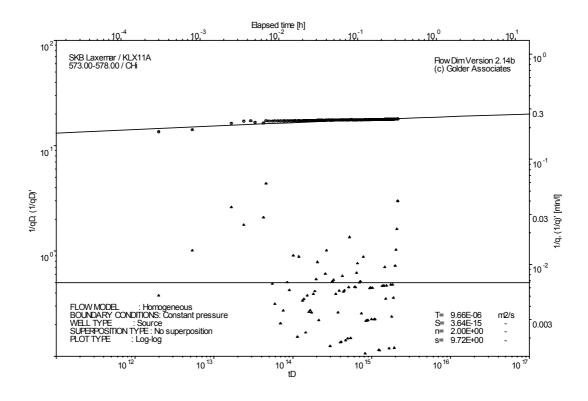

Borehole: KLX11A Page 2-84/1

Test: 573.00 – 578.00 m


# **APPENDIX 2-84**

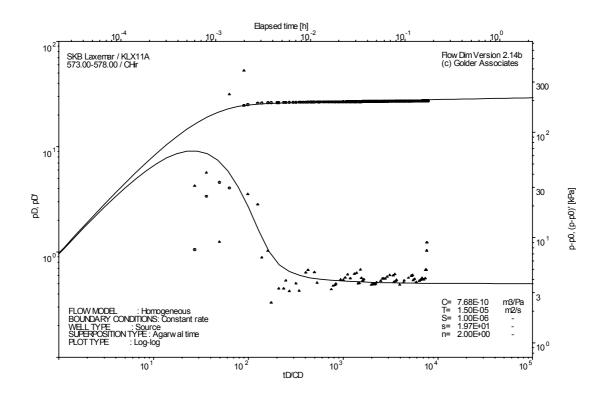
Test 573.00 – 578.00 m

Test: 573.00 – 578.00 m

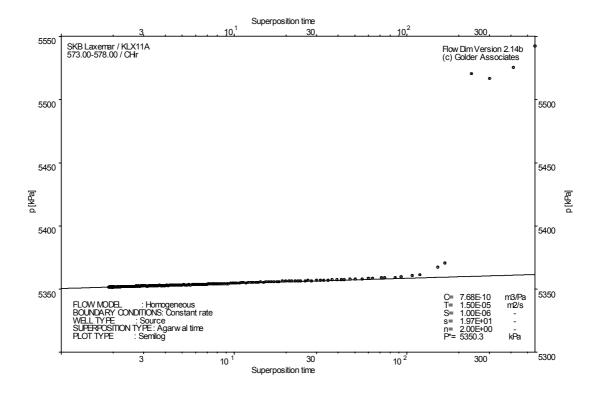



Pressure and flow rate vs. time; cartesian plot




Borehole: KLX11A Page 2-84/3

Test: 573.00 – 578.00 m




CHI phase; log-log match

Test: 573.00 – 578.00 m

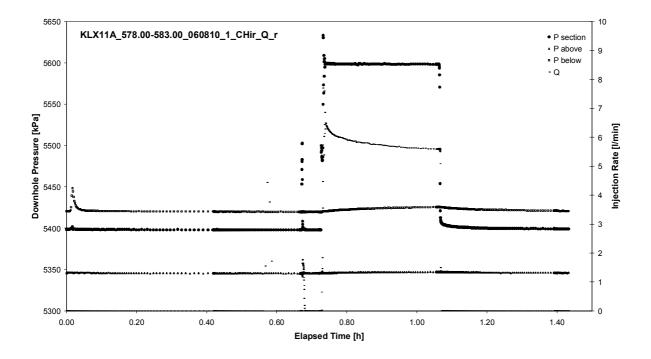


CHIR phase; log-log match

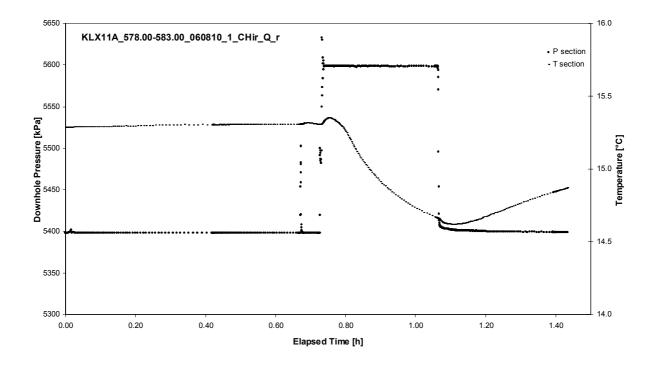


CHIR phase; HORNER match

Borehole: KLX11A Page 2-85/1

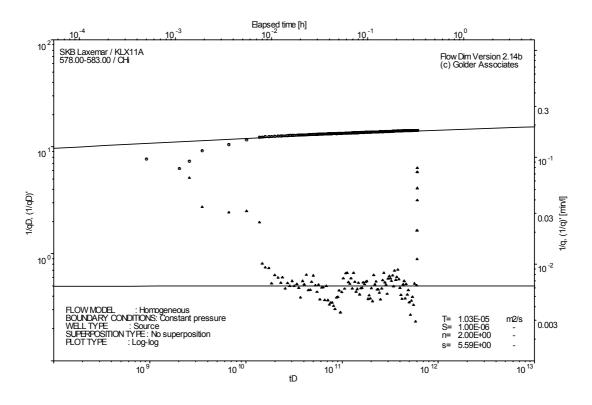

Test: 578.00 – 583.00 m

# **APPENDIX 2-85**


Test 578.00 – 583.00 m

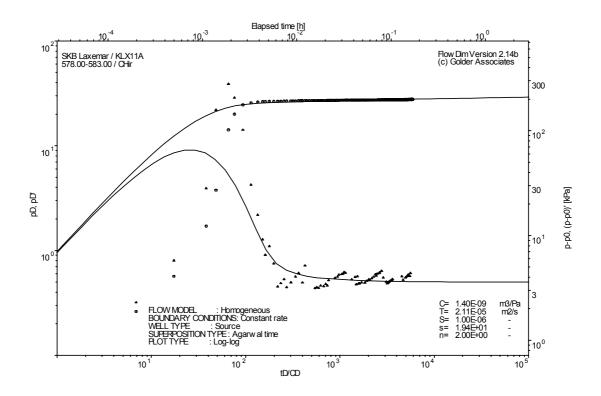
Page 2-85/2

Borehole: KLX11A Test: 578.00 – 583.00 m

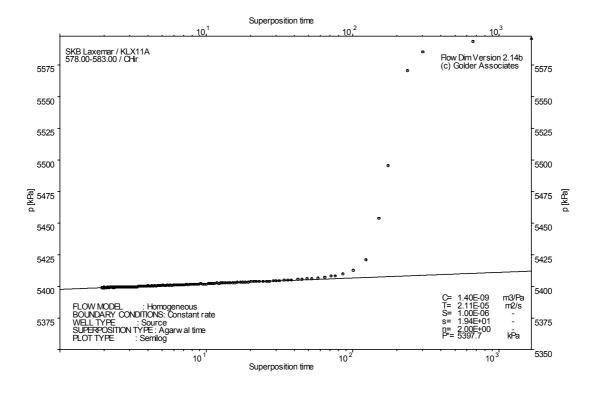



Pressure and flow rate vs. time; cartesian plot




Borehole: KLX11A Page 2-85/3

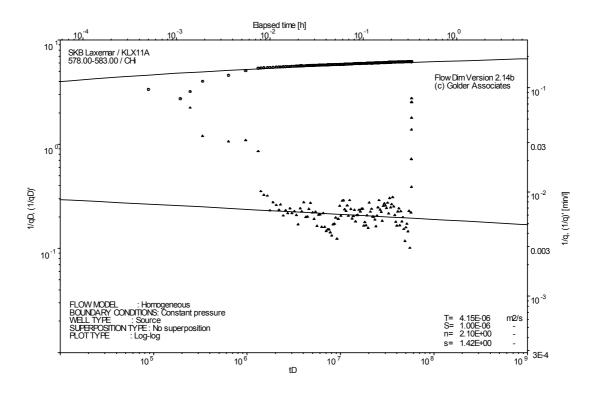
Test: 578.00 – 583.00 m




CHI phase; log-log match

Test: 578.00 – 583.00 m




CHIR phase; log-log match



CHIR phase; HORNER match

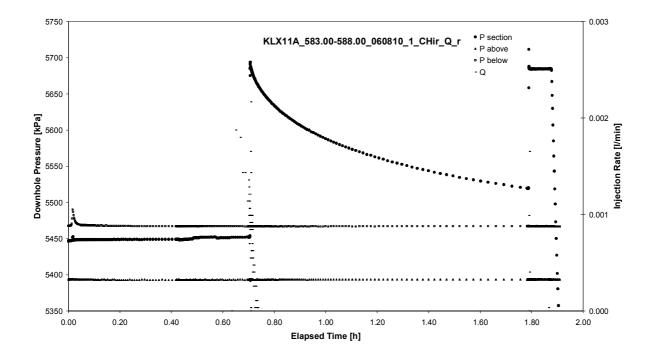
Borehole: KLX11A Page 2-85/5

Test: 578.00 – 583.00 m

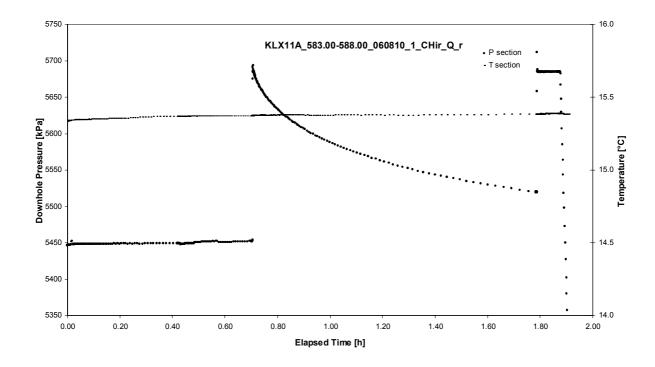


CHI phase; log-log match (n=2.1)

Borehole: KLX11A Page 2-86/1

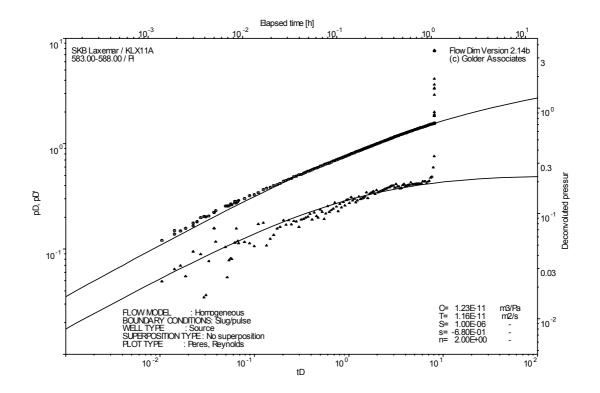

Test: 583.00 – 588.0 m

# **APPENDIX 2-86**

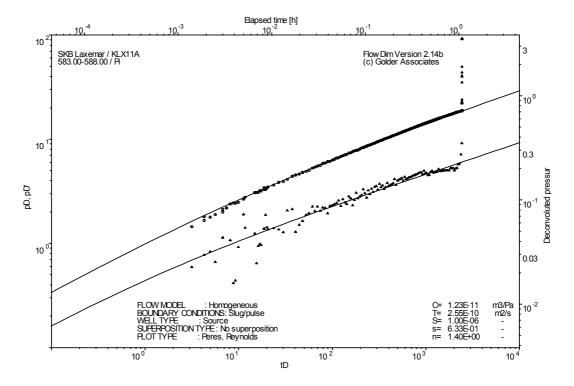

Test 583.00 – 588.00 m

Page 2-86/2

Borehole: KLX11A Test: 583.00 – 588.0 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

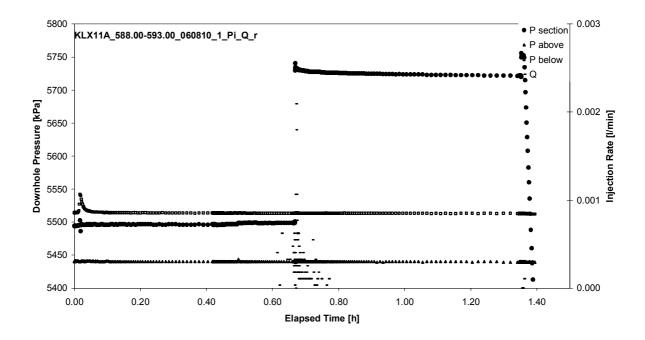
Test: 583.00 – 588.0 m



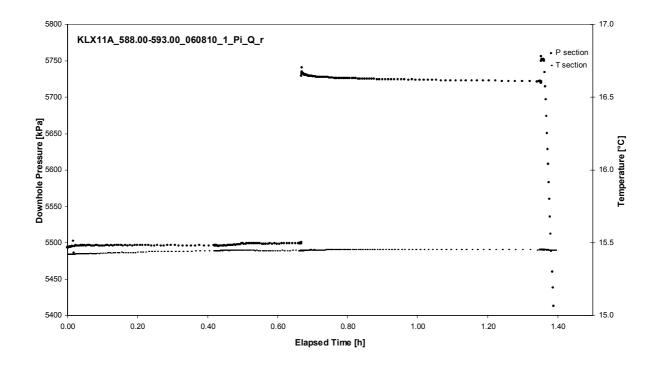
Pulse injection; deconvolution match



Pulse injection; deconvolution match (n=1.4)


Borehole: KLX11A Page 2-87/1

Test: 588.00 – 593.00 m


# **APPENDIX 2-87**

Test 588.00 – 593.00 m

Test: 588.00 – 593.00 m



Pressure and flow rate vs. time; cartesian plot



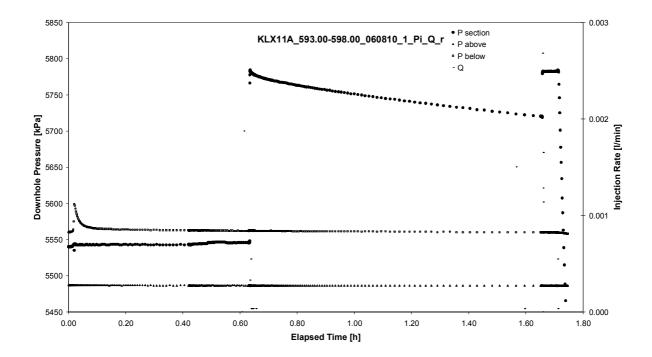
Borehole: KLX11A
Test: 588.00 – 593.00 m

Page 2-87/3

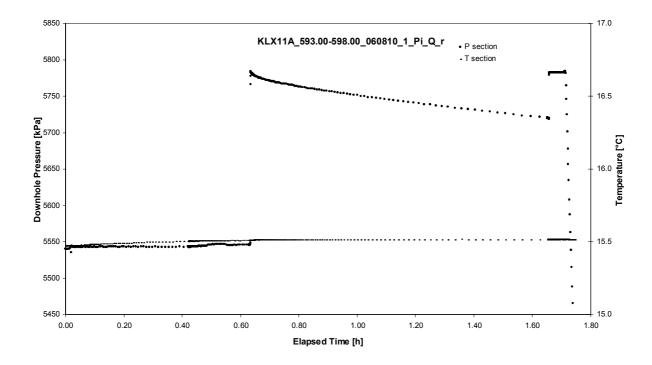
Not analysed

Pulse injection; deconvolution match

Borehole: KLX11A Page 2-88/1

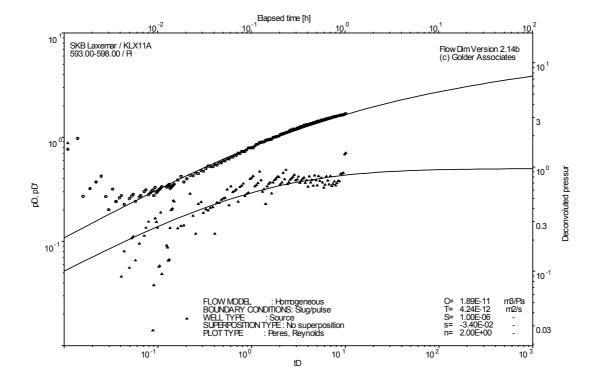

Test: 593.00 – 598.0 m

# **APPENDIX 2-88**


Test 593.00 – 598.00 m

Borehole: KLX11A

Test: 593.00 – 598.0 m




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

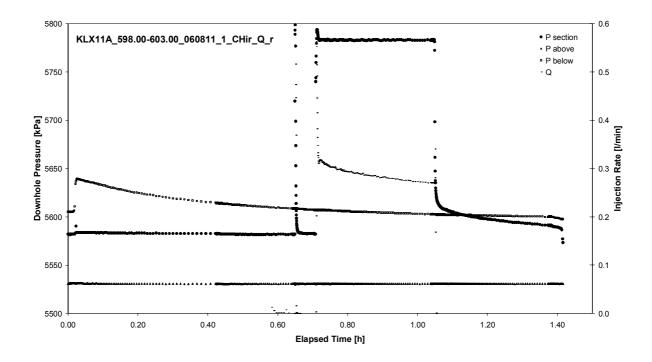
Test: 593.00 – 598.0 m



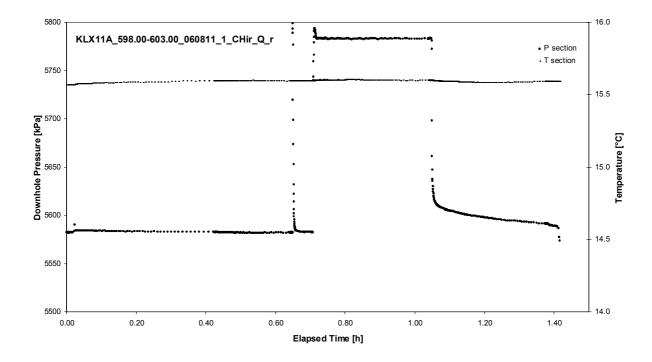
Pulse injection; deconvolution match

Test: 598.00 – 603.00 m

### **APPENDIX 2-89**

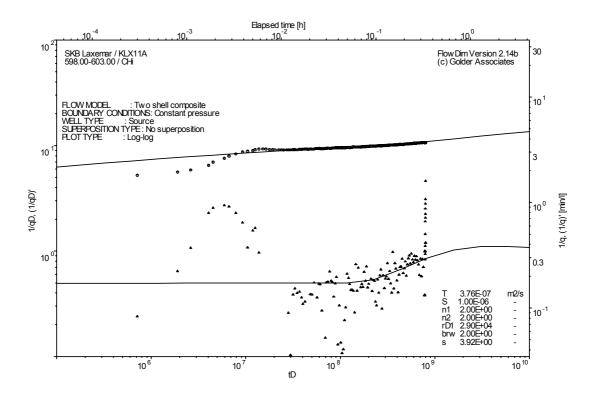

Test 598.00 – 603.00 m

Analysis diagrams


Page 2-89/2

Borehole: KLX11A

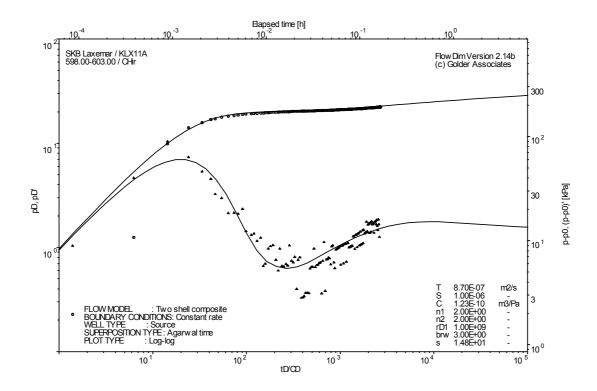
Test: 598.00 – 603.00 m



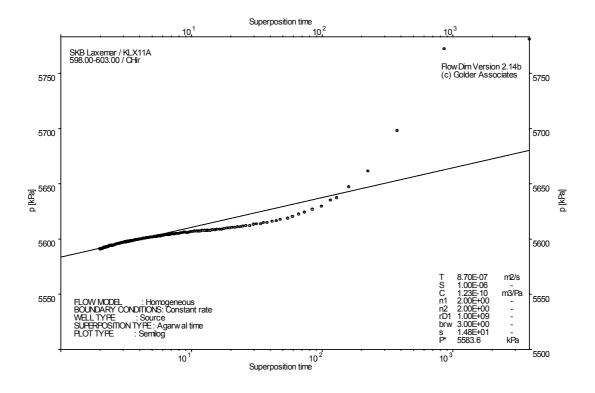

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Test: 598.00 – 603.00 m




CHI phase; log-log match

Borehole: KLX11A

Test: 598.00 – 603.00 m



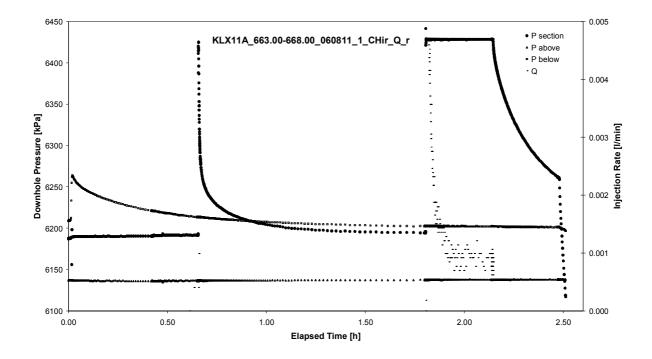
CHIR phase; log-log match



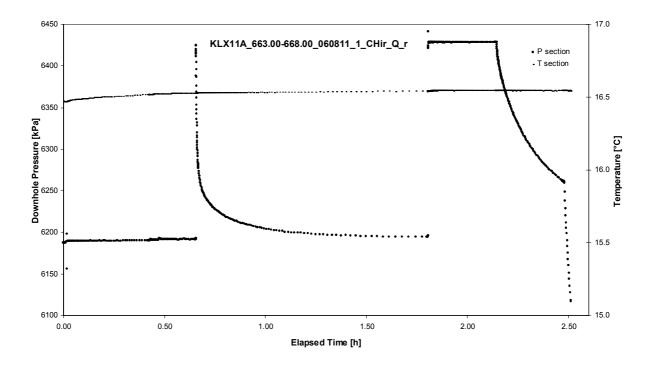
CHIR phase; HORNER match

Test: 663.00 – 668.00 m

### **APPENDIX 2-90**

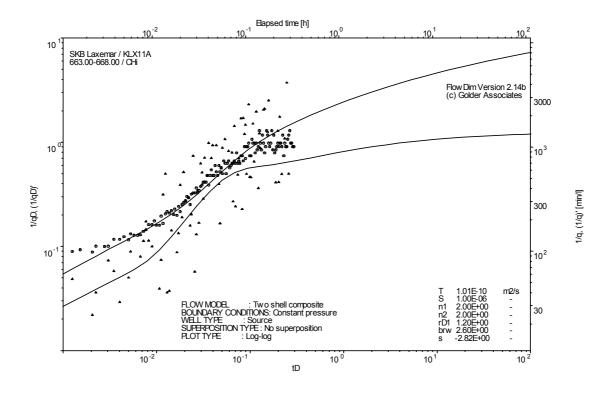

Test 663.00 – 668.00 m

Analysis diagrams


Page 2-90/2

Borehole: KLX11A

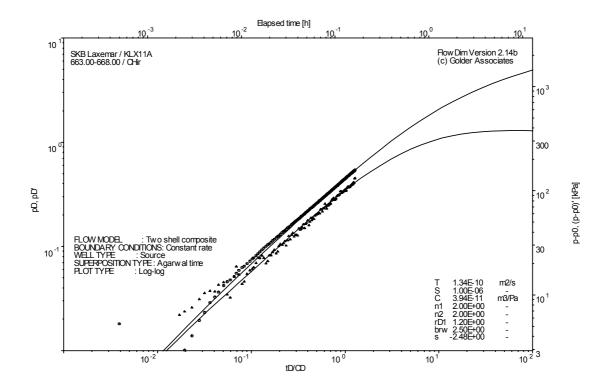
Test: 663.00 – 668.00 m




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Test: 663.00 – 668.00 m



CHI phase; log-log match

Borehole: KLX11A

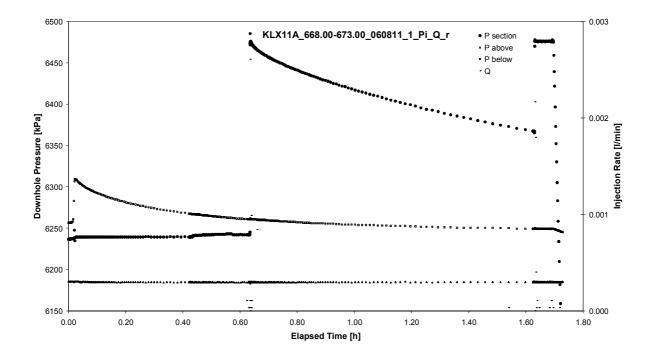
Test: 663.00 – 668.00 m



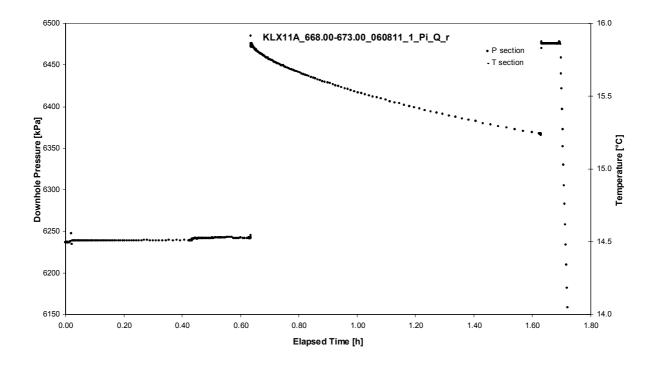
CHIR phase; log-log match

Not analysable

Test: 668.00 – 673.00 m


### **APPENDIX 2-91**

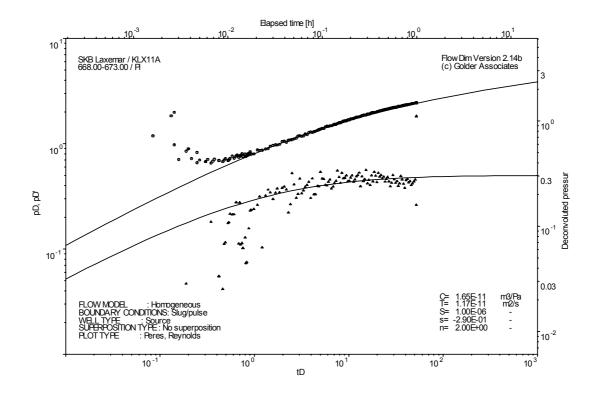
Test 668.00 – 673.00 m


Analysis diagrams

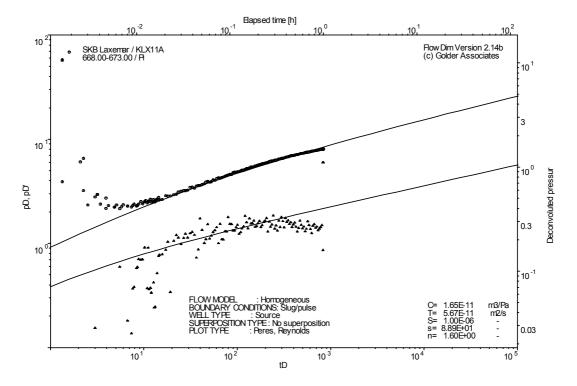
Page 2-91/2

Borehole: KLX11A Test: 668.00 – 673.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX11A

Test: 668.00 – 673.00 m

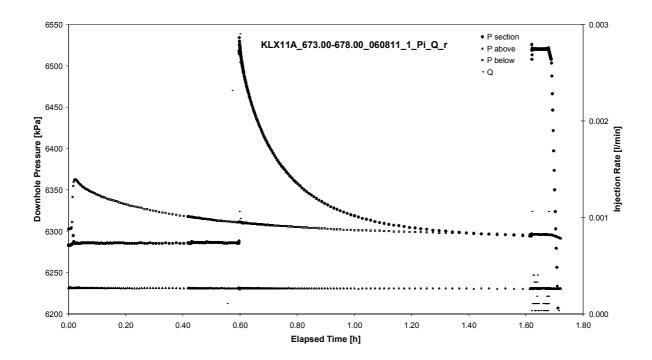


Pulse injection; deconvolution match

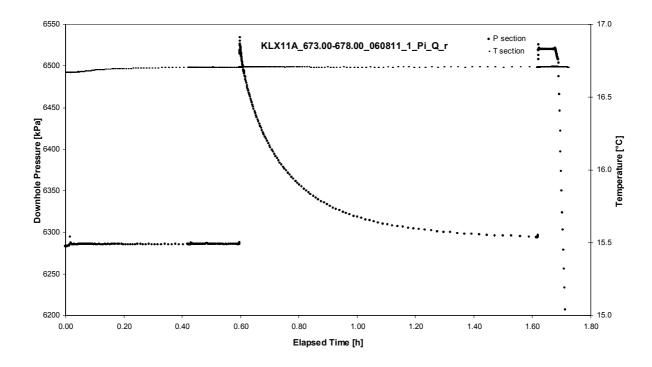


Pulse injection; deconvolution match (n=1.6)

Test: 673.00 – 678.00 m

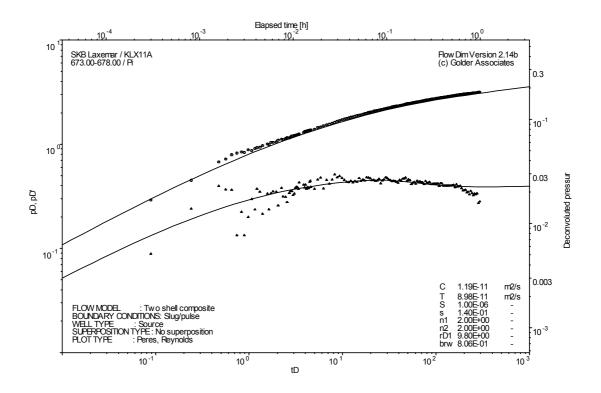

### **APPENDIX 2-92**

Test 673.00 – 678.00 m


Analysis diagrams

Borehole: KLX11A

Test: 673.00 – 678.00 m




Pressure and flow rate vs. time; cartesian plot



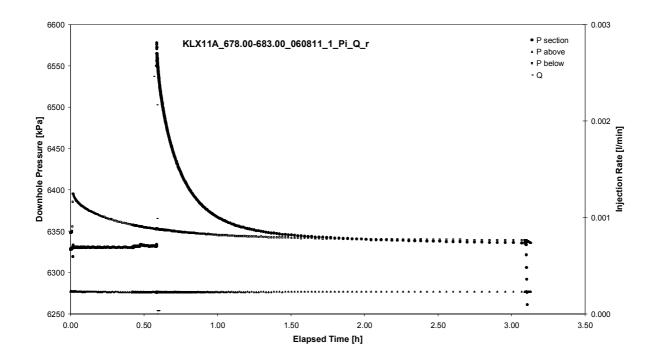
Interval pressure and temperature vs. time; cartesian plot

Test: 673.00 – 678.00 m

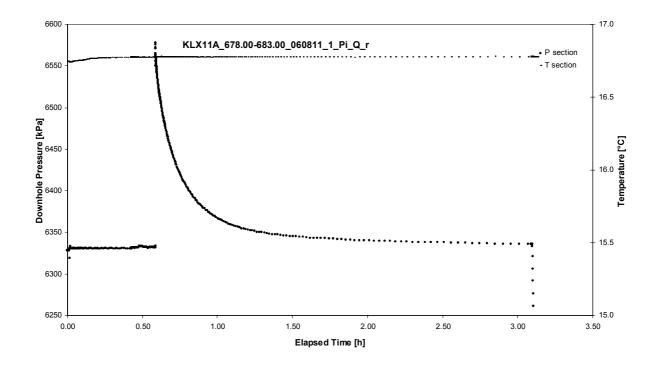


Pulse injection; deconvolution match

Test: 678.00 – 683.00 m

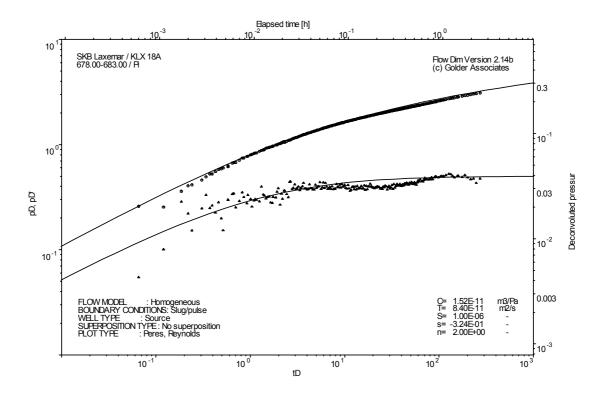

### **APPENDIX 2-93**

Test 678.00 – 683.00 m


Analysis diagrams

Borehole: KLX11A

Test: 678.00 – 683.00 m




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Test: 678.00 – 683.00 m



Pulse injection; deconvolution match

| HYDRO      | TES   | TING                 | WITH   | PSS                             | DRILLHOLE IDENTIFICATION                   | NO.: F   | KLX11A     |            |       |
|------------|-------|----------------------|--------|---------------------------------|--------------------------------------------|----------|------------|------------|-------|
| TEST- A    | AND   | FILEP                | ROTO   | OCOL                            | Testorder dated: 2006-06-27                |          |            |            |       |
| Teststart  | ı     | Interval<br>boundari | es     | Name                            | e of Datafiles                             | Testtype | Copied to  | Plotted    | Sign. |
| Date       | Time  | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD    | (date)     |       |
| 2006-06-29 | 14:32 | 103.00               | 203.00 | KLX11A_0103.00_200606291432.ht2 | KLX11A_103.00-203.00_060629_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-06-29 |       |
| 2006-06-29 | 18:03 | 203.00               | 303.00 | KLX11A_0203.00_200606291803.ht2 | KLX11A_203.00-303.00_060629_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-06-29 |       |
| 2006-06-30 | 09:15 | 303.00               | 403.00 | KLX11A_0303.00_200606300915.ht2 | KLX11A_303.00-403.00_060630_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-06-30 |       |
| 2006-06-30 | 13:11 | 403.00               | 503.00 | KLX11A_0403.00_200606301311.ht2 | KLX11A_403.00-503.00_060630_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-06-30 |       |
| 2006-07-01 | 08:47 | 503.00               | 603.00 | KLX11A_0503.00_200607010847.ht2 | KLX11A_503.00-603.00_060701_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-01 |       |
| 2006-07-01 | 12:14 | 603.00               | 703.00 | KLX11A_0603.00_200607011214.ht2 | KLX11A_603.00-703.00_060701_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-01 |       |
| 2006-07-01 | 17:09 | 703.00               | 803.00 | KLX11A_0703.00_200607011709.ht2 | KLX11A_703.00-803.00_060701_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-02 |       |
| 2006-07-02 | 09:11 | 803.00               | 903.00 | KLX11A_0803.00_200607020911.ht2 | KLX11A_803.00-903.00_060702_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-02 |       |
| 2006-07-02 | 14:45 | 876.00               | 976.00 | KLX11A_0876.00_200607021445.ht2 | KLX11A_876.00-976.00_060702_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-02 |       |
| 2006-07-04 | 08:19 | 103.00               | 123.00 | KLX11A_0103.00_200607040819.ht2 | KLX11A_103.00-123.00_060704_1_CHir_Q_r.csv | CHir     | 2006-08-12 | 2006-07-04 |       |
| 2006-07-04 | 10:31 | 123.00               | 143.00 | KLX11A_0123.00_200607041031.ht2 | KLX11A_123.00-143.00_060704_1_CHir_Q_r.csv | CHir     | 2006-08-12 | 2006-07-04 |       |
| 2006-07-04 | 12:49 | 143.00               | 163.00 | KLX11A_0143.00_200607041249.ht2 | KLX11A_143.00-163.00_060704_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-04 |       |
| 2006-07-04 | 15:05 | 163.00               | 183.00 | KLX11A_0163.00_200607041505.ht2 | KLX11A_163.00-183.00_060704_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-04 |       |
| 2006-07-04 | 17:12 | 183.00               | 203.00 | KLX11A_0183.00_200607041712.ht2 | KLX11A_183.00-203.00_060704_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-04 |       |
| 2006-07-04 | 18:50 | 203.00               | 223.00 | KLX11A_0203.00_200607041850.ht2 | KLX11A_203.00-223.00_060704_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-05 |       |
| 2006-07-05 | 08:38 | 223.00               | 243.00 | KLX11A_0223.00_200607050838.ht2 | KLX11A_223.00-243.00_060705_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-05 |       |

Borehole: KLX11A

| HYDRO      | TES   | TING                 | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX11A       |          |            |            |       |
|------------|-------|----------------------|--------|---------------------------------|--------------------------------------------|----------|------------|------------|-------|
| TEST- A    | AND   | FILEP                | ROTO   | OCOL                            | Testorder dated: 2006-06-27                |          |            |            |       |
| Teststart  | İ     | Interval<br>boundari | es     | Name                            | e of Datafiles                             | Testtype | Copied to  | Plotted    | Sign. |
| Date       | Time  | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD    | (date)     |       |
| 2006-07-05 | 10:48 | 243.00               | 263.00 | KLX11A_0243.00_200607051048.ht2 | KLX11A_243.00-263.00_060705_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-05 |       |
| 2006-07-05 | 13:18 | 263.00               | 283.00 | KLX11A_0263.00_200607051318.ht2 | KLX11A_263.00-283.00_060705_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-05 |       |
| 2006-07-05 | 15:25 | 283.00               | 303.00 | KLX11A_0283.00_200607051525.ht2 | KLX11A_283.00-303.00_060705_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-05 |       |
| 2006-07-05 | 17:25 | 303.00               | 323.00 | KLX11A_0303.00_200607051725.ht2 | KLX11A_303.00-323.00_060705_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-05 |       |
| 2006-07-05 | 19:21 | 323.00               | 343.00 | KLX11A_0323.00_200607051921.ht2 | KLX11A_323.00-343.00_060705_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-06 |       |
| 2006-07-06 | 08:48 | 343.00               | 363.00 | KLX11A_0343.00_200607060848.ht2 | KLX11A_343.00-363.00_060706_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-06 |       |
| 2006-07-06 | 11:03 | 363.00               | 383.00 | KLX11A_0363.00_200607061103.ht2 | KLX11A_363.00-383.00_060706_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-06 |       |
| 2006-07-06 | 13:34 | 383.00               | 403.00 | KLX11A_0383.00_200607061334.ht2 | KLX11A_383.00-403.00_060706_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-06 |       |
| 2006-07-06 | 15:54 | 403.00               | 423.00 | KLX11A_0403.00_200607061554.ht2 | KLX11A_403.00-423.00_060706_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-06 |       |
| 2006-07-06 | 17:56 | 423.00               | 443.00 | KLX11A_0423.00_200607061756.ht2 | KLX11A_423.00-443.00_060706_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-07 |       |
| 2006-07-07 | 08:32 | 443.00               | 463.00 | KLX11A_0443.00_200607070832.ht2 | KLX11A_443.00-463.00_060707_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-07 |       |
| 2006-07-07 | 10:33 | 463.00               | 483.00 | KLX11A_0463.00_200607071033.ht2 | KLX11A_463.00-483.00_060707_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-07 |       |
| 2006-07-07 | 13:12 | 483.00               | 503.00 | KLX11A_0483.00_200607071312.ht2 | KLX11A_483.00-503.00_060707_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-07 |       |
| 2006-07-07 | 15:12 | 503.00               | 523.00 | KLX11A_0503.00_200607071512.ht2 | KLX11A_503.00-523.00_060707_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-07 |       |
| 2006-07-07 | 17:07 | 523.00               | 543.00 | KLX11A_0523.00_200607071707.ht2 | KLX11A_523.00-543.00_060707_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-07 |       |
| 2006-07-07 | 19:07 | 543.00               | 563.00 | KLX11A_0543.00_200607071907.ht2 | KLX11A_543.00-563.00_060707_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-08 |       |

| HYDRO      | TES   | TING                 | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX11A       |          |            |            |       |
|------------|-------|----------------------|--------|---------------------------------|--------------------------------------------|----------|------------|------------|-------|
| TEST- A    | AND   | FILEP                | ROTO   | OCOL                            | Testorder dated: 2006-06-27                |          |            |            |       |
| Teststart  |       | Interval<br>boundari | es     | Name                            | of Datafiles                               | Testtype | Copied to  | Plotted    | Sign. |
| Date       | Time  | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD    | (date)     |       |
| 2006-07-08 | 08:58 | 563.00               | 583.00 | KLX11A_0563.00_200607080858.ht2 | KLX11A_563.00-583.00_060708_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-08 |       |
| 2006-07-08 | 10:53 | 583.00               | 603.00 | KLX11A_0583.00_200607081053.ht2 | KLX11A_583.00-603.00_060708_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-08 |       |
| 2006-07-08 | 13:17 | 603.00               | 623.00 | KLX11A_0603.00_200607081317.ht2 | KLX11A_603.00-623.00_060708_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-08 |       |
| 2006-07-08 | 15:12 | 623.00               | 643.00 | KLX11A_0623.00_200607081512.ht2 | KLX11A_623.00-643.00_060708_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-08 |       |
| 2006-07-08 | 17:10 | 643.00               | 663.00 | KLX11A_0643.00_200607081710.ht2 | KLX11A_643.00-663.00_060708_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-08 |       |
| 2006-07-08 | 19:06 | 663.00               | 683.00 | KLX11A_0663.00_200607081906.ht2 | KLX11A_663.00-683.00_060708_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-09 |       |
| 2006-07-09 | 09:11 | 683.00               | 703.00 | KLX11A_0683.00_200607090911.ht2 | KLX11A_683.00-703.00_060709_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-09 |       |
| 2006-07-09 | 11:08 | 703.00               | 723.00 | KLX11A_0703.00_200607091108.ht2 | KLX11A_703.00-723.00_060709_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-09 |       |
| 2006-07-09 | 13:58 | 723.00               | 743.00 | KLX11A_0723.00_200607091358.ht2 | KLX11A_723.00-743.00_060709_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-09 |       |
| 2006-07-09 | 15:45 | 743.00               | 763.00 | KLX11A_0743.00_200607091545.ht2 | KLX11A_743.00-763.00_060709_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-09 |       |
| 2006-07-09 | 17:25 | 763.00               | 783.00 | KLX11A_0763.00_200607091725.ht2 | KLX11A_763.00-783.00_060709_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-09 |       |
| 2006-07-09 | 18:43 | 783.00               | 803.00 | KLX11A_0783.00_200607091843.ht2 | KLX11A_783.00-803.00_060709_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-10 |       |
| 2006-07-10 | 08:19 | 803.00               | 823.00 | KLX11A_0803.00_200607100819.ht2 | KLX11A_803.00-823.00_060710_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-10 |       |
| 2006-07-10 | 09:45 | 823.00               | 843.00 | KLX11A_0823.00_200607100945.ht2 | KLX11A_823.00-843.00_060710_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-10 |       |
| 2006-07-10 | 11:10 | 843.00               | 863.00 | KLX11A_0843.00_200607101110.ht2 | KLX11A_843.00-863.00_060710_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-10 |       |

| HYDRO      | TES              | TING   | WITH   | PSS                             | DRILLHOLE IDENTIFICATION                   | NO.: k    | KLX11A     |            |  |  |
|------------|------------------|--------|--------|---------------------------------|--------------------------------------------|-----------|------------|------------|--|--|
| TEST- A    | AND FILEPROTOCOL |        |        |                                 | <b>Testorder dated : 2006-06-27</b>        |           |            |            |  |  |
| Teststart  |                  |        |        | Name                            | e of Datafiles                             | Copied to | Plotted    | Sign.      |  |  |
| Date       | Time             | Upper  | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |           | disk/CD    | (date)     |  |  |
| 2006-07-10 | 14:04            | 863.00 | 883.00 | KLX11A_0863.00_200607101404.ht2 | KLX11A_863.00-883.00_060710_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-10 |  |  |
| 2006-07-12 | 07:38            | 303.00 | 308.00 | KLX11A_0303.00_200607120738.ht2 | KLX11A_303.00-308.00_060712_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-12 |  |  |
| 2006-07-12 | 09:30            | 308.00 | 313.00 | KLX11A_0308.00_200607120930.ht2 | KLX11A_308.00-313.00_060712_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-12 |  |  |
| 2006-07-12 | 11:13            | 313.00 | 318.00 | KLX11A_0313.00_200607121113.ht2 | KLX11A_313.00-318.00_060712_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-12 |  |  |
| 2006-07-12 | 13:09            | 318.00 | 323.00 | KLX11A_0318.00_200607121309.ht2 | KLX11A_318.00-323.00_060712_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-12 |  |  |
| 2006-07-12 | 14:31            | 343.00 | 348.00 | KLX11A_0343.00_200607121431.ht2 | KLX11A_343.00-348.00_060712_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-12 |  |  |
| 2006-07-12 | 16:38            | 348.00 | 353.00 | KLX11A_0348.00_200607121638.ht2 | KLX11A_348.00-353.00_060712_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-12 |  |  |
| 2006-07-12 | 17:56            | 353.00 | 358.00 | KLX11A_0353.00_200607121756.ht2 | KLX11A_353.00-358.00_060712_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-13 |  |  |
| 2006-07-13 | 07:52            | 358.00 | 363.00 | KLX11A_0358.00_200607130752.ht2 | KLX11A_358.00-363.00_060713_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-13 |  |  |
| 2006-07-13 | 09:14            | 383.00 | 388.00 | KLX11A_0383.00_200607130914.ht2 | KLX11A_383.00-388.00_060713_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-13 |  |  |
| 2006-07-13 | 10:28            | 388.00 | 393.00 | KLX11A_0388.00_200607131028.ht2 | KLX11A_388.00-393.00_060713_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-13 |  |  |
| 2006-07-13 | 12:29            | 393.00 | 398.00 | KLX11A_0393.00_200607131229.ht2 | KLX11A_393.00-398.00_060713_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-13 |  |  |
| 2006-07-13 | 13:44            | 398.00 | 403.00 | KLX11A_0398.00_200607131344.ht2 | KLX11A_398.00-403.00_060713_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-13 |  |  |
| 2006-07-13 | 15:46            | 423.00 | 428.00 | KLX11A_0423.00_200607131546.ht2 | KLX11A_423.00-428.00_060713_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-13 |  |  |
| 2006-07-13 | 16:59            | 428.00 | 433.00 | KLX11A_0428.00_200607131659.ht2 | KLX11A_428.00-433.00_060713_1_CHir_Q_r.csv | Chir      | 2006-08-12 | 2006-07-14 |  |  |

| HYDRO      | TES   | TING                                      | WITH   | PSS                             | DRILLHOLE IDENTIFICATION                   | NO.: ŀ   | KLX11A     |            |       |
|------------|-------|-------------------------------------------|--------|---------------------------------|--------------------------------------------|----------|------------|------------|-------|
| TEST- A    | ND    | ND FILEPROTOCOL Testorder dated: 2006-06- |        |                                 |                                            |          |            |            |       |
| Teststart  |       | Interval<br>boundari                      | es     | Name                            | of Datafiles                               | Testtype | Copied to  | Plotted    | Sign. |
| Date       | Time  | Upper                                     | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD    | (date)     |       |
| 2006-07-14 | 07:58 | 433.00                                    | 438.00 | KLX11A_0433.00_200607140758.ht2 | KLX11A_433.00-438.00_060714_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-14 |       |
| 2006-07-14 | 09:17 | 438.00                                    | 443.00 | KLX11A_0438.00_200607140917.ht2 | KLX11A_438.00-443.00_060714_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-14 |       |
| 2006-07-14 | 11:06 | 442.00                                    | 447.00 | KLX11A_0442.00_200607141106.ht2 | KLX11A_442.00-447.00_060714_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-14 |       |
| 2006-07-14 | 13:16 | 447.00                                    | 452.00 | KLX11A_0447.00_200607141316.ht2 | KLX11A_447.00-452.00_060714_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-14 |       |
| 2006-07-14 | 15:01 | 452.00                                    | 457.00 | KLX11A_0452.00_200607141501.ht2 | KLX11A_452.00-457.00_060714_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-14 |       |
| 2006-07-14 | 16:45 | 457.00                                    | 462.00 | KLX11A_0457.00_200607141645.ht2 | KLX11A_457.00-462.00_060714_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-14 |       |
| 2006-07-14 | 18:01 | 462.00                                    | 467.00 | KLX11A_0462.00_200607141801.ht2 | KLX11A_462.00-467.00_060714_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-15 |       |
| 2006-07-15 | 08:16 | 483.00                                    | 488.00 | KLX11A_0483.00_200607150816.ht2 | KLX11A_483.00-488.00_060715_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-15 |       |
| 2006-07-15 | 09:29 | 488.00                                    | 493.00 | KLX11A_0488.00_200607150929.ht2 | KLX11A_488.00-493.00_060715_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-15 |       |
| 2006-07-15 | 10:47 | 493.00                                    | 498.00 | KLX11A_0493.00_200607151047.ht2 | KLX11A_493.00-498.00_060715_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-07-15 |       |
| 2006-07-15 | 14:04 | 498.00                                    | 503.00 | KLX11A_0498.00_200607151404.ht2 | KLX11A_498.00-503.00_060715_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-15 |       |
| 2006-07-15 | 15:53 | 503.00                                    | 508.00 | KLX11A_0503.00_200607151553.ht2 | KLX11A_503.00-508.00_060715_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-15 |       |
| 2006-07-15 | 18:09 | 508.00                                    | 513.00 | KLX11A_0508.00_200607151809.ht2 | KLX11A_508.00-513.00_060715_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-16 |       |
| 2006-07-16 | 08:05 | 513.00                                    | 518.00 | KLX11A_0513.00_200607160805.ht2 | KLX11A_513.00-518.00_060716_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-07-16 |       |
| 2006-08-07 | 09:04 | 513.00                                    | 518.00 | KLX11A_0513.00_200608070904.ht2 | KLX11A_513.00-518.00_060807_2_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-07 |       |

| HYDRO      | TES   | TING                 | WITH   | PSS                                 | DRILLHOLE IDENTIFICATION                   | NO.: ŀ   | KLX11A     |            |       |
|------------|-------|----------------------|--------|-------------------------------------|--------------------------------------------|----------|------------|------------|-------|
| TEST- A    | AND   | FILEP                | ROTO   | ROTOCOL Testorder dated: 2006-06-27 |                                            |          |            |            |       |
| Teststart  |       | Interval<br>boundari | es     | Name                                | of Datafiles                               | Testtype | Copied to  | Plotted    | Sign. |
| Date       | Time  | Upper                | Lower  | (*.HT2-file)                        | (*.CSV-file)                               |          | disk/CD    | (date)     |       |
| 2006-08-08 | 15:30 | 513.00               | 518.00 | KLX11A_0513.00_200608081530.ht2     | KLX11A 513.00-518.00 060808 3 CHir Q r.csv | Chir     | 2006-08-12 | 2006-08-08 |       |
| 2006-08-08 | 17:47 | 518.00               | 523.00 | KLX11A_0518.00_200608081747.ht2     | KLX11A_518.00-523.00_060808_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-09 |       |
| 2006-08-09 | 08:08 | 523.00               | 528.00 | KLX11A_0523.00_200608090808.ht2     | KLX11A_523.00-528.00_060809_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-09 |       |
| 2006-08-09 | 10:08 | 528.00               | 533.00 | KLX11A_0528.00_200608091008.ht2     | KLX11A 528.00-533.00 060809 1 CHir Q r.csv | Chir     | 2006-08-12 | 2006-08-09 |       |
| 2006-08-09 | 12:48 | 533.00               | 538.00 | KLX11A_0533.00_200608091248.ht2     | KLX11A_533.00-538.00_060809_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-09 |       |
| 2006-08-09 | 14:40 | 538.00               | 543.00 | KLX11A_0538.00_200608091440.ht2     | KLX11A_538.00-543.00_060809_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-09 |       |
| 2006-08-09 | 16:59 | 563.00               | 568.00 | KLX11A_0563.00_200608091659.ht2     | KLX11A_563.00-568.00_060809_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-09 |       |
| 2006-08-09 | 18:17 | 568.00               | 573.00 | KLX11A_0568.00_200608091817.ht2     | KLX11A 568.00-573.00 060809 1 CHir Q r.csv | Chir     | 2006-08-12 | 2006-08-10 |       |
| 2006-08-10 | 08:06 | 573.00               | 578.00 | KLX11A_0573.00_200608100806.ht2     | KLX11A_573.00-578.00_060810_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-10 |       |
| 2006-08-10 | 10:02 | 578.00               | 583.00 | KLX11A_0578.00_200608101002.ht2     | KLX11A_578.00-583.00_060810_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-10 |       |
| 2006-08-10 | 12:20 | 583.00               | 588.00 | KLX11A_0583.00_200608101220.ht2     | KLX11A 583.00-588.00 060810 1 Pi Q r.csv   | Pi       | 2006-08-12 | 2006-08-10 |       |
| 2006-08-10 | 14:41 | 588.00               | 593.00 | KLX11A_0588.00_200608101441.ht2     | KLX11A_588.00-593.00_060810_1_Pi_Q_r.csv   | Pi       | 2006-08-12 | 2006-08-10 |       |
| 2006-08-10 | 16:33 | 593.00               | 598.00 | KLX11A_0593.00_200608101633.ht2     | KLX11A 593.00-598.00 060810 1 Pi Q r.csv   | Pi       | 2006-08-12 | 2006-08-11 |       |
| 2006-08-11 | 08:01 | 598.00               | 603.00 | KLX11A_0598.00_200608110801.ht2     | KLX11A_598.00-603.00_060811_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-11 |       |
| 2006-08-11 | 10:29 | 663.00               | 668.00 | KLX11A_0663.00_200608111029.ht2     | KLX11A_663.00-668.00_060811_1_CHir_Q_r.csv | Chir     | 2006-08-12 | 2006-08-11 |       |

| HYDRO                         | TES   | TING   | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX11A     |    |            |            |       |  |  |
|-------------------------------|-------|--------|--------|---------------------------------|------------------------------------------|----|------------|------------|-------|--|--|
| TEST- AND FILEPROTOCOL        |       |        |        |                                 | Testorder dated: 2006-06-27              |    |            |            |       |  |  |
| Teststart Interval boundaries |       |        | es     | Name                            | Name of Datafiles                        |    |            | Plotted    | Sign. |  |  |
| Date                          | Time  | Upper  | Lower  | (*.HT2-file)                    | (*.CSV-file)                             |    | disk/CD    | (date)     |       |  |  |
| 2006-08-11                    | 13:30 | 668.00 | 673.00 | KLX11A_0668.00_200608111330.ht2 | KLX11A_668.00-673.00_060811_1_Pi_Q_r.csv | Pi | 2006-08-12 | 2006-08-11 |       |  |  |
| 2006-08-11                    | 15:38 | 673.00 | 678.00 | KLX11A_0673.00_200608111538.ht2 | KLX11A_673.00-678.00_060811_1_Pi_Q_r.csv | Pi | 2006-08-12 | 2006-08-11 |       |  |  |
| 2006-08-11                    | 17:45 | 678.00 | 683.00 | KLX11A_0678.00_200608111745.ht2 | KLX11A_678.00-683.00_060811_1_Pi_Q_r.csv | Pi | 2006-08-12 | 2006-08-12 |       |  |  |

Borehole: KLX11A

## **APPENDIX 5**

SICADA data tables



# **SICADA/Data Import Template**

SKB & Ergodata AB 2004

| File Identity |              |
|---------------|--------------|
| Created By    | Stephan Rohs |
| Created       | 2006-09-11   |

| Compiled By                |  |
|----------------------------|--|
| Quality Check For Delivery |  |
| Delivery Approval          |  |

| Activity Type | KLX 11A                  |
|---------------|--------------------------|
|               | KLX 11A - Injection test |

| Project | AP PS 400-06-072 |
|---------|------------------|
|         |                  |

| Activity Info | rmation          |                  |           |            |            | Additional Activity Data |             |              |               |               |  |
|---------------|------------------|------------------|-----------|------------|------------|--------------------------|-------------|--------------|---------------|---------------|--|
|               |                  |                  |           |            |            | C10                      | P20         | P200         | P220          | R25           |  |
|               |                  |                  |           |            |            |                          | Field crew  |              | evaluating    |               |  |
| ldcode        | Start Date       | Stop Date        | Secup (m) | Seclow (m) | Section No | Company                  | manager     | Field crew   | data          | Report        |  |
|               |                  |                  |           |            |            |                          |             | Stephan      | Stephan       | Stephan       |  |
|               |                  |                  |           |            |            |                          | Stephan     | Rohs,        | Rohs, Philipp | Rohs, Philipp |  |
| KLX 11A       | 2006-06-29 14:32 | 2006-07-16 10:33 | 103.00    | 976.00     |            | Golder Associates        | Rohs        | Philipp Wolf | Wolf          | Wolf          |  |
|               |                  |                  |           |            |            |                          |             | Reinder van  | Stephan       | Stephan       |  |
|               |                  |                  |           |            |            |                          | Reinder van | der Wall,    | Rohs, Philipp | Rohs, Philipp |  |
| KLX 11A       | 2006.08.08 15:30 | 2006.08.11 20:53 | 513.00    | 683.00     |            | Golder Associates        | der Wall    | Philipp Wolf | Wolf          | Wolf          |  |
|               |                  |                  |           |            |            |                          |             |              |               |               |  |
|               |                  |                  |           |            |            |                          |             |              |               |               |  |
|               |                  |                  |           |            |            |                          |             |              |               |               |  |
|               |                  |                  |           |            |            |                          |             |              |               |               |  |
|               |                  |                  |           |            |            |                          |             |              |               |               |  |
|               |                  |                  |           |            |            |                          |             |              |               |               |  |
|               |                  |                  |           |            |            |                          |             |              |               |               |  |
|               |                  |                  |           |            |            |                          |             |              |               |               |  |

Table plu\_s\_hole\_test\_d
PLU Injection and pumping, General information

| Column               | Datatype | Unit     | Column Description                                              |
|----------------------|----------|----------|-----------------------------------------------------------------|
| site                 | CHAR     |          | Investigation site name                                         |
| activity_type        | CHAR     |          | Activity type code                                              |
| start_date           | DATE     |          | Date (yymmdd hh:mm:ss)                                          |
| stop_date            | DATE     |          | Date (yymmdd hh:mm:ss)                                          |
| project              | CHAR     |          | project code                                                    |
| idcode               | CHAR     |          | Object or borehole identification code                          |
| secup                | FLOAT    | m        | Upper section limit (m)                                         |
| seclow               | FLOAT    | m        | Lower section limit (m)                                         |
| section_no           | INTEGER  | number   | Section number                                                  |
| test_type            | CHAR     |          | Test type code (1-7), see table description                     |
| formation_type       | CHAR     |          | 1: Rock, 2: Soil (superficial deposits)                         |
| start_flow_period    | DATE     | yyyymmdd | Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)    |
| stop_flow_period     | DATE     | yyyymmdd | Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)     |
| flow_rate_end_qp     | FLOAT    | m**3/s   | Flow rate at the end of the flowing period                      |
| value_type_qp        | CHAR     |          | 0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower> |
| mean_flow_rate_qm    | FLOAT    | m**3/s   | Arithmetic mean flow rate during flow period                    |
| q_measll             | FLOAT    | m**3/s   | Estimated lower measurement limit of flow rate                  |
| q_measlu             | FLOAT    | m**3/s   | Estimated upper measurement limit of flow rate                  |
| tot_volume_vp        | FLOAT    | m**3     | Total volume of pumped or injected water                        |
| dur_flow_phase_tp    | FLOAT    | S        | Duration of the flowing period of the test                      |
| dur_rec_phase_tf     | FLOAT    | s        | Duration of the recovery period of the test                     |
| initial_head_hi      | FLOAT    | m        | Hydraulic head in test section at start of the flow period      |
| head_at_flow_end_h   | FLOAT    | m        | Hydraulic head in test section at stop of the flow period.      |
| final_head_hf        | FLOAT    | m        | Hydraulic head in test section at stop of recovery period.      |
| initial_press_pi     | FLOAT    | kPa      | Groundwater pressure in test section at start of flow period    |
| press_at_flow_end_   | FLOAT    | kPa      | Groundwater pressure in test section at stop of flow period.    |
| final_press_pf       | FLOAT    | kPa      | Ground water pressure at the end of the recovery period.        |
| fluid_temp_tew       | FLOAT    | оС       | Measured section fluid temperature, see table description       |
| fluid_elcond_ecw     | FLOAT    | mS/m     | Measured section fluid el. conductivity, see table descr.       |
| fluid_salinity_tdsw  | FLOAT    | mg/l     | Total salinity of section fluid based on EC,see table descr.    |
| fluid_salinity_tdswm | FLOAT    | mg/l     | Tot. section fluid salinity based on water sampling, see        |
| reference            | CHAR     |          | SKB report No for reports describing data and evaluation        |
| comments             | VARCHAR  |          | Short comment to data                                           |
| error_flag           | CHAR     |          | If error_flag = "*" then an error occured and an error          |
| in_use               | CHAR     |          | If in_use = "*" then the activity has been selected as          |
| sign                 | CHAR     |          | Signature for QA data accknowledge (QA - OK)                    |
| lp                   | FLOAT    | m        | Hydraulic point of application                                  |
|                      |          |          |                                                                 |

|                    |                 |                                    |        |        | section |           | formation |                     | I                   | flow_rate_end_  | value_type_ | mean_flow_ |                      |                      |                      |
|--------------------|-----------------|------------------------------------|--------|--------|---------|-----------|-----------|---------------------|---------------------|-----------------|-------------|------------|----------------------|----------------------|----------------------|
| idcode             | start date      | stop date                          | secup  | seclow | _       | test_type | type      | start_flow_period   | stop flow period    | qp              | qp          | rate_qm    | g measl I            | a mosel u            | tot volume vp        |
| KLX 11A            |                 | 060629 16:40:00                    |        |        | 110     | test_type | type      | 2006-06-29 15:38:42 |                     |                 |             |            |                      |                      | 2.46E-01             |
| KLX 11A            |                 | 060629 10.40.00                    |        |        |         | 3         | 1         | 2006-06-29 19:18:52 |                     |                 |             |            |                      |                      | 2.46E-01             |
| KLX 11A            |                 | 060629 20.21.00                    |        |        |         | 3         | _         | 2006-06-30 10:10:28 | 2006-06-29 19:49:02 |                 |             |            |                      |                      | 1.05E-01             |
|                    |                 |                                    |        |        |         | 3         |           |                     | 2006-06-30 10:40:38 |                 |             |            |                      |                      |                      |
| KLX 11A            |                 | 060630 15:20:00                    |        |        |         | 3         |           | 2006-06-30 14:18:35 |                     |                 |             |            |                      |                      | 2.40E-03             |
| KLX 11A            |                 | 060701 10:50:00                    |        |        |         | 3         | •         | 2006-07-01 09:48:22 |                     |                 | _           |            |                      |                      | 3.57E-01<br>9.00E-05 |
| KLX 11A            |                 | 060701 15:43:00                    |        |        |         | 3         |           | 2006-07-01 14:11:12 | 2006-07-01 14:41:22 |                 |             |            |                      |                      |                      |
| KLX 11A            |                 | 060702 01:32:00                    |        |        |         | 3         |           | 2006-07-01 19:00:34 | 2006-07-01 19:30:44 | 3.33E-08        |             |            |                      | 8.33E-04             | 1.20E-04             |
| KLX 11A            |                 | 060702 13:33:00                    |        |        |         | 3         |           | 2006-07-02 11:01:14 | 2006-07-02 11:31:24 |                 |             |            |                      |                      | 1.80E-04             |
| KLX 11A<br>KLX 11A |                 | 060702 16:49:00<br>060704 09:46:00 |        |        |         | 3         |           | 2006-07-02 15:33:25 | 2006-07-02 15:33:35 | #NV<br>2.33E-05 |             |            | 1.67E-08<br>1.67E-08 | 8.33E-04<br>8.33E-04 | 5.60E-06<br>2.80E-02 |
|                    |                 |                                    |        |        |         | 3         | _         | 2006-07-04 09:04:05 | 2006-07-04 09:24:15 |                 |             |            |                      |                      | 8.00E-02             |
| KLX 11A            |                 | 060704 11:54:00                    |        |        |         | v         |           | 2006-07-04 11:12:38 | 2006-07-04 11:32:48 |                 |             |            |                      |                      |                      |
| KLX 11A            |                 | 060704 14:32:00                    |        |        |         | 3         |           | 2006-07-04 13:40:34 |                     |                 |             |            |                      |                      | 1.00E-02             |
| KLX 11A            |                 | 060704 16:33:00                    |        |        |         | 3         |           | 2006-07-04 15:51:48 | 2006-07-04 16:11:58 |                 |             |            |                      |                      | 5.20E-02             |
| KLX 11A            |                 | 060704 18:14:00                    |        |        |         | 3         | _         | #NV<br>#NV          | #NV<br>#NV          | #NV             | -1<br>-1    |            |                      |                      | #NV                  |
| KLX 11A            |                 | 060704 19:46:00                    |        |        |         |           | -         |                     |                     | #NV             |             |            | 1.67E-08             |                      | #NV                  |
| KLX 11A            |                 | 060705 10:07:00                    |        |        |         | 3         |           | 2000 01 00 00.20.20 | 2006-07-05 09:20:39 | #NV             | 0           |            | 1.67E-08             | 8.33E-04             | 1.32E-05             |
| KLX 11A            |                 | 060705 12:22:00                    |        |        |         | 3         |           | 2006-07-05 11:40:25 | 2006-07-05 12:00:35 | 6.67E-07        | 0           |            |                      |                      | 8.40E-04             |
| KLX 11A            |                 | 060705 14:44:00                    |        |        |         |           | -         | 2006-07-05 14:02:11 | 2006-07-05 14:22:21 | 1.65E-04        |             |            |                      |                      | 2.03E-01             |
| KLX 11A            |                 | 060705 16:51:00                    |        |        |         | 3         | -         | 2006-07-05 16:04:29 | 2006-07-05 16:04:39 | #NV             | 0           |            |                      |                      | 1.33E-05             |
| KLX 11A            |                 | 060705 18:49:00                    |        |        |         | 3         |           | 2006-07-05 18:07:26 | 2006-07-05 18:27:36 |                 |             |            |                      |                      | 8.20E-02             |
| KLX 11A            |                 | 060706 00:42:00                    |        |        |         | 3         | •         | 2006-07-05 20:29:02 | 2006-07-05 20:40:12 |                 |             |            |                      |                      | 3.30E-06             |
| KLX 11A            |                 | 060706 10:30:00                    |        |        |         | 3         |           | 2006-07-06 09:48:23 | 2006-07-06 10:08:33 | 1.50E-07        | 0           |            |                      |                      | 3.60E-04             |
| KLX 11A            |                 | 060706 12:55:00                    |        |        |         | 3         | -         | 2006-07-06 11:41:39 | 2006-07-06 11:41:49 |                 | 0           |            | 1.67E-08             |                      | 7.80E-06             |
| KLX 11A            |                 | 060706 15:02:00                    |        |        |         | 3         | _         | 2006-07-06 14:40:27 | 2006-07-06 15:00:37 | 8.33E-08        |             |            |                      | 8.33E-04             | 1.00E-04             |
| KLX 11A            |                 | 060706 17:22:00                    |        |        |         | 3         |           | 2006-07-06 16:35:13 | 2006-07-06 16:35:23 | #NV             | 0           |            | 1.67E-08             | 8.33E-04             | 2.20E-06             |
| KLX 11A            |                 | 060706 19:21:00                    | 423.00 |        |         | 3         |           | 2006-07-06 18:39:37 | 2006-07-06 18:59:47 | 1.00E-06        |             |            |                      |                      | 1.20E-03             |
| KLX 11A            |                 | 060707 10:01:00                    |        |        |         | 3         | _         | 2006-07-07 09:19:26 | 2006-07-07 09:39:36 |                 | 0           |            |                      |                      | 5.90E-04             |
| KLX 11A            |                 | 060707 12:34:00                    |        |        |         | 3         | _         | 2006-07-07 11:12:30 | 2006-07-07 11:12:40 |                 |             |            |                      |                      | 1.33E-05             |
| KLX 11A            |                 | 060707 14:44:00                    |        |        |         | 3         |           | 2006-07-07 14:01:52 | 2006-07-07 14:22:02 |                 |             |            |                      |                      | 1.60E-04             |
| KLX 11A            |                 | 060707 16:39:00                    |        |        |         | 3         |           | 2006-07-07 15:57:20 | 2006-07-07 16:17:30 | 5.83E-05        |             |            |                      | 8.33E-04             | 7.40E-02             |
| KLX 11A            |                 | 060707 18:30:00                    |        |        |         | 3         | _         | 2006-07-07 17:48:44 | 2006-07-07 18:08:54 |                 |             |            |                      |                      | 1.60E-03             |
| KLX 11A            |                 | 060708 08:26:00                    |        |        |         | 3         |           | 2006-07-07 19:44:15 | 2006-07-07 19:44:25 | #NV             | 0           |            | 1.67E-08             | 8.33E-04             | 2.40E-06             |
| KLX 11A            |                 | 060708 10:21:00                    |        |        |         | 3         |           | 2006-07-08 09:39:14 | 2006-07-08 09:59:24 | 1.47E-04        | 0           |            |                      | 8.33E-04             | 1.82E-01             |
| KLX 11A            |                 | 060708 12:23:00                    |        |        |         | 3         |           | 2006-07-08 11:41:17 | 2006-07-08 12:01:27 | 4.33E-06        |             |            |                      |                      | 5.40E-03             |
| KLX 11A            |                 | 060708 14:41:00                    |        |        |         | 3         | 1         | 2006-07-08 13:55:12 | 2006-07-08 13:55:22 |                 |             |            |                      |                      | 1.33E-05             |
| KLX 11A            |                 | 060708 16:39:00                    |        |        |         | 3         | 1         | 2006-07-08 15:52:56 | 2006-07-08 15:53:06 |                 |             |            | 1.67E-08             |                      | 1.31E-05             |
| KLX 11A            |                 | 060708 18:34:00                    |        |        |         | 3         | 1         | 2006-07-08 17:48:39 | 2006-07-08 17:48:49 | #NV             | 0           |            | 1.67E-08             | 8.33E-04             | 6.76E-06             |
| KLX 11A            |                 | 060709 08:39:00                    |        |        |         | 3         |           | 2006-07-09 07:57:45 | 2006-07-09 08:17:55 | 1.67E-08        |             |            |                      |                      | 4.40E-05             |
| KLX 11A            |                 | 060709 10:40:00                    |        |        |         | 3         |           | 2006-07-09 09:50:31 | 2006-07-09 10:32:52 |                 |             |            |                      |                      | 1.19E-05             |
| KLX 11A            |                 | 060709 13:27:00                    |        |        |         | 3         | _         | 2006-07-09 12:25:20 | 2006-07-09 12:45:30 | 5.00E-08        |             |            |                      |                      | 1.02E-04             |
| KLX 11A            |                 | 060709 15:13:00                    |        |        |         | 3         | _         |                     | #NV                 | #NV             |             |            | 1.67E-08             |                      | #NV                  |
| KLX 11A            |                 | 060709 16:56:00                    |        |        |         | 3         |           |                     | #NV                 | #NV             |             |            |                      |                      | #NV                  |
| KLX 11A            |                 | 060709 18:10:00                    |        |        |         | 3         |           | #NV                 | #NV                 | #NV             |             |            | 1.67E-08             |                      | #NV                  |
| KLX 11A            |                 | 060709 20:01:00                    |        |        |         | 3         |           | #NV                 | #NV                 | #NV             |             |            | 1.67E-08             |                      | #NV                  |
| KLX 11A            |                 | 060710 09:15:00                    |        |        |         | 3         |           |                     | #NV                 | #NV             | -1          |            | 1.67E-08             |                      | #NV                  |
| KLX 11A            |                 | 060710 10:37:00                    |        |        |         | 3         |           |                     | #NV                 | #NV             |             |            |                      |                      | #NV                  |
| KLX 11A            |                 | 060710 13:24:00                    | 843.00 |        |         | 3         |           | 2000 01 10 12.02.00 | 2006-07-10 13:02:16 |                 |             |            |                      | 8.33E-04             | 1.26E-04             |
| KLX 11A            |                 | 060710 14:56:00                    |        |        |         | 3         | _         |                     | #NV                 | #NV             | -1          |            | 1.67E-08             |                      | #NV                  |
| KLX 11A            | 060712 07:38:00 | 060712 09:06:00                    | 303.00 | 308.00 |         | 3         | 1         | 2006-07-12 08:24:00 | 2006-07-12 08:24:10 | 1.06E-05        | 0           | 1.16E-05   | 1.67E-08             | 8.33E-04             | 1.39E-02             |

|         |        |        | dur flow p | dur rec p | initial_head_ | head at flow e final head h i | nitial press | press_at_flow_e | final press | fluid temp t | fluid elcond e | fluid_salinity_t | fluid_salinity_t |           |          | $\Box$ |
|---------|--------|--------|------------|-----------|---------------|-------------------------------|--------------|-----------------|-------------|--------------|----------------|------------------|------------------|-----------|----------|--------|
| idcode  | secup  | seclow | hase tp    | hase tf   | hi            |                               | oi           |                 | pf          | ew           | cw             | dsw              | dswm             | reference | comments | lp     |
| KLX 11A | 103.00 | 203.00 |            | _         |               | 11.45                         | 1837         | _               | 1840        |              |                |                  |                  |           |          | 153.00 |
| KLX 11A | 203.00 |        |            |           |               | 10.70                         | 2776         |                 | 2777        |              |                |                  |                  |           |          | 253.00 |
| KLX 11A | 303.00 | 403.00 |            |           |               | 10.58                         | 3712         |                 | 3713        |              |                |                  |                  |           |          | 353.00 |
| KLX 11A | 403.00 |        |            |           |               | 12.21                         | 4650         |                 | 4650        |              |                |                  |                  |           |          | 453.00 |
| KLX 11A | 503.00 | 603.00 |            |           |               | 12.66                         | 5580         |                 | 5600        |              |                |                  |                  |           |          | 553.00 |
| KLX 11A | 603.00 | 703.00 |            |           |               | 14.05                         | 6549         |                 | 6586        |              |                |                  |                  |           |          | 653.00 |
| KLX 11A | 703.00 | 803.00 |            |           |               | 14.06                         | 7477         |                 | 7451        | 18.6         |                |                  |                  |           |          | 753.00 |
| KLX 11A | 803.00 | 903.00 |            |           |               | 13.37                         | 8354         |                 | 8352        |              |                |                  |                  |           |          | 853.00 |
| KLX 11A | 876.00 |        |            |           |               | #NV                           | 9042         |                 | 9202        |              |                |                  |                  |           |          | 926.00 |
| KLX 11A | 103.00 | 123.00 |            |           |               | 10.46                         | 1093         |                 | 1093        |              |                |                  |                  |           |          | 113.00 |
| KLX 11A | 123.00 |        |            |           |               | 9.97                          | 1275         |                 | 1275        |              |                |                  |                  |           |          | 133.00 |
| KLX 11A | 143.00 | 163.00 |            | 1800      | )             | 8.03                          | 1464         |                 | 1469        |              |                |                  |                  |           |          | 153.00 |
| KLX 11A | 163.00 | 183.00 |            | 1200      | )             | 10.02                         | 1648         | 1849            | 1651        | 9.2          |                |                  |                  |           |          | 173.00 |
| KLX 11A | 183.00 | 203.00 |            | #NV       | ,             | #NV                           | #NV          | #NV             | #NV         |              |                |                  |                  |           |          | 193.00 |
| KLX 11A | 203.00 | 223.00 | #NV        | #NV       | ,             | #NV                           | #NV          | #NV             | #NV         | 9.8          |                |                  |                  |           |          | 213.00 |
| KLX 11A | 223.00 | 243.00 | 10         | 2700      | )             | #NV                           | 2233         | 2458            | 2255        | 10.0         |                |                  |                  |           |          | 233.00 |
| KLX 11A | 243.00 | 263.00 | 1200       | 1200      | )             | 10.42                         | 2403         | 2616            | 2402        | 10.4         |                |                  |                  |           |          | 253.00 |
| KLX 11A | 263.00 | 283.00 | 1200       | 1200      | )             | 10.58                         | 2588         | 2789            | 2590        | 10.8         | 3              |                  |                  |           |          | 273.00 |
| KLX 11A | 283.00 | 303.00 | 10         | 2700      | )             | #NV                           | 2797         | 3034            | 2958        | 11.1         |                |                  |                  |           |          | 293.00 |
| KLX 11A | 303.00 | 323.00 | 1200       | 1200      | )             | 10.24                         | 2963         | 3187            | 2964        | 11.5         | i              |                  |                  |           |          | 313.00 |
| KLX 11A | 323.00 |        |            |           | )             | 9.51                          | 3159         |                 | 3155        |              |                |                  |                  |           |          | 333.00 |
| KLX 11A | 343.00 | 363.00 | 1200       | 1200      | )             | #NV                           | 3356         | 3551            | 3443        | 12.1         |                |                  |                  |           |          | 353.00 |
| KLX 11A | 363.00 | 383.00 | 10         | 3960      | )             | #NV                           | 3536         | 3753            | 3693        |              |                |                  |                  |           |          | 373.00 |
| KLX 11A | 383.00 | 403.00 |            | 1200      | )             | 10.04                         | 3715         | 3954            | 3712        | 12.6         | ;              |                  |                  |           |          | 393.00 |
| KLX 11A | 403.00 | 423.00 | 10         | 2460      | )             | #NV                           | 3908         | 4141            | 4062        | 12.9         | )              |                  |                  |           |          | 413.00 |
| KLX 11A | 423.00 | 443.00 |            | 1200      | )             | 11.59                         | 4088         | 4290            | 4087        |              |                |                  |                  |           |          | 433.00 |
| KLX 11A | 443.00 | 463.00 |            |           |               | 11.35                         | 4269         |                 | 4269        |              |                |                  |                  |           |          | 453.00 |
| KLX 11A | 463.00 | 483.00 |            |           |               | #NV                           | 4485         |                 | 4572        |              |                |                  |                  |           |          | 473.00 |
| KLX 11A | 483.00 | 503.00 |            |           |               | 11.84                         | 4649         |                 | 4642        |              |                |                  |                  |           |          | 493.00 |
| KLX 11A | 503.00 |        |            |           |               | 11.80                         | 4837         |                 | 4838        |              |                |                  |                  |           |          | 513.00 |
| KLX 11A | 523.00 | 543.00 |            |           |               | 12.57                         | 5024         |                 | 5023        |              |                |                  |                  |           |          | 533.00 |
| KLX 11A | 543.00 |        |            |           |               | #NV                           | 5219         |                 | 5349        |              |                |                  |                  |           |          | 553.00 |
| KLX 11A | 563.00 | 583.00 |            |           |               | 12.47                         | 5392         |                 | 5394        |              |                |                  |                  |           |          | 573.00 |
| KLX 11A | 583.00 | 603.00 |            |           |               | 12.91                         | 5585         |                 | 5590        |              |                |                  |                  |           |          | 593.00 |
| KLX 11A | 603.00 | 623.00 |            |           |               | #NV                           | 5778         |                 | 5930        |              |                |                  |                  |           |          | 613.00 |
| KLX 11A | 623.00 | 643.00 |            |           |               | #NV                           | 5963         |                 | 6172        |              |                |                  |                  |           |          | 633.00 |
| KLX 11A | 643.00 |        |            |           |               | #NV                           | 6153         |                 | 6133        |              |                |                  |                  |           |          | 653.00 |
| KLX 11A | 663.00 | 683.00 |            |           |               | 12.80                         | 6327         |                 | 6411        |              |                |                  |                  |           |          | 673.00 |
| KLX 11A | 683.00 |        |            |           |               | #NV                           | 6516         |                 | 6556        |              |                |                  |                  |           |          | 693.00 |
| KLX 11A | 703.00 | 723.00 |            |           |               | #NV                           | 6718         |                 | 6761        | 17.3         |                |                  |                  |           |          | 713.00 |
| KLX 11A | 723.00 | 743.00 |            |           |               | #NV                           | #NV          |                 | #NV         |              |                |                  |                  | 1         |          | 733.00 |
| KLX 11A | 743.00 | 763.00 |            |           |               | #NV                           | #NV          |                 | #NV         |              |                |                  |                  | -         |          | 753.00 |
| KLX 11A | 763.00 | 783.00 |            |           |               | #NV                           | #NV          |                 | #NV         |              |                |                  |                  | -         |          | 773.00 |
| KLX 11A | 783.00 | 803.00 |            |           |               | #NV                           | #NV          | #NV             | #NV         |              |                | -                |                  | +         | 1        | 793.00 |
| KLX 11A | 803.00 | 823.00 |            |           |               | #NV                           | #NV          | #NV             | #NV         |              |                | -                |                  | +         | 1        | 813.00 |
| KLX 11A | 823.00 | 843.00 |            |           |               | #NV                           | #NV          |                 | #NV         |              |                |                  |                  | +         | +        | 833.00 |
| KLX 11A | 843.00 | 863.00 |            |           |               | #NV                           | 7983         |                 | 8013<br>#NV |              |                |                  |                  | +         | +        | 853.00 |
| KLX 11A | 863.00 | 883.00 |            |           |               | #NV                           | #NV          |                 |             |              |                | 1                |                  | 1         | 1        | 873.00 |
| KLX 11A | 303.00 | 308.00 | 1200       | 1200      | '             | 10.66                         | 2823         | 3024            | 2823        | 11.1         |                | 1                |                  | 1         |          | 305.50 |

|         |                 |                 | I      | l      | section | 1         | formation |                     |                     | flow_rate_end_ | value_type_ | mean_flow_ | 1         |             |              |
|---------|-----------------|-----------------|--------|--------|---------|-----------|-----------|---------------------|---------------------|----------------|-------------|------------|-----------|-------------|--------------|
| idcode  | start date      | stop_date       | secup  | seclow | no      | test_type | type      | start flow period   | stop flow period    | gp             | qp          | rate_qm    | g measl I | g measl u t | ot volume vn |
| KLX 11A | 060712 09:30:00 |                 | 308.00 |        | 110     | 3         |           | 2006-07-12 10:08:49 | 2006-07-12 10:28:59 | 5.33E-05       |             |            |           |             | 6.73E-02     |
| KLX 11A | 060712 11:13:00 |                 | 313.00 |        |         | 3         |           | #NV                 | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060712 13:09:00 |                 | 318.00 |        |         | 3         | •         | #NV                 | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060712 14:31:00 |                 | 343.00 |        |         | 3         | 1         | 2006-07-12 15:29:26 | 2006-07-12 15:49:36 | 1.67E-07       | 0           |            |           |             | 4.00E-04     |
| KLX 11A | 060712 16:38:00 |                 | 348.00 |        |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060712 17:56:00 |                 | 353.00 |        |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          | #NV        | 1.67E-08  |             | #NV          |
| KLX 11A | 060713 07:52:00 | 060713 08:41:00 | 358.00 | 363.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          | #NV        | 1.67E-08  | 8.33E-04    | #NV          |
| KLX 11A | 060713 09:14:00 | 060713 10:05:00 | 383.00 | 388.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          | #NV        | 1.67E-08  | 8.33E-04    | #NV          |
| KLX 11A | 060713 10:28:00 | 060713 11:17:00 | 388.00 | 393.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          | #NV        | 1.67E-08  | 8.33E-04    | #NV          |
| KLX 11A | 060713 12:29:00 | 060713 13:20:00 | 393.00 | 398.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          | #NV        | 1.67E-08  | 8.33E-04    | #NV          |
| KLX 11A | 060713 13:44:00 | 060713 15:16:00 | 398.00 | 403.00 |         | 3         | 1         | 2006-07-13 14:34:34 | 2006-07-13 14:54:44 | 8.33E-08       | 0           | 8.33E-08   | 1.67E-08  | 8.33E-04    | 1.00E-04     |
| KLX 11A | 060713 15:46:00 | 060713 16:55:00 | 423.00 | 428.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          | #NV        | 1.67E-08  | 8.33E-04    | #NV          |
| KLX 11A | 060713 16:59:00 |                 | 428.00 | 433.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          | #NV        | 1.67E-08  | 8.33E-04    | #NV          |
| KLX 11A | 060714 07:59:00 | 060714 08:46:00 | 433.00 | 438.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          | #NV        | 1.67E-08  | 8.33E-04    | #NV          |
| KLX 11A | 060714 09:17:00 | 060714 10:39:00 | 438.00 |        |         | 3         | 1         | 2006-07-14 09:57:00 | 2006-07-14 10:17:10 | 1.17E-06       | 0           |            |           |             | 1.39E-03     |
| KLX 11A | 060714 11:06:00 | 060714 12:51:00 | 442.00 |        |         | 3         | 1         | 2006-07-14 11:42:39 | 2006-07-14 11:42:49 | #NV            | 0           |            |           |             | 8.07E-06     |
| KLX 11A | 060714 13:16:00 |                 | 447.00 |        |         | 3         |           | 2006-07-14 13:55:05 | 2006-07-14 14:15:15 | 2.17E-07       | 0           |            |           |             | 2.60E-04     |
| KLX 11A | 060714 15:01:00 |                 | 452.00 |        |         | 3         |           | 2006-07-14 15:40:42 | 2006-07-14 16:00:52 | 2.83E-07       | 0           |            |           |             | 3.54E-04     |
| KLX 11A | 060714 16:45:00 |                 | 457.00 |        |         | 3         | •         | #NV                 | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060714 18:01:00 |                 | 462.00 | 467.00 |         | 3         |           | #1 <b>4 V</b>       | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060715 08:16:00 |                 | 483.00 | 488.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060715 09:29:00 | 060715 10:19:00 | 488.00 |        |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060715 10:47:00 |                 | 493.00 |        |         | 3         |           | 2006-07-15 13:08:52 | 2006-07-15 13:09:02 | #NV            | 0           |            |           |             | 2.69E-06     |
| KLX 11A | 060715 14:04:00 |                 | 498.00 |        |         | 3         |           | 2006-07-15 14:47:28 | 2006-07-15 15:07:38 | 8.33E-08       | 0           |            |           |             | 1.20E-04     |
| KLX 11A | 060715 15:53:00 | 060715 17:47:00 | 503.00 |        |         | 3         | 1         | 2006-07-15 17:05:25 | 2006-07-15 17:25:35 | 2.83E-07       | 0           |            |           | 8.33E-04    | 3.40E-04     |
| KLX 11A | 060715 18:09:00 | 060715 21:14:00 | 508.00 | 513.00 |         | 3         | 1         | 2006-07-15 18:52:09 | 2006-07-15 19:12:19 | 2.67E-07       | 0           | 3.12E-07   | 1.67E-08  | 8.33E-04    | 3.74E-04     |
| KLX 11A | 060716 08:05:00 |                 | 513.00 |        |         | 3         |           | 2006-08-08 16:33:36 | 2006-08-08 16:53:46 | 1.93E-05       | 0           |            |           |             | 2.38E-02     |
| KLX 11A | 060808 17:47:00 |                 | 518.00 |        |         | 3         |           | 2006-08-08 18:55:36 | 2006-08-08 19:15:46 | 5.12E-05       |             |            |           |             | 6.40E-02     |
| KLX 11A | 060809 08:08:00 |                 | 523.00 |        |         | 3         |           | 2006-08-09 08:59:28 | 2006-08-09 09:19:38 | 1.43E-07       | 0           |            |           |             | 1.72E-04     |
| KLX 11A | 060809 10:08:00 |                 | 528.00 |        |         | 3         |           | 2006-08-09 10:52:02 | 2006-08-09 11:12:12 | 7.83E-07       | 0           |            |           |             | 1.00E-03     |
| KLX 11A | 060809 12:48:00 |                 | 533.00 |        |         | 3         |           | 2006-08-09 13:34:21 | 2006-08-09 13:54:31 | 1.67E-06       | 0           |            |           |             | 2.10E-03     |
| KLX 11A | 060809 14:40:00 |                 | 538.00 |        |         | 3         |           | 2006-08-09 15:37:49 | 2006-08-09 15:57:59 | 3.33E-08       |             |            |           |             | 5.40E-05     |
| KLX 11A | 060809 16:59:00 |                 | 563.00 | 568.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060809 18:17:00 |                 | 568.00 | 573.00 |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          |            | 1.67E-08  |             | #NV          |
| KLX 11A | 060810 08:06:00 |                 | 573.00 |        |         | 3         |           | 2006-08-10 08:52:30 | 2006-08-10 09:12:40 | 6.85E-05       |             |            |           |             | 8.42E-02     |
| KLX 11A | 060810 10:02:00 |                 | 578.00 |        |         | 3         |           | 2006-08-10 10:46:37 | 2006-08-10 11:06:47 | 9.33E-05       | 0           |            |           |             | 1.17E-01     |
| KLX 11A | 060810 12:20:00 |                 | 583.00 |        |         | 3         |           | 2006-08-10 13:03:30 | 2006-08-10 13:03:40 | #NV            | 0           |            |           |             | 2.97E-06     |
| KLX 11A | 060810 14:41:00 | 060810 16:05:00 | 588.00 |        |         | 3         | 1         | #NV                 | #NV                 | #NV            | -1          |            |           |             | #NV          |
| KLX 11A | 060810 16:33:00 |                 | 593.00 |        |         | 3         |           | 2006-08-10 17:12:19 | 2006-08-10 17:12:29 | #NV            | 0           |            |           |             | 4.50E-06     |
| KLX 11A | 060811 08:01:00 |                 | 598.00 |        |         | 3         | 1         | 2006-08-11 08:44:30 | 2006-08-11 09:44:40 | 4.48E-06       | 0           |            |           |             | 5.76E-03     |
| KLX 11A | 060811 10:29:00 |                 | 663.00 |        |         | 3         | 1         | 2006-08-11 12:18:56 | 2006-08-11 12:39:06 | 1.67E-08       | 0           |            |           |             | 3.00E-05     |
| KLX 11A | 060811 13:30:00 |                 | 668.00 |        |         | 3         | 1         | 2006-08-11 14:08:51 | 2006-08-11 14:09:01 | #NV            | 0           |            |           |             | 3.81E-06     |
| KLX 11A | 060811 15:38:00 |                 | 673.00 |        |         | 3         | •         | 2006-08-11 16:15:05 | 2006-08-11 16:15:15 | #NV            | 0           |            |           |             | 2.92E-06     |
| KLX 11A | 060811 17:45:00 | 060811 20:53:00 | 678.00 | 683.00 |         | 3         | 1         | 2006-08-11 18:21:34 | 2006-08-11 18:21:44 | #NV            | 0           | #NV        | 1.67E-08  | 8.33E-04    | 3.75E-06     |

|                    |                  |        | dur flow p | dur rec p | initial head | head_at_flow_e final_head_h | initial press | press at flow e | final press  | fluid temp t | fluid elcond e | fluid_salinity_t | fluid_salinity_t |           |          | $\top$           |
|--------------------|------------------|--------|------------|-----------|--------------|-----------------------------|---------------|-----------------|--------------|--------------|----------------|------------------|------------------|-----------|----------|------------------|
| idcode             | secup            | seclow |            | hase tf   | hi           | nd_hp f                     |               |                 | pf           | ew           | cw             | dsw              | dswm             | reference | comments | al               |
| KLX 11A            | 308.00           |        |            | _         | )            | 10.48                       | 2871          |                 | 2871         |              |                |                  |                  |           |          | 310.50           |
| KLX 11A            | 313.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 315.50           |
| KLX 11A            | 318.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          | 11.5         |                |                  |                  |           |          | 320.50           |
| KLX 11A            | 343.00           |        |            |           |              | #NV                         | 3222          |                 | 3312         |              |                |                  |                  |           |          | 345.50           |
| KLX 11A            | 348.00           | 353.00 | #NV        | #NV       | /            | #NV                         | #NV           | #NV             | #NV          | 11.9         |                |                  |                  |           |          | 350.50           |
| KLX 11A            | 353.00           | 358.00 | #NV        | #NV       | /            | #NV                         | #NV           | #NV             | #NV          | 12.0         |                |                  |                  |           |          | 355.50           |
| KLX 11A            | 358.00           |        |            | #NV       | /            | #NV                         | #NV           | #NV             | #NV          |              |                |                  |                  |           |          | 360.50           |
| KLX 11A            | 383.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 385.50           |
| KLX 11A            | 388.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 390.50           |
| KLX 11A            | 393.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 395.50           |
| KLX 11A            | 398.00           |        |            |           |              | 11.32                       | 3717          |                 | 3715         |              |                |                  |                  |           |          | 400.50           |
| KLX 11A            | 423.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          | 13.0         |                |                  |                  |           |          | 425.50           |
| KLX 11A            | 428.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 430.50           |
| KLX 11A            | 433.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 435.50           |
| KLX 11A            | 438.00           |        |            |           |              | 11.68                       | 4087          |                 | 4088         |              |                |                  |                  |           |          | 440.50           |
| KLX 11A            | 442.00           |        |            |           |              | #NV                         | 4147          |                 | 4150         |              |                |                  |                  |           |          | 444.50           |
| KLX 11A            | 447.00           |        |            |           |              | 12.05                       | 4176          |                 | 4175         |              |                |                  |                  |           |          | 449.50           |
| KLX 11A            | 452.00           |        |            |           |              | 12.02                       | 4222          |                 | 4221         | 13.4         |                |                  |                  |           |          | 454.50           |
| KLX 11A            | 457.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 459.50           |
| KLX 11A            | 462.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 464.50           |
| KLX 11A            | 483.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 485.50           |
| KLX 11A            | 488.00<br>493.00 |        |            |           |              | #NV                         | #NV<br>4613   |                 | #NV          |              |                |                  |                  |           |          | 490.50<br>495.50 |
| KLX 11A<br>KLX 11A | 493.00           |        |            |           |              | 12.35                       | 4652          |                 | 4617<br>4652 |              |                |                  |                  |           |          | 500.50           |
| KLX 11A            | 503.00           |        |            |           |              | 11.38                       | 4705          |                 | 4735         |              |                |                  |                  |           |          | 505.50           |
| KLX 11A            | 508.00           |        |            |           |              | 11.83                       | 4705          |                 | 4735         |              |                |                  |                  |           |          | 510.50           |
| KLX 11A            | 513.00           |        |            |           |              | 12.81                       | 4795          |                 | 4740         |              |                |                  |                  |           |          | 515.50           |
| KLX 11A            | 518.00           |        |            |           |              | 12.49                       | 4842          |                 | 4844         |              |                |                  |                  |           |          | 520.50           |
| KLX 11A            | 523.00           |        |            |           |              | 12.24                       | 4885          |                 | 4884         | 14.5         |                |                  |                  |           |          | 525.50           |
| KLX 11A            | 528.00           |        |            |           |              | 12.73                       | 4932          |                 | 4931         | 14.6         |                |                  |                  |           |          | 530.50           |
| KLX 11A            | 533.00           |        |            |           |              | 12.96                       | 4981          |                 | 4981         | 14.6         |                |                  |                  |           |          | 535.50           |
| KLX 11A            | 538.00           |        |            |           |              | 13.13                       | 5032          |                 | 5032         |              |                |                  |                  |           |          | 540.50           |
| KLX 11A            | 563.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          |              |                |                  |                  |           |          | 565.50           |
| KLX 11A            | 568.00           |        |            |           |              | #NV                         | #NV           |                 | #NV          | 15.1         |                |                  |                  |           |          | 570.50           |
| KLX 11A            | 573.00           |        |            | 1200      | )            | 12.90                       | 5350          | 5550            | 5351         | 15.2         |                |                  |                  |           |          | 575.50           |
| KLX 11A            | 578.00           | 583.00 | 1200       | 1200      | )            | 13.02                       | 5397          | 5598            | 5399         | 15.1         |                |                  |                  |           |          | 580.50           |
| KLX 11A            | 583.00           | 588.00 | 10         | 3888      | 3            | #NV                         | 5452          | 5694            | 5519         | 15.4         |                |                  |                  |           |          | 585.50           |
| KLX 11A            | 588.00           | 593.00 | #NV        | #NV       | /            | #NV                         | #NV           | #NV             | #NV          | 15.4         |                |                  |                  |           |          | 590.50           |
| KLX 11A            | 593.00           |        |            | 3679      | 9            | #NV                         | 5546          |                 | 5719         |              |                |                  |                  |           |          | 595.50           |
| KLX 11A            | 598.00           |        |            |           |              | 13.12                       | 5582          | 5782            | 5586         |              |                |                  |                  |           |          | 600.50           |
| KLX 11A            | 663.00           | 668.00 |            |           |              | #NV                         | 6196          |                 | 6261         | 16.5         |                |                  |                  |           |          | 665.50           |
| KLX 11A            | 668.00           |        |            |           |              | #NV                         | 6245          |                 | 6366         |              |                |                  |                  |           |          | 670.50           |
| KLX 11A            | 673.00           |        |            |           |              | #NV                         | 6288          |                 | 6296         |              |                |                  |                  |           |          | 675.50           |
| KLX 11A            | 678.00           | 683.00 | 10         | 9105      | 5            | #NV                         | 6332          | 6578            | 6338         | 16.8         |                |                  |                  |           |          | 680.50           |

Table plu\_s\_hole\_test\_ed1

PLU Single hole tests, pumping/injection. Basic evaluation

| Column                              | Datatype       | Unit          | Column Description                                                                                                                 |
|-------------------------------------|----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|
| site                                | CHAR           |               | Investigation site name                                                                                                            |
| activity_type                       | CHAR           |               | Activity type code                                                                                                                 |
| start_date                          | DATE           |               | Date (yymmdd hh:mm:ss)                                                                                                             |
| stop_date                           | DATE           |               | Date (yymmdd hh:mm:ss)                                                                                                             |
| project                             | CHAR           |               | project code                                                                                                                       |
| idcode                              | CHAR           |               | Object or borehole identification code                                                                                             |
| secup                               | FLOAT          | m             | Upper section limit (m)                                                                                                            |
| seclow                              | FLOAT          | m             | Lower section limit (m)                                                                                                            |
| section_no                          | INTEGER        | number        | Section number                                                                                                                     |
| test_type                           | CHAR           |               | Test type code (1-7), see table description!                                                                                       |
| formation_type                      | CHAR           |               | Formation type code. 1: Rock, 2: Soil (superficial deposits)                                                                       |
| lp                                  | FLOAT          | m<br>         | Hydraulic point of application for test section, see descr.                                                                        |
| seclen_class                        | FLOAT<br>FLOAT | m<br>m**2/s   | Planned ordinary test interval during test campaign.  Specific capacity (Q/s) of test section, see table descript.                 |
| spec_capacity_q_s<br>value_type_q_s | CHAR           | 111 2/5       | 0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>                                                         |
| transmissivity_tq                   | FLOAT          | m**2/s        | Tranmissivity based on Q/s, see table description                                                                                  |
| value_type_tq                       | CHAR           | 23            | 0:true value,-1:TQ <lower meas.limit,1:tq="">upper meas.limit.</lower>                                                             |
| bc_tq                               | CHAR           |               | Best choice code. 1 means TQ is best choice of T, else 0                                                                           |
| transmissivity_moye                 | FLOAT          | m**2/s        | Transmissivity,TM, based on Moye (1967)                                                                                            |
| bc_tm                               | CHAR           |               | Best choice code. 1 means Tmoye is best choice of T, else 0                                                                        |
| value_type_tm                       | CHAR           |               | 0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>                                                             |
| hydr_cond_moye                      | FLOAT          | m/s           | K_M: Hydraulic conductivity based on Moye (1967)                                                                                   |
| formation_width_b                   | FLOAT          | m             | b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.                                                                        |
| width_of_channel_b                  | FLOAT          | m             | B:Inferred width of formation for evaluated TB                                                                                     |
| tb                                  | FLOAT          | m**3/s        | TB:Flow capacity in 1D formation of T & width B, see descr.                                                                        |
| I_measl_tb                          | FLOAT          | m**3/s        | Estimated lower meas. limit for evaluated TB,see description                                                                       |
| u_measl_tb                          | FLOAT          | m**3/s        | Estimated upper meas. limit of evaluated TB,see description                                                                        |
| sb                                  | FLOAT          | m             | SB:S=storativity,B=width of formation,1D model,see descript.                                                                       |
| assumed_sb                          | FLOAT          | m             | SB* : Assumed SB,S=storativity,B=width of formation,see                                                                            |
| leakage_factor_lf                   | FLOAT          | m             | Lf:1D model for evaluation of Leakage factor                                                                                       |
| transmissivity_tt                   | FLOAT          | m**2/s        | TT:Transmissivity of formation, 2D radial flow model,see                                                                           |
| value_type_tt                       | CHAR           |               | 0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>                                                             |
| bc_tt                               | CHAR           | ****          | Best choice code. 1 means TT is best choice of T, else 0                                                                           |
| I_measl_q_s                         | FLOAT          | m**2/s        | Estimated lower meas. limit for evaluated TT,see table descr                                                                       |
| u_measl_q_s                         | FLOAT          | m**2/s        | Estimated upper meas. limit for evaluated TT,see description                                                                       |
| storativity_s                       | FLOAT          |               | S:Storativity of formation based on 2D rad flow,see descr.                                                                         |
| assumed_s<br>bc_s                   | FLOAT<br>FLOAT |               | Assumed Storativity,2D model evaluation,see table descr.  Best choice of S (Storativity) ,see descr.                               |
| ri                                  | FLOAT          | m             | Radius of influence                                                                                                                |
| ri_index                            | CHAR           |               | ri index=index of radius of influence :-1,0 or 1, see descr.                                                                       |
| leakage_coeff                       | FLOAT          | 1/s           | K'/b':2D rad flow model evaluation of leakage coeff,see desc                                                                       |
| hydr_cond_ksf                       | FLOAT          | m/s           | Ksf:3D model evaluation of hydraulic conductivity, see desc.                                                                       |
| value_type_ksf                      | CHAR           |               | 0:true value,-1:Ksf <lower meas.limit,1:ksf="">upper meas.limit,</lower>                                                           |
| I_measl_ksf                         | FLOAT          | m/s           | Estimated lower meas.limit for evaluated Ksf,see table desc.                                                                       |
| u_measl_ksf                         | FLOAT          | m/s           | Estimated upper meas.limit for evaluated Ksf,see table descr                                                                       |
| spec_storage_ssf                    | FLOAT          | 1/m           | Ssf:Specific storage,3D model evaluation,see table descr.                                                                          |
| assumed_ssf                         | FLOAT          | 1/m           | Ssf*:Assumed Spec.storage,3D model evaluation,see table des.                                                                       |
| С                                   | FLOAT          | m**3/pa       | C: Wellbore storage coefficient; flow or recovery period                                                                           |
| cd                                  | FLOAT          |               | CD: Dimensionless wellbore storage coefficient                                                                                     |
| skin                                | FLOAT          |               | Skin factor;best estimate of flow/recovery period,see descr.                                                                       |
| dt1                                 | FLOAT          | s             | Estimated start time of evaluation, see table description                                                                          |
| dt2                                 | FLOAT          | S             | Estimated stop time of evaluation. see table description                                                                           |
| t1                                  | FLOAT          | s             | Start time for evaluated parameter from start flow period                                                                          |
| t2                                  | FLOAT          | S             | Stop time for evaluated parameter from start of flow period                                                                        |
| dte1                                | FLOAT          | S             | Start time for evaluated parameter from start of recovery                                                                          |
| dte2                                | FLOAT          | S             | Stop time for evaluated parameter from start of recovery                                                                           |
| p_horner                            | FLOAT          | kPa<br>m**3/a | p*:Horner extrapolated pressure, see table description                                                                             |
| transmissivity_t_nlr                | FLOAT          | m**2/s        | T_NLR Transmissivity based on None Linear Regression                                                                               |
| storativity_s_nlr                   | FLOAT<br>CHAR  |               | S_NLR=storativity based on None Linear Regression,see                                                                              |
| value_type_t_nlr<br>bc_t_nlr        | CHAR           |               | 0:true value,-1:T_NLR <lower meas.limit,1:="">upper meas.limit Best choice code. 1 means T_NLR is best choice of T, else 0</lower> |
| c_nlr                               | FLOAT          | m**3/pa       | Wellbore storage coefficient, based on NLR, see descr.                                                                             |
| cd_nir                              | FLOAT          | 0.pu          | Dimensionless wellbore storage constant, see table descrip.                                                                        |
| skin_nlr                            | FLOAT          |               | Skin factor based on Non Linear Regression,see desc.                                                                               |
| transmissivity_t_grf                | FLOAT          | m**2/s        | T_GRF:Transmissivity based on Genelized Radial Flow,see                                                                            |
| value_type_t_grf                    | CHAR           |               | 0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>                                                             |
| bc_t_grf                            | CHAR           |               | Best choice code. 1 means T_GRF is best choice of T, else 0                                                                        |
| storativity_s_grf                   | FLOAT          |               | S_GRF:Storativity based on Generalized Radial Flow, see des.                                                                       |
| flow_dim_grf                        | FLOAT          |               | Inferred flow dimesion based on Generalized Rad. Flow model                                                                        |
| comment                             | VARCHAR        | no_unit       | Short comment to the evaluated parameters                                                                                          |
| error_flag                          | CHAR           |               | If error_flag = "*" then an error occured and an error                                                                             |
| in_use                              | CHAR           |               | If in_use = "*" then the activity has been selected as                                                                             |
| sign                                | CHAR           |               | Signature for QA data accknowledge (QA - OK)                                                                                       |
|                                     |                |               |                                                                                                                                    |

|         |                 |                 |        |        |            |           | formation_t | t      |              | spec_capacity | value_type_ | transmissivity | value_type_ |       | transmissivity_ |
|---------|-----------------|-----------------|--------|--------|------------|-----------|-------------|--------|--------------|---------------|-------------|----------------|-------------|-------|-----------------|
| idcode  | start_date      | stop_date       | secup  | seclow | section_no | test_type | ype         | lp     | seclen_class | q_s           | q_s         | _tq            |             | bc_tq | moye            |
| KLX 11A | 060629 14:32:00 | 060629 16:40:00 | 103.00 | 203.00 |            | 3         | 1           | 153.00 | 100          | 6.51E-06      | 6 0         |                |             |       | 8.47E-06        |
| KLX 11A | 060629 18:03:00 | 060629 20:21:00 | 203.00 | 303.00 |            | 3         | 1           | 253.00 | 100          | 7.48E-06      | 3 0         |                |             |       | 9.74E-06        |
| KLX 11A | 060630 09:15:00 | 060630 11:12:00 | 303.00 | 403.00 |            | 3         | 1           | 353.00 | 100          | 2.85E-06      | 3 0         |                |             |       | 3.71E-06        |
| KLX 11A | 060630 13:11:00 | 060630 15:20:00 | 403.00 | 503.00 |            | 3         | 1           | 453.00 | 100          | 5.61E-08      | 3 0         |                |             |       | 7.31E-08        |
| KLX 11A | 060701 08:47:00 | 060701 10:50:00 | 503.00 | 603.00 |            | 3         |             | 553.00 |              |               |             |                |             |       | 1.14E-05        |
| KLX 11A | 060701 12:14:00 | 060701 15:43:00 | 603.00 | 703.00 |            | 3         | 1           | 653.00 | 100          | 1.60E-09      | 9 0         |                |             |       | 2.08E-09        |
| KLX 11A | 060701 17:09:00 | 060702 01:32:00 | 703.00 | 803.00 |            | 3         | 1           | 753.00 | 100          | 1.61E-09      | 9 0         |                |             |       | 2.10E-09        |
| KLX 11A | 060702 09:11:00 | 060702 13:33:00 | 803.00 | 903.00 |            | 3         | 1           | 853.00 | 100          | 3.62E-09      | 9 0         |                |             |       | 2.78E-09        |
| KLX 11A | 060702 14:45:00 | 060702 16:49:00 | 876.00 | 976.00 |            | 4B        | 1           | 926.00 | 100          | #N\           | / -1        |                |             |       | #NV             |
| KLX 11A | 060704 08:19:00 | 060704 09:46:00 | 103.00 | 123.00 |            | 3         | 1           | 113.00 | 20           | 1.14E-06      | 3 0         |                |             |       | 1.20E-06        |
| KLX 11A | 060704 10:31:00 | 060704 11:54:00 | 123.00 | 143.00 |            | 3         | 1           | 133.00 | 20           | 3.19E-06      | 3 0         |                |             |       | 3.34E-06        |
| KLX 11A | 060704 12:49:00 | 060704 14:32:00 | 143.00 | 163.00 |            | 3         |             | 153.00 |              |               |             |                |             |       | 3.31E-07        |
| KLX 11A | 060704 15:05:00 | 060704 16:33:00 | 163.00 | 183.00 |            | 3         | 1           | 173.00 | 20           | 2.03E-06      | 3 0         |                |             |       | 2.13E-06        |
| KLX 11A | 060704 17:12:00 | 060704 18:14:00 | 183.00 | 203.00 |            | 3         | 1           | 193.00 | 20           | #N\           | / -1        |                |             |       | #NV             |
| KLX 11A | 060704 18:50:00 | 060704 19:46:00 | 203.00 | 223.00 |            | 3         |             | 213.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060705 08:38:00 | 060705 10:07:00 | 223.00 |        |            | 4B        |             | 233.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060705 10:48:00 | 060705 12:22:00 | 243.00 | 263.00 |            | 3         | 1           | 253.00 |              |               | 3 0         |                |             |       | 3.21E-08        |
| KLX 11A | 060705 13:18:00 | 060705 14:44:00 | 263.00 | 283.00 |            | 3         | 1           | 273.00 | 20           | 8.05E-06      | 3 0         |                |             |       | 8.42E-06        |
| KLX 11A | 060705 15:25:00 | 060705 16:51:00 | 283.00 | 303.00 |            | 4B        | 1           | 293.00 | 20           | #N\           | / -1        |                |             |       | #NV             |
| KLX 11A | 060705 17:25:00 | 060705 18:49:00 | 303.00 | 323.00 |            | 3         |             | 313.00 |              |               |             |                |             |       | 2.98E-06        |
| KLX 11A | 060705 19:21:00 | 060706 00:42:00 | 323.00 | 343.00 |            | 3         |             | 333.00 |              |               |             |                |             |       | 1.57E-10        |
| KLX 11A | 060706 08:48:00 | 060706 10:30:00 | 343.00 | 363.00 |            | 3         |             | 353.00 |              |               |             |                |             |       | 7.89E-09        |
| KLX 11A | 060706 11:03:00 | 060706 12:55:00 | 363.00 | 383.00 |            | 4B        |             | 373.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060706 13:34:00 | 060706 15:02:00 | 383.00 | 403.00 |            | 3         |             | 393.00 |              |               |             |                |             |       | 3.58E-09        |
| KLX 11A | 060706 15:54:00 | 060706 17:22:00 | 403.00 |        |            | 4B        |             | 413.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060706 17:56:00 | 060706 19:21:00 | 423.00 | 443.00 |            | 3         |             | 433.00 |              |               |             |                |             |       | 5.08E-08        |
| KLX 11A | 060707 08:32:00 | 060707 10:01:00 | 443.00 | 463.00 |            | 3         |             | 453.00 |              |               |             |                |             |       | 2.10E-08        |
| KLX 11A | 060707 10:33:00 | 060707 12:34:00 | 463.00 | 483.00 |            | 4B        |             | 473.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060707 13:12:00 | 060707 14:44:00 | 483.00 | 503.00 |            | 3         |             | 493.00 |              |               |             |                |             |       | 4.79E-09        |
| KLX 11A | 060707 15:12:00 | 060707 16:39:00 | 503.00 |        |            | 3         |             | 513.00 |              |               |             |                |             |       | 2.99E-06        |
| KLX 11A | 060707 17:07:00 | 060707 18:30:00 | 523.00 | 543.00 |            | 3         |             | 533.00 |              |               |             |                |             |       | 6.71E-08        |
| KLX 11A | 060707 19:07:00 | 060708 08:26:00 | 543.00 | 563.00 |            | 4B        |             | 553.00 |              |               | / -1        |                |             |       | #NV             |
| KLX 11A | 060708 08:58:00 | 060708 10:21:00 | 563.00 |        |            | 3         |             | 573.00 |              |               |             |                |             |       | 7.60E-06        |
| KLX 11A | 060708 10:53:00 | 060708 12:23:00 | 583.00 |        |            | 3         |             | 593.00 |              |               |             |                |             |       | 2.21E-07        |
| KLX 11A | 060708 13:17:00 | 060708 14:41:00 | 603.00 | 623.00 |            | 4B        |             | 613.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060708 15:12:00 | 060708 16:39:00 | 623.00 | 643.00 |            | 4B        |             | 633.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060708 17:11:00 | 060708 18:34:00 | 643.00 |        |            | 4B        |             | 653.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060708 19:06:00 | 060709 08:39:00 | 663.00 |        |            | 3         |             | 673.00 |              |               |             |                |             |       | 6.68E-10        |
| KLX 11A | 060709 09:11:00 | 060709 10:40:00 | 683.00 | 703.00 |            | 4B        | 1           | 693.00 | 20           | #N\           | / -1        |                |             |       | #NV             |
| KLX 11A | 060709 11:08:00 | 060709 13:27:00 | 703.00 | 723.00 |            | 3         |             | 713.00 |              |               | 9 0         |                |             |       | 2.44E-09        |
| KLX 11A | 060709 13:58:00 | 060709 15:13:00 | 723.00 | 743.00 |            | 4B        | 1           | 733.00 | 20           | #N\           | / -1        |                |             |       | #NV             |
| KLX 11A | 060709 15:45:00 | 060709 16:56:00 | 743.00 | 763.00 |            | 4B        | 1           | 753.00 |              |               | / -1        |                |             |       | #NV             |
| KLX 11A | 060709 17:25:00 | 060709 18:10:00 | 763.00 | 783.00 |            | 4B        |             | 773.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060709 18:43:00 | 060709 20:01:00 | 783.00 | 803.00 |            | 4B        |             | 793.00 |              |               | / -1        |                |             |       | #NV             |
| KLX 11A | 060710 08:19:00 | 060710 09:15:00 | 803.00 |        |            | 3         |             | 813.00 |              |               |             |                |             |       | #NV             |
| KLX 11A | 060710 09:45:00 | 060710 10:37:00 | 823.00 | 843.00 |            | 3         |             | 833.00 |              |               | / -1        |                |             |       | #NV             |
| KLX 11A | 060710 11:10:00 | 060710 13:24:00 | 843.00 | 863.00 |            | 3         |             | 853.00 |              |               |             |                |             |       | 2.85E-09        |
| KLX 11A | 060710 14:04:00 | 060710 14:56:00 | 863.00 | 883.00 |            | 3         |             | 873.00 |              |               | -           |                |             |       | #NV             |
| KLX 11A | 060712 07:38:00 | 060712 09:06:00 | 303.00 | 308.00 |            | 3         |             | 305.50 |              |               | 7 0         |                |             |       | 4.26E-07        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |        |       | value_type_t | hydr_cond_ | formation | width of channe | ı |            |            | assumed | leakage f | transmissivity | value type |       |             |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|-------|--------------|------------|-----------|-----------------|---|------------|------------|---------|-----------|----------------|------------|-------|-------------|-------------|
| KLY11A   293.00   303.00   0   0   974E-94     3.21E-35   0   1   9.00E-06   5.00E-06   KLY11A   403.00   0   0   7.31E-06     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07   6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07   6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07   6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07     6.00E-07   6 | idcode  | secup  | seclow | bc_tm |              |            |           |                 | _ | l_measl_tb | u_measl_tb | _       |           |                |            | bc_tt | l_measl_q_s | u_measl_q_s |
| KLY 11A   \$30.00   403.00   0   0   3.71E.04       5.98E.06   0   1   3.00E.06   9.00E.06   KLY 11A   403.00   633.00   0   0   1.14E.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KLX 11A | 103.00 | 203.00 | 0     | 0            | 8.47E-08   |           |                 |   |            |            |         |           | 1.62E-05       | 0          | 1     | 8.00E-06    | 3.00E-05    |
| KLY 11A   \$30.00   403.00   0   0   3.71E.04       5.98E.06   0   1   3.00E.06   9.00E.06   KLY 11A   403.00   633.00   0   0   1.14E.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KLX 11A | 203.00 | 303.00 | 0     | 0            | 9.74E-04   |           |                 |   |            |            |         |           | 3.21E-05       | 0          | 1     | 9.00E-06    | 5.00E-05    |
| KLX 11A   933.00   903.00   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 303.00 | 403.00 | 0     | 0            | 3.71E-04   |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A   933.00   903.00   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | -            |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 103.00 123.00 0 0 2.40E.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        |       | -1           |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 123 00 143 00 0 0 6 68E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | 0            | 6.68E-05   |           |                 |   |            |            |         |           | 8.11E-06       | 0          | 1     | 7.00E-06    |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 203.00 223.00 0 -1 #WV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |        |       | -1           |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 223.00 243.00 0 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |        |       | -1           |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A   243.00   263.00   0   0   6.42E-07       3.68E-08   0   1   8.00E-09   8.00E-08   KLX 11A   263.00   283.00   0   0   1.68E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |        |       | -1           |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 283.00 283.00 0 0 1.08E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 283.00 303.00 0 -1 #WV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A   303.00   323.00   0   0   5.96E.05           5.77E.06   0   1   3.00E.06   9.00E.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |       | -1           |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A   323.00   343.00   0   0   3.14E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                | 0          | 1     |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                | 0          | 1     |             |             |
| KIX 11A 983.00 0 383.00 0 -1 #WV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                | 0          | 1     |             |             |
| KLX 11A   383.00   403.00   0   0   7.16E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |        |       | -1           |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       | -1           |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KIX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A   503.00   523.00   0   0   5.98E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 523.00 543.00 0 0 1.34E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A   543.00   563.00   0   -1   #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A   563.00   583.00   0   0   1.52E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A         583.00         603.00         0         4.42E-06         7.93E-07         0         1         5.00E-07         1.00E-06           KLX 11A         603.00         623.00         0         -1         #NV          4.37E-11         0         1         1.00E-11         9.00E-12         9.00E-11         9.00E-11         9.00E-11         9.00E-11         9.00E-12         9.00E-11         9.00E-11         9.00E-12         9.00E-11         9.00E-11         9.00E-11         9.00E-12         9.00E-11         9.00E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A         603.00         623.00         0         -1         #NV         4.37E-11         0         1         1.00E-11         9.00E-11           KLX 11A         623.00         643.00         0         -1         #NV          1.31E-11         0         1         9.00E-12         4.00E-11           KLX 11A         643.00         663.00         0         -1         #NV          2.12E-12         0         1         9.00E-13         6.00E-12           KLX 11A         663.00         683.00         0         0         1.34E-08          1.98E-10         0         1         9.00E-11         7.00E-10           KLX 11A         683.00         703.00         0         -1         #NV          1.55E-10         0         1         6.00E-11         3.00E-10           KLX 11A         703.00         723.00         0         0         4.88E-08          2.57E-10         0         1         8.00E-11         6.00E-10           KLX 11A         723.00         743.00         0         -1         #NV          1.00E-11         -1         1         1.00E-13         1.00E-11           KLX 11A         763.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |        |       | 0            |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A         623.00         643.00         0         -1         #NV         1.31E-11         0         1         9.00E-12         4.00E-11           KLX 11A         643.00         663.00         0         -1         #NV          2.12E-12         0         1         9.00E-13         6.00E-12           KLX 11A         663.00         683.00         0         0         1.34E-08          1.98E-10         0         1         9.00E-11         7.00E-10           KLX 11A         663.00         703.00         0         -1         #NV          1.55E-10         0         1         6.00E-11         7.00E-10           KLX 11A         703.00         723.00         0         4.88E-08          2.57E-10         0         1         8.00E-11         6.00E-10           KLX 11A         723.00         743.00         0         -1         #NV          1.00E-11         -1         1         1.00E-13         1.00E-11           KLX 11A         743.00         763.00         0         -1         #NV          1.00E-11         -1         1         1.00E-13         1.00E-11           KLX 11A         763.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A         643.00         663.00         0         -1         #NV         2.12E-12         0         1         9.00E-13         6.00E-12           KLX 11A         663.00         683.00         0         0         1.34E-08         1.98E-10         0         1         9.00E-11         7.00E-10           KLX 11A         683.00         703.00         0         -1         #NV         1.55E-10         0         1         6.00E-11         3.00E-10           KLX 11A         703.00         723.00         0         0         4.88E-08         2.57E-10         0         1         8.00E-11         6.00E-10           KLX 11A         723.00         743.00         0         -1         #NV         1.00E-11         -1         1         1.00E-11         -1         1         1.00E-13         1.00E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |       |              |            |           |                 |   |            |            |         |           |                | 0          | 1     |             |             |
| KLX 11A       663.00       683.00       0       0       1.34E-08       1.98E-10       0       1       9.00E-11       7.00E-10         KLX 11A       683.00       703.00       0       -1       #NV       1.55E-10       0       1       6.00E-11       3.00E-10         KLX 11A       703.00       723.00       0       0       4.88E-08       2.57E-10       0       1       8.00E-11       6.00E-11       6.00E-11       6.00E-11       -1       1       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       723.00       763.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       763.00       763.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       763.00       783.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       783.00       803.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       803.00       823.00       0       -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |        |       |              |            |           |                 |   |            |            |         |           |                | . 0        | 1     |             |             |
| KLX 11A       683.00       703.00       0       -1       #NV       1.55E-10       0       1       6.00E-11       3.00E-10         KLX 11A       703.00       723.00       0       0       4.88E-08       2.57E-10       0       1       8.00E-11       6.00E-10         KLX 11A       723.00       743.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       763.00       763.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       763.00       783.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       783.00       803.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       803.00       803.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       823.00       843.00       663.00       0       -1       #NV       1.00E-13       1.00E-11       -1       1       1.00E-13       1.00E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |       | -            |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A       703.00       723.00       0       0       4.88E-08       2.57E-10       0       1       8.00E-11       6.00E-10         KLX 11A       723.00       743.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       743.00       763.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       763.00       783.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       783.00       803.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       803.00       823.00       0       -1       #NV       1.00E-13       1.00E-11       -1       1       1.00E-13       1.00E-13       1.00E-11         KLX 11A       823.00       843.00       0       -1       #NV       1.00E-13       1.00E-11       -1       1       1.00E-13       1.00E-13         KLX 11A       843.00       863.00       0       0       5.70E-08       8.20E-10       0       1       5.00E-10       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A       723.00       743.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       743.00       763.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       763.00       783.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       783.00       803.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       803.00       823.00       0       -1       #NV       1.00E-13       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       823.00       843.00       0       -1       #NV       1.00E-13       1.00E-11       -1       1       1.00E-13       1.00E-13         KLX 11A       843.00       863.00       0       0       5.70E-08       8.20E-10       0       1       5.00E-10       1.00E-13       1.00E-13         KLX 11A       863.00       883.00       0       -1       #NV       80E-10       0       1       5.00E-10       1.00E-13 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |        |       | -            |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A       743.00       763.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-13       1.00E-11         KLX 11A       763.00       783.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       783.00       803.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       803.00       843.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       843.00       863.00       0       0       5.70E-08       8.20E-10       0       1       5.00E-10       1.00E-09         KLX 11A       863.00       883.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |        |       | -1           |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A       763.00       783.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-13       1.00E-11         KLX 11A       783.00       803.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       803.00       823.00       0       -1       #NV       1.00E-13       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       823.00       843.00       863.00       0       0       5.70E-08       8.20E-10       0       1       5.00E-10       1.00E-09         KLX 11A       863.00       883.00       0       -1       #NV       80E-10       0       1       1.00E-13       1.00E-13       1.00E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A       783.00       803.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       803.00       823.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       823.00       843.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-11         KLX 11A       843.00       863.00       0       0       5.70E-08       8.20E-10       0       1       5.00E-10       1.00E-13       1.00E-11         KLX 11A       863.00       883.00       0       -1       #NV       1.00E-11       -1       1       1.00E-13       1.00E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
| KLX 11A     803.00     823.00     0     -1     #NV     1.00E-11     -1     1     1.00E-11     -1     1     1.00E-13     1.00E-11       KLX 11A     823.00     843.00     0     -1     #NV     1.00E-11     -1     1     1.00E-13     1.00E-11       KLX 11A     843.00     863.00     0     0     5.70E-08     8.20E-10     0     1     5.00E-10     1.00E-13       KLX 11A     863.00     883.00     0     -1     #NV     1.00E-11     -1     1     1.00E-13     1.00E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |        |       |              |            |           |                 |   |            |            | 1 1     |           |                |            | 1     |             |             |
| KLX 11A 823.00 843.00 0 -1 #NV 1.00E-11 -1 1 1.00E-13 1.00E-11<br>KLX 11A 843.00 863.00 0 0 5.70E-08 8.20E-10 0 1 5.00E-10 1.00E-09<br>KLX 11A 863.00 883.00 0 -1 #NV 1.00E-11 -1 1 1.00E-13 1.00E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 843.00 863.00 0 0 5.70E-08 83.00 0 0 1 5.00E-10 0 1 5.00E-10 1.00E-09<br>KLX 11A 863.00 883.00 0 -1 #NV 1.00E-11 -1 1 1.00E-13 1.00E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |        |       |              |            |           |                 | 1 |            |            |         |           |                |            | 1     |             |             |
| KLX 11A 863.00 883.00 0 -1 #NV 1.00E-11 -1 1 1.00E-13 1.00E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |        |       |              |            |           |                 |   |            |            |         |           |                |            |       |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |        |       | · ·          |            |           |                 |   |            |            |         |           |                |            |       |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KLX 11A | 303.00 |        |       | 0            | 2.13E-06   |           |                 |   |            |            | + + -   |           | 6.00E-07       |            |       |             |             |

|                    |                  |        |               |          |   |              |          |      | c hydr_cond_ |     |    | u_measl_ | spec_storage_ | assumed_s |                      |         |       |      |       |
|--------------------|------------------|--------|---------------|----------|---|--------------|----------|------|--------------|-----|----|----------|---------------|-----------|----------------------|---------|-------|------|-------|
| idcode             | secup            | seclow | storativity_s |          |   |              | ri_index | oeff | ksf          | ksf | sf | ksf      | ssf           | sf        | С                    | cd      | skin  | dt1  | dt2   |
| KLX 11A            | 103.00           |        |               |          |   | 192.28       |          |      |              |     |    |          |               |           | 3.08E-09             |         |       |      |       |
| KLX 11A            | 203.00           |        |               |          |   | 228.13       | (        |      |              |     |    |          |               |           | 2.34E-09             |         | 19.11 | 0.40 |       |
| KLX 11A            | 303.00           |        |               |          |   | 42.22        | 1        |      |              |     |    |          |               |           | 4.38E-10             |         |       |      |       |
| KLX 11A            | 403.00           |        |               |          |   | 69.34        | (        |      |              |     |    |          |               |           | 2.40E-10             |         |       |      |       |
| KLX 11A            | 503.00           |        |               |          |   | 211.02       | (        |      |              |     |    |          |               |           | 3.25E-09             |         |       |      |       |
| KLX 11A            | 603.00           |        |               |          |   | 16.75        | -1       |      |              |     |    |          |               |           | 1.94E-10             |         |       |      |       |
| KLX 11A            | 703.00           |        |               |          |   | 39.38        | (        |      |              |     |    |          |               |           | 2.35E-10             |         |       |      |       |
| KLX 11A            | 803.00           |        |               |          |   | 44.63        | -1       |      |              |     |    |          |               |           | 3.08E-10             |         |       |      |       |
| KLX 11A            | 876.00           |        |               |          |   | 11.34        | (        |      |              |     |    |          |               |           | 2.57E-10             |         |       |      |       |
| KLX 11A            | 103.00           |        |               |          |   | 116.43       | (        |      |              |     |    |          |               |           | 6.32E-10             |         |       |      |       |
| KLX 11A            | 123.00           |        |               |          |   | 37.35        | -1       |      |              |     |    |          |               |           | 1.23E-09             |         | 7.92  |      |       |
| KLX 11A            | 143.00           |        |               |          |   | 40.13        | 1        |      |              |     |    |          |               |           | 9.52E-11             |         |       |      |       |
| KLX 11A            | 163.00           |        |               |          |   | 124.85       | (4)      |      |              |     |    |          |               |           | 6.67E-10             |         |       |      |       |
| KLX 11A            | 183.00           |        |               |          |   | #NV          | #N\      |      |              |     |    |          |               |           | #NV                  |         | #NV   |      |       |
| KLX 11A            | 203.00           |        |               |          |   | #NV          | #N\      |      |              |     |    |          |               |           | #NV                  |         | #NV   |      |       |
| KLX 11A            | 223.00           |        |               |          |   | 15.81<br>#NV | -1       |      |              |     |    |          |               | -         | 5.84E-11             |         |       |      |       |
| KLX 11A<br>KLX 11A | 243.00<br>263.00 |        |               |          |   | 191.15       | - (      |      |              |     |    |          |               | -         | 5.85E-11<br>3.17E-09 |         |       |      |       |
| KLX 11A            | 283.00           |        |               |          |   | 8.04         | (        |      |              |     |    |          |               |           | 5.62E-11             |         | 19.00 |      |       |
| KLX 11A            | 303.00           |        |               |          |   | 17.70        |          |      |              |     |    |          |               |           | 4.83E-10             |         |       |      |       |
| KLX 11A            | 323.00           |        |               |          |   | 23.29        | 1        |      |              |     |    |          |               |           | 1.15E-11             |         |       |      |       |
| KLX 11A            | 343.00           |        |               |          |   | #NV          | -        |      |              |     |    |          |               |           | 2.49E-10             |         |       |      |       |
| KLX 11A            | 363.00           |        |               |          |   | 8.09         | (        | ·    |              |     |    |          |               |           | 3.59E-11             |         |       |      |       |
| KLX 11A            | 383.00           |        |               |          |   | #NV          | -1       |      |              |     |    |          |               |           | 6.14E-11             |         |       | #NV  |       |
| KLX 11A            | 403.00           |        |               |          |   | 8.24         | (        |      |              |     |    |          |               |           | 6.80E-11             |         |       | #NV  |       |
| KLX 11A            | 423.00           |        |               |          |   | 52.27        | (        |      |              |     |    |          |               |           | 4.62E-11             |         |       |      |       |
| KLX 11A            | 443.00           |        |               |          |   | 32.89        | (        |      |              |     |    |          |               |           | 5.04E-11             |         |       |      |       |
| KLX 11A            | 463.00           |        |               |          |   | 13.16        | (        |      |              |     |    |          |               |           | 6.25E-11             |         |       |      |       |
| KLX 11A            | 483.00           |        |               |          |   | #NV          |          |      |              |     |    |          |               |           | 5.96E-11             |         |       |      |       |
| KLX 11A            | 503.00           |        |               |          |   | 111.42       | (        |      |              |     |    |          |               |           | 1.16E-09             |         | 1.04  |      |       |
| KLX 11A            | 523.00           |        |               |          |   | 53.41        | (        |      |              |     |    |          |               |           | 8.54E-11             |         |       |      |       |
| KLX 11A            | 543.00           |        |               |          |   | #NV          | -        |      |              |     |    |          |               |           | 1.10E-11             |         |       | #NV  |       |
| KLX 11A            | 563.00           |        |               |          |   | 178.87       | (        | )    |              |     |    |          |               |           | 1.62E-09             |         | 13.54 |      |       |
| KLX 11A            | 583.00           |        |               |          | i | #NV          |          |      |              |     |    |          |               |           | 1.61E-10             |         |       |      |       |
| KLX 11A            | 603.00           | 623.00 | 1.00E-06      | 1.00E-06 | 6 | 9.11         | (        | )    |              |     |    |          |               |           | 5.49E-11             | 6.1E-03 | -0.74 | 2.90 | 35.22 |
| KLX 11A            | 623.00           | 643.00 | 1.00E-06      | 1.00E-06 | 6 | #NV          | ,        |      |              |     |    |          |               |           | 5.95E-11             | 6.6E-03 | -1.49 | #NV  | / #NV |
| KLX 11A            | 643.00           | 663.00 | 1.00E-06      | 1.00E-06 | 6 | #NV          | (        | )    |              |     |    |          |               |           | 3.10E-11             | 3.4E-03 | -0.96 | #NV  | / #NV |
| KLX 11A            | 663.00           | 683.00 | 1.00E-06      | 1.00E-06 | 6 | 4.58         | 1        |      |              |     |    |          |               |           | 4.63E-11             | 5.1E-03 | -1.64 | 2.68 | 15.04 |
| KLX 11A            | 683.00           | 703.00 | 1.00E-06      | 1.00E-06 | 6 | #NV          | 1        |      |              |     |    |          |               |           | 5.33E-11             | 5.9E-03 | -0.13 | #NV  | / #NV |
| KLX 11A            | 703.00           | 723.00 | 1.00E-06      | 1.00E-06 | i | 14.01        | (        | )    |              |     |    |          |               |           | 1.42E-10             | 1.6E-02 | -3.12 | #NV  | / #NV |
| KLX 11A            | 723.00           | 743.00 | 1.00E-06      | 1.00E-06 | i | #NV          | #N\      | 1    |              |     |    |          |               |           | #NV                  | #NV     | #NV   | #NV  | / #NV |
| KLX 11A            | 743.00           | 763.00 | 1.00E-06      | 1.00E-06 | i | #NV          | #N\      | 1    |              |     |    |          |               |           | #NV                  | #NV     | #NV   | #NV  | / #NV |
| KLX 11A            | 763.00           | 783.00 |               |          | i | #NV          | #N\      | /    |              |     |    |          |               |           | #NV                  | #NV     | #NV   | #NV  | / #NV |
| KLX 11A            | 783.00           | 803.00 | 1.00E-06      |          |   | #NV          | #N\      | /    |              |     |    |          |               |           | #NV                  | #NV     | #NV   | #NV  | / #NV |
| KLX 11A            | 803.00           | 823.00 | 1.00E-06      | 1.00E-06 | i | #NV          | #N\      | 1    |              |     |    |          |               |           | #NV                  | #NV     | #NV   | #NV  | / #NV |
| KLX 11A            | 823.00           |        |               |          |   | #NV          | #N\      | /    |              |     |    |          |               |           | #NV                  |         | #NV   | #NV  |       |
| KLX 11A            | 843.00           |        |               |          |   | 13.24        | (        | )    |              |     |    |          |               |           | 8.79E-11             | 9.7E-03 | -2.28 |      |       |
| KLX 11A            | 863.00           |        |               |          |   | #NV          | #N\      |      |              |     |    |          |               |           | #NV                  |         | #NV   |      |       |
| KLX 11A            | 303.00           | 308.00 | 1.00E-06      | 1.00E-06 | 6 | 68.87        | (        | )    |              |     |    |          |               |           | 3.62E-11             | 4.0E-03 | 0.25  | 0.50 | 17.83 |

|                    |        |        |       |     |        |          | transmissivity_t | storativity_s                                    | value_type_t | t        |       |        |          | transmissivity_t | value_type_t |          | storativity_s_ flow  | _dim_ |          |
|--------------------|--------|--------|-------|-----|--------|----------|------------------|--------------------------------------------------|--------------|----------|-------|--------|----------|------------------|--------------|----------|----------------------|-------|----------|
| idcode             | secup  | seclow | t1 t2 | dte | 1 dte2 | p_horner | _nlr             | _nlr                                             | _nlr         | bc_t_nlr | c_nlr | cd_nlr | skin_nlr | _grf             | _grf         | bc_t_grf | grf grf              |       | comment  |
| KLX 11A            | 103.00 | 203.00 |       |     |        | 1838.6   |                  |                                                  |              |          |       |        |          | 6.21E-06         | 0            | 0        | 1.00E-06             | 2.1   |          |
| KLX 11A            | 203.00 | 303.00 |       |     |        | 2776.6   |                  |                                                  |              |          |       |        |          | 8.10E-06         | 0            | 0        | 1.00E-06             | 2.1   |          |
| KLX 11A            | 303.00 | 403.00 |       |     |        | 3705.2   |                  |                                                  |              |          |       |        |          | 1.50E-06         | 0            | 0        | 1.00E-06             | 2.2   |          |
| KLX 11A            | 403.00 | 503.00 |       |     |        | 4649.1   |                  |                                                  |              |          |       |        |          | #NV              | 0            | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 503.00 |        |       |     |        | 5579.0   |                  |                                                  |              |          |       |        |          | 9.04E-06         |              | 0        | 1.00E-06             | 2.1   |          |
| KLX 11A            | 603.00 |        |       |     |        | 6513.4   |                  |                                                  |              |          |       |        |          | 1.62E-09         | 0            | 0        | 1.00E-06             | 1.58  |          |
| KLX 11A            | 703.00 | 803.00 |       |     |        | 7429.3   |                  |                                                  |              |          |       |        |          | 6.04E-10         | 0            | 0        | 1.00E-06             | 1.5   |          |
| KLX 11A            | 803.00 | 903.00 |       |     |        | 8333.1   |                  |                                                  |              |          |       |        |          | 1.82E-09         | 0            | 0        | 1.00E-06             | 1.7   |          |
| KLX 11A            | 876.00 |        |       |     |        | #NV      | 1                |                                                  |              |          |       |        |          | 6.24E-10         |              | 0        | 1.00E-06             | 1.33  |          |
| KLX 11A            | 103.00 |        |       |     |        | 1092.9   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 123.00 | 143.00 |       |     |        | 1275.5   |                  |                                                  |              |          |       |        |          | 1.20E-06         | 0            | 0        | 1.00E-06             | 2.3   |          |
| KLX 11A            | 143.00 |        |       |     |        | 1443.8   |                  |                                                  |              |          |       |        |          | 6.65E-08         |              | 0        | 1.00E-06             | 2.3   |          |
| KLX 11A            | 163.00 |        |       |     |        | 1650.5   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 183.00 |        |       |     |        | #NV      |                  |                                                  |              |          |       |        |          | 1.00E-11         | -1           |          | 1.00E-06             | #NV   |          |
| KLX 11A            | 203.00 |        |       |     |        | #NV      |                  |                                                  |              |          |       |        |          | 1.00E-11         | -1           |          | 1.00E-06             | #NV   |          |
| KLX 11A            | 223.00 |        |       |     |        | #NV      | ,                |                                                  |              |          |       |        |          | 8.49E-10         |              | 0        | 1.00E-06             | 1.79  |          |
| KLX 11A            | 243.00 |        |       |     |        | 2401.2   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 263.00 |        |       |     |        | 2589.2   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 283.00 |        |       |     |        | #NV      | ,                |                                                  |              |          |       |        |          | 1.01E-10         |              | 0        | 1.00E-06             | 1.49  |          |
| KLX 11A            | 303.00 |        |       |     |        | 2958.2   |                  |                                                  |              |          |       |        |          | 9.73E-07         |              | 0        | 1.00E-06             | 2.3   |          |
| KLX 11A            | 323.00 |        |       |     |        | 3137.1   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 343.00 |        |       |     |        | #NV      | ,                |                                                  |              |          |       |        |          | 4.25E-09         |              | 0        | 1.00E-06             | 1.6   |          |
| KLX 11A            | 363.00 |        |       |     |        | #NV      |                  |                                                  |              |          |       |        |          | 3.21E-11         |              | 0        | 1.00E-06             | 1.75  |          |
| KLX 11A            | 383.00 |        |       |     |        | 3699.9   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 403.00 |        |       |     |        | #NV      |                  |                                                  |              |          |       |        |          | 1.81E-10         |              | 0        | 1.00E-06             | 1.45  |          |
| KLX 11A            | 423.00 |        |       |     |        | 4086.5   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 443.00 |        |       |     |        | 4269.7   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 463.00 |        |       |     |        | #NV      |                  |                                                  |              |          |       |        |          | 1.59E-10         |              | 0        | 1.00E-06             | 1.7   |          |
| KLX 11A            | 483.00 |        |       |     |        | 4645.5   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 503.00 |        |       |     |        | 4830.4   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 523.00 |        |       |     |        | 5023.2   |                  |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 543.00 |        |       |     |        | #NV      |                  |                                                  |              |          |       |        |          | 1.74E-11         |              | 0        | 1.00E-06             | 1     |          |
| KLX 11A            | 563.00 |        |       |     |        | 5392.3   |                  |                                                  |              |          |       |        |          | 8.24E-06         |              | 0        | 1.00E-06             | 2.1   |          |
| KLX 11A            | 583.00 |        |       |     |        | 5581.5   |                  |                                                  |              |          |       |        |          | 7.93E-07         |              | 0        | 1.00E-06             | 1.95  |          |
| KLX 11A            | 603.00 |        |       |     |        | #NV      |                  |                                                  |              |          |       |        |          | 1.09E-09         |              | 0        | 1.00E-06             | 1.5   |          |
| KLX 11A            | 623.00 |        |       |     |        | #NV      | ,                |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A<br>KLX 11A | 643.00 |        |       |     |        | #NV      | ,                |                                                  |              |          |       |        |          | 5.34E-12         |              | 0        | 1.00E-06             | 1.6   |          |
| KLX 11A            | 663.00 |        |       |     |        | 6317.5   |                  |                                                  |              |          | 1     |        |          | 5.34E-12<br>#NV  |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A<br>KLX 11A | 683.00 |        |       |     |        | #NV      | ,                | <del>                                     </del> |              |          |       |        |          | 2.60E-10         |              | 0        | 1.00E-06             | 1.87  |          |
| KLX 11A<br>KLX 11A | 703.00 |        |       |     |        | #NV      | ,                |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A            | 703.00 |        |       |     |        | #NV      | ,                |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A<br>KLX 11A | 743.00 |        |       |     |        | #NV      | ,                |                                                  |              |          |       |        |          | #NV              |              | 0        | 1.00E-06             | #NV   |          |
| KLX 11A<br>KLX 11A | 743.00 |        |       |     |        | #NV      | ,                |                                                  |              |          | 1     |        |          | #NV              | -1<br>-1     |          | 1.00E-06             | #NV   |          |
| KLX 11A<br>KLX 11A | 783.00 |        |       |     |        | #NV      | ,                |                                                  |              |          | 1     |        |          | #NV              | -1<br>-1     |          | 1.00E-06             | #NV   |          |
| KLX 11A<br>KLX 11A | 803.00 |        |       | _   |        | #NV      | ,                | -                                                |              |          | 1     |        |          | #NV              | -1<br>-1     |          | 1.00E-06             | #NV   |          |
|                    | 803.00 |        |       |     |        | #NV      | ,                |                                                  |              |          | 1     |        |          | #NV              | -1<br>-1     |          |                      | #NV   |          |
| KLX 11A<br>KLX 11A | 843.00 |        |       |     |        | #NV      | ,                |                                                  |              |          | 1     |        |          | #NV              |              | 0        | 1.00E-06<br>1.00E-06 | #NV   |          |
| KLX 11A<br>KLX 11A | 843.00 |        |       |     |        | #NV      | ,                |                                                  |              |          | 1     |        |          | #NV              |              | 0        |                      | #NV   | <b> </b> |
|                    |        |        |       |     |        |          |                  |                                                  |              |          | 1     |        |          |                  |              |          | 1.00E-06             |       | ļ        |
| KLX 11A            | 303.00 | 308.00 |       |     |        | 2822.7   |                  |                                                  |              |          |       |        |          | 1.47E-06         | 0            | 0        | 1.00E-06             | 1.9   |          |

|         |                 |                 | 1      |        |            | 1         | formation |        | 1            | spec_capacity_ | value_type_ | transmissivity | value type |       | transmissivity_ |
|---------|-----------------|-----------------|--------|--------|------------|-----------|-----------|--------|--------------|----------------|-------------|----------------|------------|-------|-----------------|
| idcode  | start date      | stop date       | secup  | seclow | section no | test_type | type      | lp     | seclen class | q_s            | q_s         | _tq            | tq         | bc_tq | move            |
| KLX 11A | 060712 09:30:00 | ·-              |        |        | _          | 3         | 1         | 310.50 |              |                | -           |                |            |       | 2.16E-06        |
| KLX 11A | 060712 11:13:00 | 060712 12:03:00 | 313.00 |        |            | 3         |           | 315.50 |              |                |             |                |            |       | #NV             |
| KLX 11A | 060712 13:09:00 |                 | 318.00 |        |            | 3         |           | 320.50 |              |                |             |                |            |       | #NV             |
| KLX 11A | 060712 14:31:00 |                 | 343.00 |        |            | 3         |           | 345.50 |              |                |             |                |            |       | 6.43E-09        |
| KLX 11A | 060712 16:38:00 | 060712 17:38:00 | 348.00 |        |            | 3         |           | 350.50 |              |                |             |                |            |       | #NV             |
| KLX 11A | 060712 17:56:00 | 060712 18:45:00 | 353.00 | 358.00 |            | 3         |           | 355.50 |              | 5 #NV          | -1          |                |            |       | #NV             |
| KLX 11A | 060713 07:52:00 | 060713 08:41:00 | 358.00 | 363.00 |            | 3         |           | 360.50 |              | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060713 09:14:00 | 060713 10:05:00 | 383.00 | 388.00 |            | 3         | 1         | 385.50 | 5            | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060713 10:28:00 | 060713 11:17:00 | 388.00 | 393.00 |            | 3         | 1         | 390.50 | 5            | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060713 12:29:00 | 060713 13:20:00 | 393.00 | 398.00 |            | 3         | 1         | 395.50 | 5            | 5 #NV          | -1          |                |            |       | #NV             |
| KLX 11A | 060713 13:44:00 | 060713 15:16:00 | 398.00 | 403.00 |            | 3         | 1         | 400.50 | 5            | 3.49E-09       | 0           |                |            |       | 2.88E-09        |
| KLX 11A | 060713 15:46:00 | 060713 16:55:00 | 423.00 | 428.00 |            | 3         | 1         | 425.50 | 5            | 5 #NV          | -1          |                |            |       | #NV             |
| KLX 11A | 060713 16:59:00 | 060713 17:47:00 | 428.00 | 433.00 |            | 3         | 1         | 430.50 | 5            | 5 #NV          | -1          |                |            |       | #NV             |
| KLX 11A | 060714 07:59:00 | 060714 08:46:00 | 433.00 | 438.00 |            | 3         | 1         | 435.50 | 5            | 5 #NV          | -1          |                |            |       | #NV             |
| KLX 11A | 060714 09:17:00 | 060714 10:39:00 | 438.00 |        |            | 3         | 1         | 440.50 | 5            |                |             |                |            |       | 4.70E-08        |
| KLX 11A | 060714 11:06:00 | 060714 12:51:00 | 442.00 | 447.00 |            | 4B        | 1         | 444.50 | 5            | 5 #NV          | -1          |                |            |       | #NV             |
| KLX 11A | 060714 13:16:00 | 060714 14:37:00 | 447.00 | 452.00 |            | 3         | 1         | 449.50 | 5            | 8.78E-09       | 0           |                |            |       | 1.06E-08        |
| KLX 11A | 060714 15:01:00 | 060714 16:22:00 | 452.00 |        |            | 3         |           | 454.50 |              | 1.34E-08       | 0           |                |            |       | 1.10E-08        |
| KLX 11A | 060714 16:45:00 | 060714 17:35:00 | 457.00 | 462.00 |            | 3         | 1         | 459.50 | 5            | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060714 18:01:00 | 060714 18:50:00 | 462.00 | 467.00 |            | 3         | 1         | 464.50 | 5            | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060715 08:16:00 | 060715 09:05:00 | 483.00 | 488.00 |            | 3         | 1         | 485.50 | 5            | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060715 09:29:00 | 060715 10:19:00 | 488.00 | 493.00 |            | 3         | 1         | 490.50 | 5            | 5 #NV          | -1          |                |            |       | #NV             |
| KLX 11A | 060715 10:47:00 | 060715 13:39:00 | 493.00 | 498.00 |            | 4B        | 1         | 495.50 | 5            | 5 #NV          | -1          |                |            |       | #NV             |
| KLX 11A | 060715 14:04:00 | 060715 15:29:00 | 498.00 | 503.00 |            | 3         | 1         | 500.50 | 5            | 3.90E-10       | 0           |                |            |       | 2.80E-09        |
| KLX 11A | 060715 15:53:00 | 060715 17:47:00 | 503.00 | 508.00 |            | 3         | 1         | 505.50 | 5            | 1.53E-08       | 0           |                |            |       | 1.26E-08        |
| KLX 11A | 060715 18:09:00 | 060715 21:14:00 | 508.00 | 513.00 |            | 3         |           | 510.50 |              |                |             |                |            |       | 1.09E-08        |
| KLX 11A | 060808 15:30:00 | 060808 17:15:00 | 513.00 |        |            | 3         |           | 515.50 |              | 9.44E-07       | 0           |                |            |       | 7.79E-07        |
| KLX 11A | 060808 17:47:00 | 060808 19:37:00 | 518.00 | 523.00 |            | 3         |           | 520.50 |              | 2.51E-06       | 0           |                |            |       | 2.07E-06        |
| KLX 11A | 060809 08:08:00 | 060809 09:41:00 | 523.00 | 528.00 |            | 3         | 1         | 525.50 | 5            | 7.00E-09       | 0           |                |            |       | 5.77E-09        |
| KLX 11A | 060809 10:08:00 | 060809 11:34:00 | 528.00 | 533.00 |            | 3         | 1         | 530.50 | 5            | 3.84E-08       | 0           |                |            |       | 3.17E-08        |
| KLX 11A | 060809 12:48:00 | 060809 14:16:00 | 533.00 |        |            | 3         |           | 535.50 |              |                |             |                |            |       | 6.78E-08        |
| KLX 11A | 060809 14:40:00 | 060809 16:19:00 | 538.00 |        |            | 3         |           | 540.50 |              | 1.35E-09       | 0           |                |            |       | 1.12E-09        |
| KLX 11A | 060809 16:59:00 | 060809 17:53:00 | 563.00 |        |            | 3         | 1         | 565.50 | 5            | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060809 18:17:00 |                 | 568.00 |        |            | 3         |           | 570.50 |              |                |             |                |            |       | #NV             |
| KLX 11A | 060810 08:06:00 | 060810 09:34:00 | 573.00 |        |            | 3         |           | 575.50 |              | 3.36E-06       |             |                |            |       | 2.77E-06        |
| KLX 11A | 060810 10:02:00 | 060810 11:28:00 | 578.00 | 583.00 |            | 3         |           | 580.50 |              | 4.56E-06       | 0           |                |            |       | 3.76E-06        |
| KLX 11A | 060810 12:20:00 | 060810 14:15:00 | 583.00 |        |            | 4B        |           | 585.50 |              | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060810 14:41:00 | 060810 16:05:00 | 588.00 |        |            | 4B        |           | 590.50 |              |                |             |                |            |       | #NV             |
| KLX 11A | 060810 16:33:00 | 060810 18:19:00 | 593.00 |        |            | 4B        |           | 595.50 |              |                |             |                |            |       | #NV             |
| KLX 11A | 060811 08:01:00 | 060811 09:26:00 | 598.00 |        |            | 3         |           | 600.50 |              |                |             |                |            |       | 1.82E-07        |
| KLX 11A | 060811 10:29:00 | 060811 13:01:00 | 663.00 |        |            | 3         |           | 665.50 |              |                |             |                |            |       | 5.82E-10        |
| KLX 11A | 060811 13:30:00 | 060811 15:14:00 | 668.00 |        |            | 4B        |           | 670.50 | 5            | #NV            |             |                |            |       | #NV             |
| KLX 11A | 060811 15:38:00 | 060811 17:22:00 | 673.00 |        |            | 4B        | 1         | 675.50 | 5            | #NV            | -1          |                |            |       | #NV             |
| KLX 11A | 060811 17:45:00 | 060811 20:53:00 | 678.00 | 683.00 |            | 4B        | 1         | 680.50 | 5            | #NV            | -1          |                |            |       | #NV             |

|                    |                  |                  |   | value_type_t | hydr cond            | formation | width of channe | ı         |            |            |   | assumed | leakage f                              | transmissivity_      | value type |               |                      |             |
|--------------------|------------------|------------------|---|--------------|----------------------|-----------|-----------------|-----------|------------|------------|---|---------|----------------------------------------|----------------------|------------|---------------|----------------------|-------------|
| idcode             | secup            | seclow           |   |              | move                 | width b   | b               | '- <br>tb | I measl tb | u measl tb |   | sb      |                                        | tt                   |            | c_tt          | l_measl_q_s          | u_measl_q_s |
| KLX 11A            | 308.00           | 313.00           |   |              | 1.08E-05             |           |                 |           |            | uouots     | - | -       | ###################################### | 6.46E-06             |            | 1             | 2.00E-06             |             |
| KLX 11A            | 313.00           | 318.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             |            | 1             | 1.00E-13             |             |
| KLX 11A            | 318.00           | 323.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             |            | 1             | 1.00E-13             |             |
| KLX 11A            | 343.00           | 348.00           |   | 0            | 3.22E-08             |           |                 |           |            |            |   |         |                                        | 3.58E-09             |            | 1             | 1.00E-09             |             |
| KLX 11A            | 348.00           | 353.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             |            | 1             |                      |             |
| KLX 11A            | 353.00           | 358.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             |            | 1             |                      |             |
| KLX 11A            | 358.00           | 363.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             |             |
| KLX 11A            | 383.00           | 388.00           | 0 | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             | 1.00E-11    |
| KLX 11A            | 388.00           | 393.00           | 0 | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             | 1.00E-11    |
| KLX 11A            | 393.00           | 398.00           | 0 | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             | 1.00E-11    |
| KLX 11A            | 398.00           | 403.00           |   | 0            | 1.44E-08             |           |                 |           |            |            |   |         |                                        | 2.96E-09             | 0          | 1             | 0.002 .0             |             |
| KLX 11A            | 423.00           | 428.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             |                      |             |
| KLX 11A            | 428.00           | 433.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             |             |
| KLX 11A            | 433.00           | 438.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             |             |
| KLX 11A            | 438.00           | 443.00           |   | 0            | 2.35E-07             |           |                 |           |            |            |   |         |                                        | 1.89E-07             |            | 1             | 9.00E-08             |             |
| KLX 11A            | 442.00           | 447.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.22E-10             |            | 1             |                      |             |
| KLX 11A            | 447.00           | 452.00           |   | 0            | 5.30E-08             |           |                 |           |            |            |   |         |                                        | 1.37E-08             |            | 1             | 0.002 00             |             |
| KLX 11A            | 452.00           | 457.00           |   | 0            | 5.50E-08             |           |                 |           |            |            |   |         |                                        | 2.20E-08             |            | 1             | 8.00E-09             |             |
| KLX 11A            | 457.00           | 462.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             |             |
| KLX 11A            | 462.00           | 467.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             |             |
| KLX 11A            | 483.00           | 488.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             |             |
| KLX 11A            | 488.00           | 493.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             |                      |             |
| KLX 11A            | 493.00           | 498.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 2.60E-10             |            | 1             | 0.00=                |             |
| KLX 11A            | 498.00           | 503.00           |   | 0            | 1.40E-08             |           |                 |           |            |            |   |         |                                        | 2.54E-09             |            | 1             | 8.00E-10             |             |
| KLX 11A            | 503.00           | 508.00           |   | 0            | 6.30E-08<br>5.45E-08 |           |                 |           |            |            |   |         |                                        | 1.08E-08<br>1.30E-08 |            | 1             | 7.00E-09<br>7.00E-09 |             |
| KLX 11A            | 508.00           | 513.00           |   | U            |                      |           |                 |           |            |            |   |         |                                        |                      |            | 1             |                      |             |
| KLX 11A<br>KLX 11A | 513.00<br>518.00 | 518.00<br>523.00 |   | 0            | 3.90E-06<br>1.04E-05 |           |                 |           |            |            |   |         |                                        | 4.04E-06<br>4.66E-06 |            | 1             | 2.00E-06<br>2.00E-06 |             |
| KLX 11A<br>KLX 11A | 523.00           | 528.00           |   | 0            | 2.89E-08             |           |                 |           |            |            |   |         |                                        | 4.24E-08             |            | <u>!</u><br>1 |                      |             |
| KLX 11A<br>KLX 11A | 528.00           | 533.00           |   | 0            | 1.59E-07             |           |                 |           |            |            |   |         |                                        | 6.70E-08             |            | 1             |                      |             |
| KLX 11A<br>KLX 11A | 533.00           | 538.00           |   | 0            | 3.39E-07             |           |                 |           |            |            |   |         |                                        | 3.74E-07             |            | 1             |                      |             |
| KLX 11A            | 538.00           | 543.00           |   | 0            | 5.60E-09             |           |                 |           |            |            |   |         |                                        | 4.05E-09             |            | 1             | 1.00E-09             |             |
| KLX 11A            | 563.00           | 568.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-03             |             |
| KLX 11A            | 568.00           | 573.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.00E-11             | -1         | 1             |                      |             |
| KLX 11A            | 573.00           | 578.00           |   | 0            | 1.39E-05             |           |                 |           |            |            |   |         |                                        | 1.50E-05             |            | 1             |                      |             |
| KLX 11A            | 578.00           | 583.00           |   | 0            | 1.88E-05             |           |                 |           |            |            |   |         |                                        | 1.03E-05             |            | 1             |                      |             |
| KLX 11A            | 583.00           | 588.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.16E-11             | 0          | 1             | 9.00E-12             |             |
| KLX 11A            | 588.00           | 593.00           |   | -1           | #NV                  |           |                 |           |            |            | 1 |         |                                        | 1.00E-11             | -1         | 1             | 1.00E-13             |             |
| KLX 11A            | 593.00           | 598.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 4.24E-12             | 0          | 1             |                      |             |
| KLX 11A            | 598.00           | 603.00           |   | 0            | 9.10E-07             |           |                 |           |            |            |   |         |                                        | 3.76E-07             |            | 1             |                      |             |
| KLX 11A            | 663.00           | 668.00           |   | 0            | 2.91E-09             |           |                 |           |            |            |   |         |                                        | 1.34E-10             |            | 1             | 8.00E-11             |             |
| KLX 11A            | 668.00           | 673.00           |   | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 1.17E-11             | 0          | 1             | 9.00E-12             |             |
| KLX 11A            | 673.00           | 678.00           | 0 | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 8.98E-11             | 0          | 1             | 5.00E-11             | 2.00E-10    |
| KLX 11A            | 678.00           | 683.00           | 0 | -1           | #NV                  |           |                 |           |            |            |   |         |                                        | 8.40E-11             | 0          | 1             | 6.00E-11             | 1.00E-10    |

|                    |                  |                  |               |                      |      |                | le         | eakage_c | hydr_cond_ | value_type_ | I_measl_k | u_measl_ | spec_storage_ | assumed_s |                      |                    |              |             |       |
|--------------------|------------------|------------------|---------------|----------------------|------|----------------|------------|----------|------------|-------------|-----------|----------|---------------|-----------|----------------------|--------------------|--------------|-------------|-------|
| idcode             | secup            | seclow           | storativity_s | assumed_s            | bc_s | ri             | ri_index o | eff      | ksf        | ksf         | sf        | ksf      | ssf           | sf        | С                    | cd                 | skin         | dt1         | dt2   |
| KLX 11A            | 308.00           | 313.00           | 1.00E-06      | 1.00E-06             |      | 60.40          | 1          |          |            |             |           |          |               |           | 3.46E-10             | 3.8E-02            | 20.10        | 3.33        | 12.15 |
| KLX 11A            | 313.00           | 318.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         | #NV   |
| KLX 11A            | 318.00           | 323.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                | #NV          | #NV         |       |
| KLX 11A            | 343.00           | 348.00           | 1.00E-06      | 1.00E-06             |      | #NV            | 1          |          |            |             |           |          |               |           | 1.29E-10             | 1.4E-02            |              | #NV         |       |
| KLX 11A            | 348.00           | 353.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 353.00           | 358.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 358.00           | 363.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 383.00           | 388.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 388.00           | 393.00           | 1.00E-06      | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 393.00           | 398.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 398.00           | 403.00           |               | 1.00E-06             |      | #NV            | -1         |          |            |             |           |          |               |           | 1.95E-11             | 2.1E-03            |              |             |       |
| KLX 11A            | 423.00           | 428.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 428.00           | 433.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 433.00           | 438.00           | 1.00E-06      | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 438.00           | 443.00           |               | 1.00E-06             |      | 51.60          | 0          |          |            |             |           |          |               |           | 2.35E-11             | 2.6E-03            |              |             |       |
| KLX 11A            | 442.00           | 447.00           |               | 1.00E-06             |      | 4.25           | -1         |          |            |             |           |          |               |           | 3.83E-11             | 4.2E-03            |              | 0.95        |       |
| KLX 11A            | 447.00           | 452.00           |               | 1.00E-06             |      | 26.77          | 0          |          |            |             |           |          |               |           | 1.32E-11             | 1.5E-03            |              |             |       |
| KLX 11A            | 452.00           | 457.00           |               | 1.00E-06             |      | 30.14          | 0          |          |            |             |           |          |               |           | 1.10E-11             | 1.2E-03            |              |             |       |
| KLX 11A            | 457.00           | 462.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 462.00           | 467.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 483.00           | 488.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                |              | #NV         |       |
| KLX 11A            | 488.00           | 493.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             |           |          |               |           | #NV                  | #NV                | #NV          | #NV         |       |
| KLX 11A            | 493.00           | 498.00           |               | 1.00E-06             |      | 11.11          | 0          |          |            |             |           |          |               |           | 1.19E-11             | 1.3E-03            |              |             |       |
| KLX 11A            | 498.00           | 503.00           |               | 1.00E-06             |      | #NV            | -1         |          |            |             |           |          |               |           | 2.22E-11             | 2.4E-03            |              | #NV         |       |
| KLX 11A            | 503.00           | 508.00           | 1.00E-06      | 1.00E-06             |      | 25.23          | 1          |          |            |             |           |          |               |           | 7.70E-10             | 8.5E-02            |              |             |       |
| KLX 11A            | 508.00           | 513.00           |               | 1.00E-06             |      | 8.52           | 1          |          |            |             |           |          |               |           | 1.78E-11             | 2.0E-03            |              | 0.70        |       |
| KLX 11A            | 513.00           | 518.00           |               | 1.00E-06             |      | 110.94         | 0          |          |            |             |           |          |               |           | 4.90E-10             | 5.4E-02            |              | 1.15        |       |
| KLX 11A            | 518.00           | 523.00<br>528.00 |               | 1.00E-06             |      | 114.97         | 0          |          |            |             |           |          |               |           | 1.17E-09             | 1.3E-01            |              |             |       |
| KLX 11A            | 523.00           |                  |               | 1.00E-06             |      | 35.51          | -1         |          |            |             |           |          |               |           | 4.63E-11             | 5.1E-03            |              |             |       |
| KLX 11A            | 528.00<br>533.00 | 533.00<br>538.00 |               | 1.00E-06<br>1.00E-06 |      | 39.81<br>61.20 | 0          |          |            |             |           |          |               |           | 2.26E-11<br>2.96E-11 | 2.5E-03            |              | 1.09<br>#NV |       |
| KLX 11A<br>KLX 11A | 533.00           | 538.00           |               | 1.00E-06<br>1.00E-06 |      | 19.74          | -1         |          |            |             |           |          |               |           | 1.90E-11             | 3.3E-03<br>2.1E-03 |              | #NV         |       |
| KLX 11A<br>KLX 11A | 563.00           | 568.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             | 1         |          |               |           | #NV                  | 2.1E-03<br>#NV     |              | #NV         |       |
| KLX 11A<br>KLX 11A | 568.00           | 573.00           |               | 1.00E-06<br>1.00E-06 |      | #NV            | #NV        |          |            |             | 1         |          |               |           | #NV                  | #NV<br>#NV         |              | #NV         |       |
| KLX 11A            | 573.00           | 578.00           |               | 1.00E-06             |      | 154.00         | #14.0      |          |            |             | 1         |          |               |           | 7.68E-10             | 8.5E-02            |              |             |       |
| KLX 11A<br>KLX 11A | 578.00           | 583.00           | 1.00E-06      | 1.00E-06             |      | 140.19         | 0          |          |            |             |           |          |               |           | 1.40E-09             | 1.5E-01            | 5.59         | 0.33        |       |
| KLX 11A<br>KLX 11A | 583.00           | 588.00           |               | 1.00E-06             |      | 8.22           | 1          |          |            |             | 1         |          |               |           | 1.40E-09<br>1.23E-11 | 1.4E-03            |              |             |       |
| KLX 11A<br>KLX 11A | 588.00           | 593.00           |               | 1.00E-06             |      | #NV            | #NV        |          |            |             | 1         |          |               |           | #NV                  | #NV                | -0.00<br>#NV | #NV         |       |
| KLX 11A<br>KLX 11A | 593.00           | 598.00           |               | 1.00E-06             |      | 6.22           | 0          |          |            |             | +         |          |               |           | 1.89E-11             | 2.1E-03            |              |             |       |
| KLX 11A<br>KLX 11A | 598.00           | 603.00           |               | 1.00E-06             |      | 29.55          | 1          |          |            |             | +         |          |               |           | 1.23E-10             | 1.4E-02            |              |             |       |
| KLX 11A<br>KLX 11A | 663.00           | 668.00           |               | 1.00E-06             |      | 8.42           | 1          |          |            |             |           |          |               |           | 3.94E-11             | 4.3E-02            |              |             |       |
| KLX 11A            | 668.00           | 673.00           |               | 1.00E-06             |      | 7.91           | 0          |          |            |             |           |          |               |           | 1.65E-11             | 1.8E-03            |              | 6.71        |       |
| KLX 11A<br>KLX 11A | 673.00           | 678.00           |               | 1.00E-06             |      | 13.36          | 0          |          |            |             | 1         |          |               |           | 1.19E-11             | 1.3E-03            |              | 2.36        |       |
| KLX 11A<br>KLX 11A | 678.00           | 683.00           |               | 1.00E-06             |      | 20.64          | 0          |          |            |             |           |          |               |           | 1.19E-11             | 1.7E-03            |              |             |       |
| NLA LIA            | 078.00           | 003.00           | 1.00E-06      | 1.00⊑-06             |      | 20.04          | U          |          |            |             |           |          | 1             | 1         | 1.5∠⊑-11             | 1.7⊑-03            | -0.32        | 1.95        | 10.97 |

|         | 1      | 1      |    | T  |      |      | 1        | tranamiaaivitu t        | otorotivity o | value tune t |          |       |         |            | transmissivity t | valua tuna t |         | storativity_s_ | flour dim |         |
|---------|--------|--------|----|----|------|------|----------|-------------------------|---------------|--------------|----------|-------|---------|------------|------------------|--------------|---------|----------------|-----------|---------|
| idcode  |        | seclow | t1 | t2 | dtod | 4400 | p horner | transmissivity_t<br>nlr | nlr           | nlr          |          | a nl= | سام اما | akin nir   | transmissivity_t |              |         |                |           | comment |
|         |        |        |    | ιz | ater | atez |          | -                       |               | _mr          | bc_t_nlr | c_nir | ca_nir  | SKIII_IIII | _grf             |              | c_t_grf |                |           | Jonnent |
| KLX 11A | 308.00 |        |    |    |      |      | 2867.5   |                         |               |              |          |       |         |            | 1.49E-06         | 0 0          |         | 1.00E-06       | 2.2       |         |
| KLX 11A | 313.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 318.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 343.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | 3.58E-09         | 0 0          |         | 1.00E-06       | 1.76      |         |
| KLX 11A | 348.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 353.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 358.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 383.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 388.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 393.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 398.00 |        |    |    |      |      | 3712.4   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 423.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 428.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 433.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 438.00 |        |    |    |      |      | 4087.3   |                         |               |              |          |       |         |            | 2.77E-08         | 0 0          |         | 1.00E-06       | 2.2       |         |
| KLX 11A | 442.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | 1.20E-10         | 0 0          |         | 1.00E-06       | 2.23      |         |
| KLX 11A | 447.00 |        |    |    |      |      | 4174.5   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 452.00 |        |    |    |      |      | 4220.6   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 457.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 462.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 483.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 488.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 493.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 498.00 |        |    |    |      |      | 4650.5   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 503.00 |        |    |    |      |      | 4687.3   |                         |               |              |          |       |         |            | 7.87E-09         | 0 0          |         | 1.00E-06       | 2.1       |         |
| KLX 11A | 508.00 |        |    |    |      |      | 4738.0   |                         |               |              |          |       |         |            | 1.30E-08         | 0 0          |         | 1.00E-06       | 1.86      |         |
| KLX 11A | 513.00 |        |    |    |      |      | 4794.0   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 518.00 |        |    |    |      |      | 4837.1   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 523.00 |        |    |    |      |      | 4881.0   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 528.00 |        |    |    |      |      | 4932.1   |                         |               |              |          |       |         |            | 3.14E-09         | 0 0          |         | 1.00E-06       | 3.0       |         |
| KLX 11A | 533.00 |        |    |    |      |      | 4980.7   |                         |               |              |          |       |         |            | 2.78E-08         | 0 0          |         | 1.00E-06       | 2.3       |         |
| KLX 11A | 538.00 |        |    |    |      |      | 5028.7   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 563.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 568.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 573.00 |        |    |    |      |      | 5350.3   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 578.00 |        |    |    |      |      | 5397.7   |                         |               |              |          |       |         |            | 4.15E-06         | 0 0          |         | 1.00E-06       | 2.1       |         |
| KLX 11A | 583.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | 2.55E-10         | 0 0          |         | 1.00E-06       | 1.4       |         |
| KLX 11A | 588.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | -1 0         |         | 1.00E-06       | #NV       |         |
| KLX 11A | 593.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 598.00 |        |    |    |      |      | 5583.6   |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 663.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 668.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | 5.67E-11         | 0 0          |         | 1.00E-06       | 1.6       |         |
| KLX 11A | 673.00 |        |    |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |
| KLX 11A | 678.00 | 683.0  | 0  |    |      |      | #NV      |                         |               |              |          |       |         |            | #NV              | 0 0          |         | 1.00E-06       | #NV       |         |

| Tal           | ble      |      | ole_test_obs sections of single hole test                     |
|---------------|----------|------|---------------------------------------------------------------|
| Column        | Datatype | Unit | Column Description                                            |
| site          | CHAR     | Onit | Investigation site name                                       |
| activity_type | CHAR     |      | Activity type code                                            |
| idcode        | CHAR     |      | Object or borehole identification code                        |
| start date    | DATE     |      | Date (yymmdd hh:mm:ss)                                        |
| secup         | FLOAT    | m    | Upper section limit (m)                                       |
| seclow        | FLOAT    | m    | Lower section limit (m)                                       |
| obs_secup     | FLOAT    | m    | Upper limit of observation section                            |
| obs_seclow    | FLOAT    | m    | Lower limit of observation section                            |
| pi_above      | FLOAT    | kPa  | Groundwater pressure above test section, start of flow period |
| pp_above      | FLOAT    | kPa  | Groundwater pressure above test section,at stop flow period   |
| pf_above      | FLOAT    | kPa  | Groundwater pressure above test section at stop recovery per  |
| pi_below      | FLOAT    | kPa  | Groundwater pressure below test section at start flow period  |
| pp_below      | FLOAT    | kPa  | Groundwater pressure below test section at stop flow period   |
| pf_below      | FLOAT    | kPa  | Groundwater pressure below test section at stop recovery per  |
| comments      | VARCHAR  |      | Comment text row (unformatted text)                           |

| idcode             | start date       | stop_date       | secup  | seclow | section no ob | s_secup | obs seclow | pi above | pp_above | pf above | pi below | pp_below | pf below | comments |
|--------------------|------------------|-----------------|--------|--------|---------------|---------|------------|----------|----------|----------|----------|----------|----------|----------|
| KLX 11A            | 060629 14:32:00  | 060629 16:40:00 | 103.00 | 203.00 |               | 204.00  | 992.29     | 915      |          | 917      | 1872     |          | 1872     |          |
| KLX 11A            | 060629 18:03:00  | 060629 20:21:00 | 203.00 |        |               | 304.00  |            | 1846     | 1846     |          |          | 2807     | 2807     |          |
| KLX 11A            | 060630 09:15:00  | 060630 11:12:00 | 303.00 |        |               | 404.00  |            | 2777     | 2777     | 2778     | 3741     | 3741     | 3741     |          |
| KLX 11A            | 060630 13:11:00  | 060630 15:20:00 | 403.00 | 503.00 |               | 504.00  |            | 3712     | 3712     |          |          | 4675     |          |          |
| KLX 11A            | 060701 08:47:00  | 060701 10:50:00 | 503.00 |        |               | 604.00  | 992.29     | 4641     | 4641     | 4642     |          | 5604     | 5599     |          |
| KLX 11A            | 060701 12:14:00  | 060701 15:43:00 | 603.00 | 703.00 |               | 704.00  | 992.29     | 5577     | 5578     |          | 6532     | 6531     | 6530     |          |
| KLX 11A            | 060701 17:09:00  | 060702 01:32:00 | 703.00 | 803.00 |               | 804.00  | 992.29     | 6507     | 6506     | 6502     | 7453     | 7452     |          |          |
| KLX 11A            | 060702 09:11:00  | 060702 13:33:00 | 803.00 | 903.00 |               | 904.00  | 992.29     | 7425     | 7426     |          | 8452     | 8445     |          |          |
| KLX 11A            | 060702 14:45:00  | 060702 16:49:00 | 876.00 | 976.00 |               | 977.00  | 992.29     | 8100     | 8100     |          |          | 9487     |          |          |
| KLX 11A            | 060704 08:19:00  | 060704 09:46:00 | 103.00 | 123.00 |               | 124.00  | 992.29     | 918      |          |          | 1123     | 1123     |          |          |
| KLX 11A            | 060704 10:31:00  | 060704 11:54:00 | 123.00 | 143.00 |               | 144.00  | 992.29     | 1106     | 1110     |          |          |          |          |          |
| KLX 11A            | 060704 12:49:00  | 060704 14:32:00 | 143.00 | 163.00 |               | 164.00  | 992.29     | 1293     | 1294     |          |          |          |          |          |
| KLX 11A            | 060704 15:05:00  | 060704 16:33:00 | 163.00 | 183.00 |               | 184.00  | 992.29     | 1480     | 1482     | 1483     | 1686     | 1686     |          |          |
| KLX 11A            | 060704 17:12:00  | 060704 18:14:00 | 183.00 | 203.00 |               | 204.00  | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |          |
| KLX 11A            | 060704 18:50:00  | 060704 19:46:00 | 203.00 | 223.00 |               | 224.00  | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |          |
| KLX 11A            | 060705 08:38:00  | 060705 10:07:00 | 223.00 | 243.00 |               | 244.00  | 992.29     | 2034     | 2034     | 2036     | 2246     | 2246     |          |          |
| KLX 11A            | 060705 10:48:00  | 060705 12:22:00 | 243.00 | 263.00 |               | 264.00  |            | 2221     | 2221     | 2221     | 2434     | 2434     |          |          |
| KLX 11A            | 060705 13:18:00  | 060705 14:44:00 | 263.00 |        |               | 284.00  |            | 2406     | 2407     | 2407     | 2622     | 2622     |          |          |
| KLX 11A            | 060705 15:25:00  | 060705 16:51:00 | 283.00 | 303.00 |               | 304.00  |            | 2588     | 2588     | 2588     | 2809     | 2809     |          |          |
| KLX 11A            | 060705 17:25:00  | 060705 18:49:00 | 303.00 | 323.00 |               | 324.00  | 992.29     | 2775     | 2775     |          |          | 2995     |          |          |
| KLX 11A            | 060705 19:21:00  | 060706 00:42:00 | 323.00 | 343.00 |               | 344.00  | 992.29     | 2961     | 2961     | 2961     | 3182     | 3182     |          |          |
| CLX 11A            | 060706 08:48:00  | 060706 10:30:00 | 343.00 | 363.00 |               | 364.00  | 992.29     | 3148     | 3148     |          | 3367     | 3367     | 3368     |          |
| CLX 11A            | 060706 11:03:00  | 060706 12:55:00 | 363.00 | 383.00 |               | 384.00  | 992.29     | 3335     | 3335     | 3335     |          | 3555     |          |          |
| KLX 11A            | 060706 13:34:00  | 060706 15:02:00 | 383.00 | 403.00 |               | 404.00  | 992.29     | 3522     | 3522     | 3522     | 3742     | 3742     |          |          |
| KLX 11A            | 060706 15:54:00  | 060706 17:22:00 | 403.00 |        |               | 424.00  |            | 3708     |          |          | 3928     |          |          |          |
| KLX 11A            | 060706 17:56:00  | 060706 19:21:00 | 423.00 | 443.00 |               | 444.00  |            | 3894     | 3894     | 3894     | 4114     | 4114     |          |          |
| KLX 11A            | 060707 08:32:00  | 060707 10:01:00 | 443.00 | 463.00 |               | 464.00  |            | 4078     | 4078     |          | 4297     | 4297     | 4297     |          |
| CLX 11A            | 060707 10:33:00  | 060707 12:34:00 | 463.00 | 483.00 |               | 484.00  | 992.29     | 4265     | 4265     | 4265     |          | 4485     |          |          |
| KLX 11A            | 060707 13:12:00  | 060707 14:44:00 | 483.00 | 503.00 |               | 504.00  | 992.29     | 4455     | 4455     | 4455     | 4673     | 4673     |          |          |
| KLX 11A            | 060707 15:12:00  | 060707 16:39:00 | 503.00 | 523.00 |               | 524.00  | 992.29     | 4642     | 4642     |          | 4859     |          |          |          |
| KLX 11A            | 060707 17:07:00  | 060707 18:30:00 | 523.00 | 543.00 |               | 544.00  | 992.29     | 4829     | 4829     | 4829     | 5046     | 5046     |          |          |
| KLX 11A            | 060707 19:07:00  | 060707 10:00:00 | 543.00 | 563.00 |               | 564.00  | 992.29     | 5015     | 5015     |          | 5231     | 5231     | 5229     |          |
| CLX 11A            | 060708 08:58:00  | 060708 10:21:00 | 563.00 | 583.00 |               | 584.00  | 992.29     | 5201     | 5202     |          | 5416     |          |          |          |
| CLX 11A            | 060708 10:53:00  | 060708 12:23:00 | 583.00 |        |               | 604.00  |            | 5388     | 5389     | 5389     | 5610     |          |          |          |
| CLX 11A            | 060708 13:17:00  | 060708 14:41:00 | 603.00 |        |               | 624.00  | 992.29     | 5576     |          |          |          |          |          |          |
| CLX 11A            | 060708 15:12:00  | 060708 16:39:00 | 623.00 | 643.00 |               | 644.00  | 992.29     | 5762     | 5762     |          | 5985     | 5986     |          |          |
| CLX 11A            | 060708 17:11:00  | 060708 18:34:00 | 643.00 |        |               | 664.00  | 992.29     | 5949     |          |          |          |          |          |          |
| KLX 11A            | 060708 19:06:00  | 060709 08:39:00 | 663.00 | 683.00 |               | 684.00  | 992.29     | 6135     |          |          |          | 6338     |          |          |
| KLX 11A            | 060709 09:11:00  | 060709 10:40:00 | 683.00 | 703.00 |               | 704.00  | 992.29     | 6319     | 6319     |          |          | 6541     | 6536     |          |
| KLX 11A            | 060709 11:08:00  | 060709 13:27:00 | 703.00 | 723.00 |               | 724.00  | 992.29     | 6506     | 6506     |          |          | 6712     |          |          |
| KLX 11A            | 060709 13:58:00  | 060709 15:13:00 | 723.00 | 743.00 |               | 744.00  |            | #NV      | #NV      | #NV      | #NV      | #NV      |          |          |
| KLX 11A            | 060709 15:45:00  | 060709 16:56:00 | 743.00 | 763.00 |               | 764.00  | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |          |
| KLX 11A            | 060709 17:25:00  | 060709 18:10:00 | 763.00 | 783.00 |               | 784.00  |            | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |          |
| KLX 11A            | 060709 18:43:00  | 060709 20:01:00 | 783.00 | 803.00 |               | 804.00  | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |          |
| KLX 11A            | 060710 08:19:00  | 060710 09:15:00 | 803.00 | 823.00 |               | 824.00  | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |          |
| KLX 11A            | 060710 09:45:00  | 060710 03:13:00 | 823.00 | 843.00 |               | 844.00  | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |          |
| KLX 11A<br>KLX 11A | 060710 09:45:00  | 060710 10:37:00 | 843.00 | 863.00 |               | 864.00  | 992.29     | 7800     | 7801     | 7801     | 8092     | 8086     |          |          |
| KLX 11A            | 060710 11:10:00  | 060710 13:24:00 | 863.00 | 883.00 |               | 884.00  |            | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |          |
| KLX 11A            | 060710 14:04:00  | 060710 14:30:00 | 303.00 |        |               | 309.00  |            | 2778     |          |          |          |          |          |          |
| NLA HA             | 0007 12 07.38:00 | 000712 09.06:00 | 303.00 | 306.00 |               | 309.00  | 992.29     | 2118     | 2118     | 2118     | ∠000     | ∠600     | ∠000     |          |

| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | ı               | T               |        | Î         | Î          | 1         | T          | 1        | 1        | ı        | 1        | 1        | 1        | 1 ago 0/10    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-----------------|--------|-----------|------------|-----------|------------|----------|----------|----------|----------|----------|----------|---------------|
| High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   10   High   | idoodo  | atout data      | oton doto       |        | a a a law | acation no | aha assum | aha aaalaw | ni ahawa | nn abaua | nf above | ni halaw | nn halaw | nf halaw | a a mama mata |
| KLY11A 060712 113900 060712 120300 051300 318.00 338.00 339.00 324.00 992.20 #NV #NV #NV #NV #NV MV NV KLY11A 060712 133900 060712 1319100 060712 113100 060712 113100 060712 113100 060712 113100 060712 113100 060712 113100 323.00 324.00 324.00 992.20 1153 3153 3152 3330 3330 3330 3330 3330 3330 3330 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                 | · -             |        |           |            |           | _          | -        |          |          |          |          | -        | comments      |
| KLY11A 060712 133900 060712 135700 318.00 333.00 334.00 992.20 #WV #WV #WV #WV #WV #WV #WV #WV KLY11A 060712 135700 060712 173800 348.00 348.00 348.00 992.20 #WV #WV #WV #WV #WV #WV #WV #WV #WV #WV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KIX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KIX 11A 606712 173-800 060712 173-800 338.00 358.00 358.00 992.20 #NV #NV #NV #NV #NV #NV KIX 11A 060713 075-200 060713 08-41.00 358.00 358.00 358.00 992.20 #NV #NV #NV #NV #NV #NV #NV KIX 11A 060713 075-200 060713 108-110 358.00 358.00 364.00 992.20 #NV #NV #NV #NV #NV #NV #NV #NV KIX 11A 060713 102-800 060713 11-17.00 388.00 388.00 389.00 992.20 #NV #NV MV #NV #NV #NV #NV KIX 11A 060713 102-800 060713 11-17.00 388.00 388.00 389.00 992.20 #NV #NV MV #NV #NV #NV #NV KIX 11A 060713 102-800 060713 11-17.00 388.00 388.00 992.20 #NV #NV MV #NV #NV #NV #NV #NV KIX 11A 060713 102-800 060713 11-17.00 388.00 398.00 992.20 #NV #NV MV #NV #NV #NV #NV #NV #NV KIX 11A 060713 11-17.00 060713 102-800 060713 11-17.00 388.00 992.20 #NV #NV #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KIX 11A 606712 17:56:00 060713 10:55:00 383.00 383.00 386.00 389.00 992.29 #NV #NV  #NV  #NV  #NV  #NV  #NV  KIX 11A 060713 10:55:00 060713 10:55:00 383.00 383.00 389.00 992.29 #NV  #NV  #NV  #NV  #NV  #NV  #NV  #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060713 07:52:00 060713 08:40 050 386.00 386.00 386.00 992.29 #NV #NV #NV #NV #NV KLX 11A 060713 10:28:00 060713 11:17:00 386.00 380.00 992.09 #NV #NV #NV #NV #NV #NV KLX 11A 060713 10:28:00 060713 11:17:00 386.00 380.00 992.09 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060713 13:44:00 060713 15:20:00 393.00 396.00 992.09 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060713 13:44:00 060713 15:60 386.00 380.00 428.00 429.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060713 15:40 00 060713 15:65:00 422.00 428.00 429.00 992.29 #NV #NV #NV #NV #NV #NV KLX 11A 060713 15:60 00 060713 17:47:00 428.00 428.00 429.00 992.29 #NV #NV #NV #NV #NV #NV KLX 11A 060713 15:69:00 060714 07:59:00 438.00 438.00 438.00 438.00 992.29 #NV #NV #NV #NV #NV #NV KLX 11A 060714 07:90 060714 07:39:00 438.00 438.00 438.00 438.00 439.00 992.29 #NV #NV #NV #NV #NV #NV KLX 11A 060714 09:17:00 060714 10:39:00 438.00 438.00 438.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060714 09:17:00 060714 10:39:00 438.00 438.00 438.00 992.29 #NV #NV #NV #NV #NV #NV KLX 11A 060714 10:39:00 060714 10:39:00 438.00 448.00 992.29 #NV #NV #NV #NV #NV #NV KLX 11A 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 060714 10:30:00 |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 660713 12:200 66073 13:2000 593.00 598.00 599.00 599.229 MAV MOV MOV MOV MOV MOV MOV MOV MOV MOV MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 660713 13-44 00 690713 15:16:00 998.00 403.00 404.00 992.29 8665 3665 3741 3741 3741   KLX 11A 660713 16:59.00 600713 15:59.00 423.00 428.00 429.00 992.29 #NV #NV #NV #NV #NV   KLX 11A 600713 16:59.00 600714 08:46:00 433.00 438.00 439.00 992.29 #NV #NV #NV #NV #NV   KLX 11A 600714 09:170.0 600714 10:39:00 428.00 433.00 434.00 992.29 #NV #NV #NV #NV #NV   KLX 11A 600714 09:170.0 600714 12:51:00 442.00 447.00 448.00 992.29 #NV #NV #NV #NV #NV   KLX 11A 600714 10:10:00 600714 12:51:00 442.00 447.00 448.00 992.29 40.38 40.38 4114 4115 4115   KLX 11A 600714 13:16:00 600714 12:51:00 447.00 452.00 453.00 992.29 40.38 40.38 4114 4115 4115   KLX 11A 600714 13:16:00 600714 12:51:00 447.00 452.00 453.00 992.29 4149 4194 4150 4150 4154 4154   KLX 11A 600714 13:16:00 600714 12:51:00 447.00 452.00 453.00 992.29 4124 4124 4124 420 4200 4200   KLX 11A 600714 13:16:00 600714 15:20:00 447.00 452.00 453.00 992.29 4124 4170 4171 472 4470 477   KLX 11A 600714 16:45:00 600714 15:65:00 457.00 452.00 457.00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:65:00 457.00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:65:00 457.00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 457.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 452.00 452.00 452.00 1 KLX 11A 600715 10:10:00 600714 15:50:00 1 KLX 11A 600715 10:10:00 600714 15:50:00 1 KLX 11A 600715 10:10:00 600714 15:50:00 1 KLX 11A 600715 10:00 60071 |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060713 15.46.00 060713 16.95.00 428.00 428.00 428.00 429.00 992.29 #NV #NV #NV #NV #NV #NV KLX 11A 060714 07.59.00 060714 107.59.00 433.00 438.00 439.00 992.29 #NV #NV #NV #NV #NV #NV #NV #NV KLX 11A 060714 07.59.00 160714 107.59.00 433.00 438.00 439.00 992.29 #NV #NV #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060713 16:59:00 060714 07:00 428:00 433:00 439:00 992:29 #NV #NV #NV #NV #NV #NV KLX 11A 060714 09:17:00 060714 17:00 438:00 438:00 449:00 992:29 4038 4038 4038 4114 4115 4115 KLX 11A 060714 19:00 00 060714 17:25:100 442:00 447:00 448:00 992:29 4038 4038 4038 4114 4115 4115 KLX 11A 060714 18:00 00 060714 17:25:100 447:00 447:00 448:00 992:29 4149 4149 4190 4154 4154 4154 KLX 11A 060714 18:00 00 060714 17:00 060714 18:00 00 060714 18:45:00 457:00 458:00 992:29 4170 4170 4171 4246 4200 4200 4200 KLX 11A 060714 18:45:00 060714 18:45:00 457:00 457:00 458:00 992:29 4170 4170 4171 4246 4247 4247 4247 4247 4247 4247 4247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060714 07:59:00 060714 10:39:00 433:00 438:00 439:00 992:29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060714 11:00:00 060714 11:03:00 442:00 447:00 448:00 992:29 41:19 41:19 41:50 41:55 41:15 41:15 (KLX 11A 060714 11:00:00 060714 11:30:00 060714 11:30:00 060714 11:30:00 060714 11:30:00 060714 11:30:00 060714 11:30:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450:00 450 | KLX 11A |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060714 09:17:00 060714 10:39:00 438:00 443:00 444:00 992:29 4038 4038 4038 4114 4115 4115 ( KLX 11A 060714 10:00 060714 12:51:00 442:00 447:00 448:00 992:29 4149 4199 4150 4150 4154 4154 4154 ( KLX 11A 060714 15:00 060714 13:50:00 447:00 452:00 453:00 992:29 4124 4124 4124 4200 4200 4200 ( KLX 11A 060714 15:01:00 060714 13:50:00 452:00 457:00 458:00 992:29 4170 4170 4171 4246 4247 4247 ( KLX 11A 060714 15:01:00 060714 18:50:00 457:00 458:00 992:29 81NV 8NV 8NV 8NV 8NV 8NV 8NV 8NV 8NV 8NV 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A |                 |                 | 452.00 |           |            | 458.00    |            |          | 4170     |          |          |          |          |               |
| KLX 11A 060715 08:16:00 060715 10:9:00 483.00 488.00 499.00 992.29 #NV #NV #NV #NV #NV #NV KLX 11A 060715 10:9:00 060715 10:9:00 488.00 493.00 494.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060715 10:47:00 060715 10:3:30:00 493.00 498.00 499.00 992.29 4553 4554 4554 4629 4629 4629 4629 4629 4629 4629 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KLX 11A | 060714 16:45:00 | 060714 17:35:00 | 457.00 |           |            | 463.00    |            | #NV      | #NV      | #NV      | #NV      | #NV      |          |               |
| KLX 11A 060715 09:29:00 060715 10:19:00 488.00 493.00 498.00 992.29 #NV #NV #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KLX 11A | 060714 18:01:00 | 060714 18:50:00 | 462.00 | 467.00    |            | 468.00    | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |               |
| KLX 11A 060715 10:47:00 060715 113:39:00 493:00 498:00 503:00 504:00 992:29 4553 4554 4554 4629 4629 4629 4629 46X1 11A 060715 114:04:00 060715 15:29:00 498:00 503:00 508:00 509:00 992:29 4601 4601 4601 4601 4676 4676 4676 4676 4676 4676 4676 467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KLX 11A | 060715 08:16:00 | 060715 09:05:00 | 483.00 | 488.00    |            | 489.00    | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A | 060715 09:29:00 | 060715 10:19:00 | 488.00 | 493.00    |            | 494.00    | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |               |
| KLX 11A 060715 15:53:00 060715 17:47:00 503:00 508:00 509:00 992:29 4647 4647 4647 4722 4722 4722 4722 KLX 11A 060810 15:30:00 060715 21:14:00 508:00 513:00 513:00 514:00 992:29 4693 4693 4693 4768 4676 4678 KLX 11A 060808 15:30:00 060808 17:15:00 513:00 518:00 518:00 992:29 4743 4743 4743 4817 4819 4818 KLX 11A 060809 08:00 060808 19:37:00 518:00 523:00 524:00 992:29 4789 4789 4789 4789 4864 4866 4865 KLX 11A 060809 10:08:00 060809 9:41:00 523:00 528:00 529:00 992:29 4837 4879 4879 4879 4907 4907 4907 4907 KLX 11A 060809 10:08:00 060809 11:13:40:00 528:00 533:00 533:00 533:00 992:29 4879 4879 4879 4879 4879 4955 4955 KLX 11A 060809 12:48:00 060809 11:16:00 533:00 538:00 539:00 992:29 4927 4927 5002 5002 5002 KLX 11A 060809 11:40:00 060809 11:16:00 533:00 538:00 543:00 992:29 4974 4974 4974 4974 5049 5049 5049 KLX 11A 060809 18:17:00 060809 11:10:00 538:00 568:00 568:00 569:00 992:29 #NV #NV #NV #NV #NV #NV KLX 11A 060809 18:17:00 060809 11:10:00 568:00 573:00 573:00 574:00 992:29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060809 18:17:00 060809 19:11:00 568:00 573:00 574:00 992:29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060810 10:02:00 060809 1:11:20:00 578:00 583:00 588:00 599:09 992:29 5297 5298 5298 5372 5386 5373 KLX 11A 060810 10:02:00 060810 11:20:00 578:00 583:00 588:00 589:00 992:29 5393 5393 5393 5467 5467 5467 5467 5467 5467 5467 5467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX 11A | 060715 10:47:00 | 060715 13:39:00 | 493.00 | 498.00    |            | 499.00    | 992.29     | 4553     | 4554     | 4554     | 4629     | 4629     | 4629     |               |
| KLX 11A 060715 18:09:00 060715 21:14:00 508.00 513.00 518.00 514.00 992.29 4693 4693 4693 4768 4768 4678  KLX 11A 060808 15:30:00 060808 17:15:00 513.00 518.00 519.00 992.29 4743 4743 4743 4743 4817 4819 4818  KLX 11A 060808 17:47:00 060808 19:37:00 518.00 523.00 524.00 992.29 4789 4789 4789 4864 4866 4865  KLX 11A 060809 08:08:00 060809 09:41:00 523.00 528.00 529.00 992.29 4831 4831 4831 4831 4907 4907 4907  KLX 11A 060809 10:08:00 060809 11:34:00 528.00 533.00 534.00 992.29 4879 4879 4879 4954 4954 4955  KLX 11A 060809 12:48:00 060809 14:16:00 533.00 538.00 539.00 992.29 4879 4879 4879 4927 5002 5002  KLX 11A 060809 14:40:00 060809 14:100 533.00 543.00 543.00 544.00 992.29 4974 4927 4927 5002 5002  KLX 11A 060809 16:59:00 060809 17:53:00 568.00 568.00 569.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060809 18:17:00 060809 19:17:00 568.00 568.00 569.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060809 18:17:00 060809 19:17:00 568.00 573.00 578.00 574.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060810 10:02:00 060810 11:28:00 578.00 588.00 588.00 599.29 5297 5298 5298 5372 5386 5373  KLX 11A 060810 10:02:00 060810 11:28:00 578.00 588.00 588.00 599.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060810 12:20:00 060810 11:28:00 578.00 588.00 599.00 992.29 5393 5393 5393 5393 5393 5467 5467 5467  KLX 11A 060810 12:20:00 060810 11:28:00 588.00 598.00 599.00 992.29 5530 5530 5530 5606 5602 5600  KLX 11A 060810 16:33:00 060810 18:19:00 598.00 603.00 604.00 992.29 5530 5530 5530 5606 5602 5600  KLX 11A 060811 16:33:00 060811 18:10:00 598.00 603.00 604.00 992.29 5530 5530 5530 5606 5602 6200 KLX 11A 060811 13:30:00 060811 13:10:00 663.00 668.00 669.00 992.29 6137 6137 6137 6220 6200 6200 KLX 11A 060811 13:30:00 060811 15:14:00 668.00 673.00 674.00 992.29 6134 6184 6184 6260 6260 6240 KLX 11A 060811 13:30:00 060811 17:12:00 673.00 673.00 674.00 992.29 6134 6184 6184 6260 6260 6260 6240 KLX 11A 060811 13:30:00 060811 17:12:00 673.00 673.00 679.00 992.29 6137 6137 6137 6230 6230 6230 6230 6230 6230 6230 6230              | KLX 11A | 060715 14:04:00 | 060715 15:29:00 | 498.00 | 503.00    |            | 504.00    | 992.29     | 4601     | 4601     | 4601     | 4676     | 4676     | 4676     |               |
| KLX 11A 060808 15:30:00 060808 17:15:00 513:00 518:00 518:00 519:00 992:29 4743 4743 4743 4817 4819 4818 KLX 11A 060808 17:47:00 060808 19:37:00 523:00 523:00 524:00 992:29 4789 4789 4789 4864 4866 4865 KLX 11A 060809 08:08:00 060809 09:41:00 523:00 528:00 529:00 992:29 4831 4831 4831 4907 4907 4907 KLX 11A 060809 10:08:00 060809 11:34:00 523:00 533:00 534:00 992:29 4879 4879 4879 4879 4954 4954 4955 KLX 11A 060809 12:48:00 060809 14:16:00 533:00 538:00 539:00 992:29 4977 4927 4927 5002 5002 5002 KLX 11A 060809 14:40:00 060809 16:19:00 538:00 543:00 544:00 992:29 4974 4974 4974 5049 5049 5049 KLX 11A 060809 16:59:00 060809 17:53:00 563:00 568:00 569:00 992:29 #NV #NV #NV #NV #NV #NV #NV #NV #NV #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KLX 11A | 060715 15:53:00 | 060715 17:47:00 | 503.00 | 508.00    |            | 509.00    | 992.29     | 4647     | 4647     | 4647     | 4722     | 4722     | 4722     |               |
| KLX 11A 060808 17:47:00 060808 19:37:00 518.00 523.00 528.00 529.00 992.29 4789 4789 4789 4864 4866 4865 KLX 11A 060809 08:08:00 060809 09:41:00 523.00 528.00 529.00 992.29 4831 4831 4831 4831 4907 4907 4907 KLX 11A 060809 10:08:00 060809 11:34:00 528.00 533.00 534.00 992.29 4879 4879 4879 4954 4954 4955 KLX 11A 060809 12:48:00 060809 14:16:00 533.00 538.00 539.00 992.29 4927 4927 5002 5002 5002 KLX 11A 060809 14:00 060809 16:19:00 538.00 543.00 543.00 992.29 4974 4974 4974 5049 5049 5049 KLX 11A 060809 16:59:00 060809 17:53:00 563.00 568.00 569.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060809 18:17:00 060809 19:11:00 568.00 573.00 574.00 992.29 #NV #NV #NV #NV #NV #NV #NV KLX 11A 060810 08:06:00 060810 99:34:00 578.00 583.00 583.00 599.29 E597 5298 5298 5372 5386 5373 KLX 11A 060810 10:02:00 060810 11:28:00 578.00 583.00 588.00 992.29 E99.29 5345 5346 5346 5419 5425 5421 KLX 11A 060810 12:20:00 060810 11:28:00 578.00 588.00 599.00 992.29 599.00 992.29 599.00 599.29 #NV #NV #NV #NV #NV #NV KLX 11A 060810 12:20:00 060810 11:28:00 578.00 588.00 599.00 992.29 599.00 992.29 5345 5346 5346 5419 5425 5421 KLX 11A 060810 12:20:00 060810 18:19:00 583.00 588.00 599.00 992.29 599.00 992.29 599.00 599.29 599.00 5467 5467 5467 5467 5467 5467 5467 5467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KLX 11A | 060715 18:09:00 | 060715 21:14:00 | 508.00 | 513.00    |            | 514.00    | 992.29     | 4693     | 4693     | 4693     | 4768     | 4768     | 4678     |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A | 060808 15:30:00 | 060808 17:15:00 | 513.00 | 518.00    |            | 519.00    | 992.29     | 4743     | 4743     | 4743     | 4817     | 4819     | 4818     |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A | 060808 17:47:00 | 060808 19:37:00 | 518.00 | 523.00    |            | 524.00    | 992.29     | 4789     | 4789     | 4789     | 4864     | 4866     | 4865     |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A |                 |                 | 523.00 |           |            | 529.00    | 992.29     | 4831     | 4831     | 4831     | 4907     | 4907     | 4907     |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A | 060809 10:08:00 | 060809 11:34:00 | 528.00 |           |            | 534.00    | 992.29     | 4879     | 4879     | 4879     | 4954     | 4954     | 4955     |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A | 060809 12:48:00 | 060809 14:16:00 | 533.00 | 538.00    |            | 539.00    | 992.29     | 4927     | 4927     | 4927     | 5002     | 5002     | 5002     |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A | 060809 14:40:00 | 060809 16:19:00 | 538.00 | 543.00    |            | 544.00    | 992.29     | 4974     | 4974     | 4974     | 5049     | 5049     | 5049     |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A | 060809 16:59:00 | 060809 17:53:00 | 563.00 | 568.00    |            | 569.00    | 992.29     | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A |                 |                 |        |           |            |           |            | #NV      | #NV      | #NV      | #NV      | #NV      | #NV      |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KLX 11A |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060810 16:33:00 060810 18:19:00 593.00 598.00 599.00 992.29 5486 5486 5487 5562 5560 5560 5600 5600 5600 5600 5600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060811 08:01:00 060811 09:26:00 598.00 603.00 604.00 992.29 5530 5530 5530 5606 5602 5600<br>KLX 11A 060811 10:29:00 060811 13:01:00 663.00 668.00 669.00 992.29 6137 6137 6137 6202 6202 6200<br>KLX 11A 060811 13:30:00 060811 15:14:00 668.00 673.00 674.00 992.29 6184 6184 6260 6260 6249<br>KLX 11A 060811 15:38:00 060811 17:22:00 673.00 678.00 679.00 992.29 6230 6230 6230 6311 6311 6295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060811 10:29:00 060811 13:01:00 663.00 668.00 669.00 992.29 6137 6137 6137 6202 6202 6200<br>KLX 11A 060811 13:30:00 060811 15:14:00 668.00 673.00 674.00 992.29 6184 6184 6260 6260 6249<br>KLX 11A 060811 15:38:00 060811 17:22:00 673.00 678.00 679.00 992.29 6230 6230 6230 6311 6311 6295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060811 13:30:00 060811 15:14:00 668.00 673.00 674.00 992.29 6184 6184 6260 6260 6249 627 647 647 647 647 647 647 647 647 647 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
| KLX 11A 060811 15:38:00 060811 17:22:00 673.00 678.00 679.00 992.29 6230 6230 6230 6311 6311 6295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KLX 11A |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KLX 11A |                 |                 |        |           |            |           |            |          |          |          |          |          |          |               |